Skip to main content

Artificial Host Molecules Modifying Biomacromolecules

  • Living reference work entry
  • First Online:
Book cover Handbook of Macrocyclic Supramolecular Assembly
  • 598 Accesses

Abstract

Regulating the functions of biomacromolecules through chemical modifications has long been concerned as a key issue in chemistry and biochemistry. Although significant progress has been made in the modification of biomacromolecules by utilizing traditional covalent chemistry, the recently emerged supramolecular approaches, particularly those based on specific host-guest recognition, have been recognized as alternative strategies which can offer new opportunities in modulating biomolecular functions. In this chapter, we mainly focus on the discussion of the host-guest recognition assisted modifications of biomacromolecules including proteins/peptides, carbohydrates, as well as DNA and nucleic acids. We hope that this chapter can provide a worth learning summary in multidisciplinary fields of supramolecular chemistry and biochemistry, which may shine light on exploring the future of such flourishing and vibrant topic with myriad possibilities by encouraging and opening the windows to researchers from different backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Smith BD (2015) Synthetic receptors for biomolecules: design principles and applications. The Royal Society of Chemistry, London

    Book  Google Scholar 

  2. Ma X, Zhao Y (2015) Biomedical applications of supramolecular systems based on host-guest interactions. Chem Rev 115:7794

    Article  CAS  PubMed  Google Scholar 

  3. Liu Z, Nalluri SKM, Stoddart JF (2017) Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. Chem Soc Rev 46:2459

    Article  CAS  PubMed  Google Scholar 

  4. Shetty D, Khedkar JK, Parkad KM, Kim K (2015) Can we beat the biotin-avidin pair?: cucurbit[7]uril-based ultrahigh affinity host-guest complexes and their applications. Chem Soc Rev 44:8747

    Article  CAS  PubMed  Google Scholar 

  5. Liu W, Samanta SK, Smith BD, Isaacs L (2017) Synthetic mimics of biotin/(strept)avidin. Chem Soc Rev 46:2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van Dun S, Ottmann C, Milroy L-G, Brunsveld L (2017) Supramolecular chemistry targeting proteins. J Am Chem Soc 139:13960

    Article  PubMed  PubMed Central  Google Scholar 

  7. Park KM, Murray J, Kim K (2017) Ultrastable artificial binding pairs as a supramolecular latching system: a next generation chemical tool for proteomics. Acc Chem Res 50:644

    Article  CAS  PubMed  Google Scholar 

  8. Hou C, Zeng X, Gao Y, Qiao S, Zhang X, Xu J, Liu J (2018) Cucurbituril as a versatile tool to tune the functions of proteins. Isr J Chem 58:286

    Article  CAS  Google Scholar 

  9. Finbloom JA, Francis MB (2018) Supramolecular strategies for protein immobilization and modification. Curr Opin Chem Biol 46:91

    Article  CAS  PubMed  Google Scholar 

  10. Solís D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, Smetana K Jr, Gabius H-J (2015) A guide into glycosciences: how chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim Biophys Acta 1850:186

    Article  PubMed  Google Scholar 

  11. Zhou X, Pathak P, Jayawickramarajah J (2018) Design, synthesis, and applications of DNA-macrocyclic host conjugates. Chem Commun 54:11668

    Article  CAS  Google Scholar 

  12. Ganapati S, Isaacs L (2018) Acyclic cucurbit[n]uril-type receptors: preparation, molecular recognition properties and biological applications. Isr J Chem 58:250

    Article  CAS  PubMed  Google Scholar 

  13. Hou C, Huang Z, Fang Y, Liu J (2017) Construction of protein assemblies by host-guest interactions with cucurbiturils. Org Biomol Chem 15:4272

    Article  CAS  PubMed  Google Scholar 

  14. Zhang L, Wu Y, Brunsveld L (2007) A synthetic supramolecular construct modulating protein assembly in cells. Angew Chem Int Ed 46:1798

    Article  CAS  Google Scholar 

  15. Nguyen HD, Dang DT, van Dongen JLJ, Brunsveld L (2010) Protein dimerization induced by supramolecular interactions with cucurbit[8]uril. Angew Chem Int Ed 49:895

    Article  CAS  Google Scholar 

  16. Uhlenheuer DA, Young JF, Nguyen HD, Scheepstra M, Brunsveld L (2011) Cucurbit[8]uril induced heterodimerization of methylviologen and naphthalene functionalized proteins. Chem Commun 47:6798

