Skip to main content

Polypseudorotaxanes Constructed by Crown Ethers

  • Living reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly
  • 342 Accesses

Abstract

Polypseudorotaxane, characterized by the mechanical linkage of its components, exhibits unique chemical, physical, rheological, and mechanical properties and has attracted much attention of scientists due to its wide applications in various fields including drug delivery carriers, stimuli-responsive materials, and healable materials. Polypseudorotaxanes can be mainly divided into three classes: side-chain polypseudorotaxanes, main-chain polypseudorotaxanes, and others (such as cross-linked and branched polypseudorotaxanes). In this chapter, the recent advances of these three classes of polypseudorotaxanes constructed by crown ethers are reviewed. Moreover, their future developments are also prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:7017–7036

    Article  CAS  Google Scholar 

  2. Ji X, Yao Y, Li J, Yan X, Huang F (2013) A supramolecular cross-linked conjugated polymer network for multiple fluorescent sensing. J Am Chem Soc 135:74–77

    Article  CAS  Google Scholar 

  3. Wei P, Li J, Yan X, Zhou Q (2014) Metallosupramolecular poly[2]pseudorotaxane constructed by metal coordination and crown-ether-based molecular recognition. Org Lett 16:126–129

    Article  CAS  Google Scholar 

  4. Kim K (2002) Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem Soc Rev 31:96–107

    Article  CAS  Google Scholar 

  5. Johnston AG, Leigh DA, Pritchard RJ, Deegan MD (2014) Facile synthesis and solid-state structure of a benzylic amide [2]catenane. Angew Chem Int Ed 34:1209–1212

    Article  Google Scholar 

  6. Niu Z, Slebodnick C, Gibson HW (2011) Pseudocryptand-type [3]Pseudorotaxane and “hook-ring” polypseudo[2]catenane based on a bis(m-phenylene)-32-crown-10 derivative and bisparaquat derivatives. Org Lett 13:4616–4619

    Article  CAS  Google Scholar 

  7. He L, Liu X, Liang J, Cong Y, Weng Z, Bu W (2015) Fluorescence responsive conjugated poly(tetraphenylethene) and its morphological transition from micelle to vesicle. Chem Commun 51:7148–7151

    Article  CAS  Google Scholar 

  8. Andrew TL, Swager TM (2011) Structure – property relationships for exciton transfer in conjugated polymers. J Polym Sci B Polym Phys 49:476–498

    Article  CAS  Google Scholar 

  9. Hu R, Maldonado JL, Rodriguez M, Deng C, Jim CKW, Lam JWY et al (2012) Luminogenic materials constructed from tetraphenylethene building blocks: synthesis, aggregation-induced emission, two-photon absorption, light refraction, and explosive detection. J Mater Chem 22:232–240

    Article  CAS  Google Scholar 

  10. He L, Liang J, Cong Y, Chen X, Bu W (2014) Concentration and acid–base controllable fluorescence of a metallosupramolecular polymer. Chem Commun 50:10841–10844

    Article  CAS  Google Scholar 

  11. Wang Z, Chen S, Lam JWY, Qin W, Kwok RTK, Xie N et al (2013) Long-term fluorescent cellular tracing by the aggregates of AIE bioconjugates. J Am Chem Soc 135:8238–8245

    Article  CAS  Google Scholar 

  12. Lee S-Y, Ogawa A, Kanno M, Nakamoto H, Yasuda T, Watanabe M (2010) Nonhumidified intermediate temperature fuel cells using protic ionic liquids. J Am Chem Soc 132:9764–9773

    Article  CAS  Google Scholar 

  13. Pardo E, Train C, Gontard G, Boubekeur K, Fabelo O, Liu H et al (2011) High proton conduction in a chiral ferromagnetic metal–organic quartz-like framework. J Am Chem Soc 133:15328–15331

    Article  CAS  Google Scholar 

  14. Li L, He L, Wang B, Ge P, Jing L, Liu H et al (2018) Secondary dialkylammonium salt/crown ether [2]pseudorotaxanes as nanostructured platforms for proton transport. Chem Commun 54:8092–8095

    Article  CAS  Google Scholar 

  15. Xing H, Wei P, Yan X (2014) Supramolecular side-chain poly[2]pseudorotaxanes formed by orthogonal coordination-driven self-assembly and crown-ether-based host–guest interactions. Org Lett 16:2850–2853

    Article  CAS  Google Scholar 

  16. Gong C, Balanda PB, Gibson HW (1998) Supramolecular chemistry with macromolecules: new self-assembly based main chain polypseudorotaxanes and their properties. Macromolecules 31:5278–5289

    Article  CAS  Google Scholar 

  17. Lee M, Moore RB, Gibson HW (2011) Supramolecular pseudorotaxane graft copolymer from a crown ether polyester and a complementary paraquat-terminated polystyrene guest. Macromolecules 44:5987–5993

    Article  CAS  Google Scholar 

  18. Ashton PR, Chrystal EJT, Glink PT, Menzer S, Schiavo C, Spencer N et al (1996) Pseudorotaxanes formed between secondary dialkylammonium salts and crown ethers. Chem Eur J 2:709–728

    Article  CAS  Google Scholar 

  19. Huang F, Gibson HW, Bryant WS, Nagvekar DS, Fronczek FR (2003) First pseudorotaxane-like [3]complexes based on cryptands and paraquat: self-assembly and crystal structures. J Am Chem Soc 125:9367–9371

    Article  CAS  Google Scholar 

  20. Huang F, Fronczek FR, Gibson HW (2003) A cryptand/bisparaquat [3]pseudorotaxane by cooperative complexation. J Am Chem Soc 125:9272–9273

    Article  CAS  Google Scholar 

  21. Huang F, Switek KA, Zakharov LN, Fronczek FR, Slebodnick C, Lam M et al (2005) Bis(m-phenylene)-32-crown-10-based cryptands, powerful hosts for paraquat derivatives. J Org Chem 70:3231–3241

    Article  CAS  Google Scholar 

  22. Wang F, Han C, He C, Zhou Q, Zhang J, Wang C et al (2008) Self-sorting organization of two heteroditopic monomers to supramolecular alternating copolymers. J Am Chem Soc 130:11254–11255

    Article  CAS  Google Scholar 

  23. Wang F, Zheng B, Zhu K