    Article  CAS  Google Scholar 

  17. de Vink PJ, Briels JM, Schrader T, Milroy L-G, Brunsveld L, Ottmann C (2017) A binary bivalent supramolecular assembly platform based on cucurbit[8]uril and dimeric adapter protein 14-3-3. Angew Chem Int Ed 56:8998

    Article  Google Scholar 

  18. Rennie ML, Fox GC, Pérez J, Crowley PB (2018) Auto-regulated protein assembly on a supramolecular scaffold. Angew Chem Int Ed 57:13764

    Article  CAS  Google Scholar 

  19. Dang DT, Schill J, Brunsveld L (2012) Cucurbit[8]uril-mediated protein homotetramerization. Chem Sci 3:2679

    Article  CAS  Google Scholar 

  20. Luo Q, Hou C, Bai Y, Wang R, Liu J (2016) Protein assembly: versatile approaches to construct highly ordered nanostructures. Chem Rev 116:13571

    Article  CAS  PubMed  Google Scholar 

  21. Hou C, Li J, Zhao L, Zhang W, Luo Q, Dong Z, Xu J, Liu J (2013) Construction of protein nanowires through cucurbit[8]uril-based highly specific host-guest interactions: an approach to the assembly of functional proteins. Angew Chem Int Ed 52:5590

    Google Scholar 

  22. Si C, Li J, Luo Q, Hou C, Pan T, Li H, Liu J (2016) An ion signal responsive dynamic protein nano-spring constructed by high ordered host-guest recognition. Chem Commun 52:2924

    Article  CAS  PubMed  Google Scholar 

  23. Li X, Bai Y, Huang Z, Si C, Dong Z, Luo Q, Liu J (2017) A highly controllable protein self-assembly system with morphological versatility induced by reengineered host-guest interactions. Nanoscale 9:7991

    Article  CAS  PubMed  Google Scholar 

  24. Young JF, Nguyen HD, Yang L, Huskens J, Jonkheijm P, Brunsveld L (2010) Strong and reversible monovalent supramolecular protein immobilization. Chem Bio Chem 11:180

    Google Scholar 

  25. Bosmans RPG, Hendriksen WE, Verheijden M, Eelkema R, Jonkheijm P, van Esch JH, Brunsveld L (2015) Supramolecular protein immobilization on lipid bilayers. Chem Eur J 21:18466

    Article  CAS  Google Scholar 

  26. Uhlenheuer DA, Wasserberg D, Haase C, Nguyen HD, Schenkel JH, Huskens J, Ravoo BJ, Jonkheijm P, Brunsveld L (2012) Directed supramolecular surface assembly of SNAP-tag fusion proteins. Chem Eur J 18:6788

    Article  CAS  Google Scholar 

  27. Jiao D, Geng J, Loh XJ, Das D, Lee T-C, Scherman OA (2012) Supramolecular peptide amphiphile vesicles through host-guest complexation. Angew Chem Int Ed 51:9633

    Article  CAS  PubMed  Google Scholar 

  28. Biedermann F, Rauwald U, Zayed JM, Scherman OA (2011) A supramolecular route for reversible protein-polymer conjugation. Chem Sci 2:279

    Article  CAS  Google Scholar 

  29. Webber MJ, Appel EA, Vinciguerra B, Cortinas AB, Thapa LS, Jhunjhunwala S, Isaacs L, Langer R, Anderson DG (2016) Supramolecular PEGylation of biopharmaceuticals. Proc Natl Acad Sci U S A 113:14189

    Article  CAS  Google Scholar 

  30. Aucagne V, Leigh DA, Lock JS, Thomson AR (2006) Rotaxanes of cyclic peptides. J Am Chem Soc 128:1784

    Article  CAS  PubMed  Google Scholar 

  31. Bruns CJ, Liu H, Francis MB (2016) Near-quantitative aqueous synthesis of rotaxanes via bioconjugation to oligopeptides and proteins. J Am Chem Soc 138:15307

    Article  CAS  PubMed  Google Scholar 

  32. Finbloom JA, Han K, Slack CC, Furst AL, Francis MB (2017) Cucurbit[6]uril-promoted click chemistry for protein modification. J Am Chem Soc 139:9691

    Article  CAS  PubMed  Google Scholar 

  33. Kwant RL, Jaffe J, Palmere PJ, Francis MB (2015) Controlled levels of protein modification through a chromatography-mediated bioconjugation. Chem Sci 6:2596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee D-W, Park KM, Banerjee M, Ha SH, Lee T, Suh K, Paul S, Jung H, Kim J, Selvapalam N, Ryu SH, Kim K (2011) Supramolecular fishing for plasma membrane proteins using an ultrastable synthetic host-guest binding pair. Nat Chem 3:154

    Article  PubMed  Google Scholar 

  35. Murray J, Sim J, Oh K, Sung G, Lee A, Shrinidhi A, Thirunarayanan A, Shetty D, Kim K (2017) Enrichment of specifically labeled proteins by an immobilized host molecule. Angew Chem Int Ed 56:2395

    Article  CAS  Google Scholar 

  36. Lee JW, Shin MH, Mobley W, Urbach AR, Kim HI (2015) Supramolecular enhancement of protein analysis via the recognition of phenylalanine with cucurbit[7]uril. J Am Chem Soc 137:15322

    Article  CAS  PubMed  Google Scholar 

  37. Sonzini S, Marcozzi A, Gubeli RJ, van der Walle CF, Ravn P, Herrmann A, Scherman OA (2016) High affinity recognition of a selected amino acid epitope within a protein by cucurbit[8]uril complexation. Angew Chem Int Ed 55:14000

    Article  CAS  Google Scholar 

  38. Paul D, Suzumura A, Sugimoto H, Teraoka J, Shinoda S, Tsukube H (2003) Chemical activation of cytochrome c proteins via crown ether complexation: cold-active synzymes for enantiomer-selective sulfoxide oxidation in methanol. J Am Chem Soc 125:11478

    Article  CAS  PubMed  Google Scholar 

  39. Ghosh S, Issacs L (2010) Biological catalysis regulated by cucurbit[7]uril molecular containers. J Am Chem Soc 132:4445

    Article  CAS  PubMed  Google Scholar 

  40. Dang DT, Nguyen HD, Merkx M, Brunsveld L (2013) Supramolecular control of enzyme activity through cucurbit[8]uril-mediated dimerization. Angew Chem Int Ed 52:2915

    Article  CAS  Google Scholar 

  41. Bosmans RPG, Briels JM, Milroy L-G, de Greef TFA, Merkx M, Brunsveld L (2016) Supramolecular control over split-luciferase complementation. Angew Chem Int Ed 55:8899

    Article  CAS  Google Scholar 

  42. Kim C, Agasti SS, Zhu Z, Isaacs L, Rotello VM (2010) Recognition-mediated activation of therapeutic gold nanoparticles inside living cells. Nat Chem 2:962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yeh Y-C, Rana S, Mout R, Yan B, Alfonsoa FS, Rotello VM (2014) Supramolecular tailoring of protein–nanoparticle interactions using cucurbituril mediators. Chem Commun 50:5565

    Article  CAS  Google Scholar 

  44. Tonga GY, Jeong Y, Duncan B, Mizuhara T, Mout R, Das R, Kim ST, Yeh Y-C, Yan B, Hou S, Rotello VM (2015) Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat Chem 7:597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Le NDB, Tonga GY, Mout R, Kim S-T, Wille ME, Rana S, Dunphy KA, Jerry DJ, Yazdani M, Ramanathan R, Rotello CM, Rotello VM (2017) Cancer cell discrimination using host-guest“doubled”arrays. J Am Chem Soc 139:8008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu Y, Rebek J Jr (2018) Reactions of folded molecules in water. Acc Chem Res 51:3031

    Article  CAS  PubMed  Google Scholar 

  47. Zhang K-D, Ajami D, Gavette JV, Rebek J Jr (2014) Complexation of alkyl groups and ghrelin in a deep, water-soluble cavitand. Chem Commun 50:4895

    Article  CAS  Google Scholar 

  48. Liu Y, Perez L, Gill AD, Mettry M, Li L, Wang Y, Hooley RJ, Zhong W (2017) Site-selective sensing of histone methylation enzyme activity via an arrayed supramolecular tandem assay. J Am Chem Soc 139:10964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu Y, Perez L, Mettry M, Gill AD, Byers SR, Easley CJ, Bardeen CJ, Zhong W, Hooley RJ (2017) Site selective reading of epigenetic markers by a dual-mode synthetic receptor array. Chem Sci 8:3960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu Y, Lee J, Perez L, Gill AD, Hooley RJ, Zhong W (2018) Selective sensing of phosphorylated peptides and monitoring kinase and phosphatase activity with a supramolecular tandem assay. J Am Chem Soc 140:13869

    Article  CAS  PubMed  Google Scholar 

  51. Liu Y, Liao P, Cheng Q, Hooley RJ (2010) Protein and small molecule recognition properties of deep cavitands in a supported lipid membrane determined by calcination-enhanced SPR spectroscopy. J Am Chem Soc 132:10383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ghang Y-J, Lloyd JJ, Moehlig MP, Arguelles JK, Mettry M, Zhang X, Julian RR, Cheng Q, Hooley RJ (2014) Labeled protein recognition at a membrane bilayer interface by embedded synthetic receptors. Langmuir 30:10161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ghang Y-J, Perez L, Morgan MA, Si F, Hamdy OM, Beecher CN, Larive CK, Julian RR, Zhong W, Cheng Q, Hooley RJ (2014) Anionic deep cavitands enable the adhesion of unmodified proteins at a membrane bilayer. Soft Matter 10:9651

    Article  CAS  PubMed  Google Scholar 

  54. Lis H, Sharon N (1998) Lectins:carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98:637

    Article  CAS  PubMed  Google Scholar 

  55. Kubik S (2009) Synthetic lectins. Angew Chem Int Ed 48:1722

    Article  CAS  PubMed  Google Scholar 

  56. Mazik M (2009) Molecular recognition of carbohydrates by acyclic receptors employing noncovalent interactions. Chem Soc Rev 38:935

    Article  CAS  PubMed  Google Scholar 

  57. Laughrey ZR, Kiehna SE, Riemen AJ, Waters ML (2008) Carbohydrate-π interactions: what are they worth?. J Am Chem Soc 130:14625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aoyama Y, Tanaka Y, Toi H, Ogoshi H (1988) Polar host-guest interaction. Binding of nonionic polar compounds with a resorcinol-aldehyde cyclooligomer as a lipophilic polar host. J Am Chem Soc 110:634

    Article  CAS  Google Scholar 

  59. Davis AP, Wareham RS (1999) Carbohydrate recognition through noncovalent interactions: a challenge for biomimetic and supramolecular chemistry. Angew Chem Int Ed 38:2978

    Article  CAS  Google Scholar 

  60. Aoyama Y, Nagai Y, Otsuki J-i, Kobayashi K, Toi H (1992) Selective binding of sugar to β-cyclodextrin: a prototype for sugar-sugar interactions in water. Angew Chem Int Ed 31:745

    Article  Google Scholar 

  61. Král V, Rusin O, Schmidtchen FP (2001) Novel porphyrin-cryptand cyclic systems: receptors for saccharide recognition in water. Org Lett 3:873

    Article  PubMed  Google Scholar 

  62. Jang Y, Natarajan R, Ko YH, Kim K (2014) Cucurbit[7]uril: a high-affinity host for encapsulation of amino saccharides and supramolecular stabilization of their α-anomers in water. Angew Chem Int Ed 53:1003

    Article  CAS  Google Scholar 

  63. Ferrand Y, Klein E, Barwell NP, Crump MP, Jiménez-Barbero J, Vicent C, Boons G-J, Ingale S, Davis AP (2009) A synthetic lectin for O-linked β-N-acetylglucosamine. Angew Chem Int Ed 48:1775

    Article  CAS  Google Scholar 

  64. Tromans RA, Carter TS, Chabanne L, Crump MP, Li H, Matlock JV, Orchard MG, Davis AP (2019) A biomimetic receptor for glucose. Nat Chem 11:52

    Article  PubMed  Google Scholar 

  65. Ferrand Y, Crump MP, Davis AP (2007) A synthetic lectin analog for biomimetic disaccharide recognition. Science 318:619

    Article  CAS  PubMed  Google Scholar 

  66. Sookcharoenpinyo B, Klein E, Ferrand Y, Walker DB, Brotherhood PR, Ke C, Crump MP, Davis AP (2012) High-affinity disaccharide binding by tricyclic synthetic lectins. Angew Chem Int Ed 51:4586

    Google Scholar 

  67. Mooibroek TJ, Casas-Solvas JM, Harniman RL, Renney CM, Carter TS, Crump MP, Davis AP (2016) A threading receptor for polysaccharides. Nat Chem 8:69

    Article  CAS  PubMed  Google Scholar 

  68. Park KM, Yang J-A, Jung H, Yeom J, Park JS, Park K-H, Hoffman AS, Hahn SK, Kim K (2012) In situ supramolecular assembly and modular modification of hyaluronic acid hydrogels for 3D cellular engineering. ACS Nano 6:2960

    Article  CAS  PubMed  Google Scholar 

  69. Appel EA, Loh XJ, Jones ST, Biedermann F, Dreiss CA, Scherman OA (2012) Ultrahigh-water-content supramolecular hydrogels exhibiting multistimuli responsiveness. J Am Chem Soc 134:11767

    Article  CAS  PubMed  Google Scholar 

  70. Rowland MJ, Atgie M, Hoogland D, Scherman OA (2015) Preparation and supramolecular recognition of multivalent peptide-polysaccharide conjugates by cucurbit[8]uril in hydrogel formation. Biomacromolecules 16:2436

    Article  CAS  PubMed  Google Scholar 

  71. Janeček E-R, McKee JR, Tan CSY, Nykänen A, Kettunen M, Laine J, Ikkala O, Scherman OA (2015) Hybrid supramolecular and colloidal hydrogels that bridge multiple length scales. Angew Chem Int Ed 54:5383

    Article  Google Scholar 

  72. Fujimoto K, Yamada S, Inouye M (2009) Synthesis of versatile fluorescent sensors based on Click chemistry: detection of unsaturated fatty acids by their pyrene-emission switching. Chem Commun 45:7164

    Google Scholar 

  73. Chiba J, Sakai A, Yamada S, Fujimoto K, Inouye M (2013) A supramolecular DNA self-assembly based on β-cyclodextrin-adamantane complexation as a bioorthogonal sticky end motif. Chem Commun 49:6454

    Article  CAS  Google Scholar 

  74. Thelu HVP, Albert SK, Golla M, Krishnan N, Ram D, Srinivasula SM, Varghese R (2018) Size controllable DNA nanogels from the self-assembly of DNA nanostructures through multivalent host-guest interactions. Nanoscale 10:222

    Article  CAS  Google Scholar 

  75. Albert SK, Thelu HVP, Golla M, Krishnan N, Varghese R (2017) Modular synthesis of supramolecular DNA amphiphiles through host-guest interactions and their self-assembly into DNA-decorated nanovesicles. Nanoscale 9:5425

    Article  CAS  PubMed  Google Scholar 

  76. Wang S-R, Wang J-Q, Xu G-H, Wei L, Fu B-S, Wu L-Y, Song Y-Y, Yang X-R, Li C, Liu S-M, Zhou X (2018) The cucurbit[7]uril-based supramolecular chemistry for reversible B/Z-DNA transition. Adv Sci 5:1800231

    Article  Google Scholar 

  77. Ihara T, Uemura A, Futamura A, Shimizu M, Baba N, Nishizawa S, Teramae N, Jyo A (2009) Cooperative DNA probing using a β-cyclodextrin-DNA conjugate and a nucleobase-specific fluorescent ligand. J Am Chem Soc 131:1386

    Article  CAS  PubMed  Google Scholar 

  78. Garcia MAA, Hu Y, Willner I (2016) Switchable supramolecular catalysis using DNA-templated scaffolds. Chem Commun 52:2153

    Article  Google Scholar 

  79. Harris DC, Saks BR, Jayawickramarajah J (2011) Protein-binding molecular switches via host-guest stabilized DNA hairpins. J Am Chem Soc 133:7676

    Article  CAS  PubMed  Google Scholar 

  80. Jiang Y, Pan X, Chang J, Niu W, Hou W, Kuai H, Zhao Z, Liu J, Wang M, Tan W (2018) Supramolecularly engineered circular bivalent aptamer for enhanced functional protein delivery. J Am Chem Soc 140:6780

    Article  CAS  PubMed  Google Scholar 

  81. Zhou X, Su X, Pathak P, Vik R, Vinciguerra B, Isaacs L, Jayawickramarajah J (2017) Host-guest tethered DNA transducer: ATP fueled release of a protein inhibitor from cucurbit[7]uril. J Am Chem Soc 139:13916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Da Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhan, TG., Zhang, KD. (2019). Artificial Host Molecules Modifying Biomacromolecules. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-13-1744-6_48-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1744-6_48-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1744-6

  • Online ISBN: 978-981-13-1744-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics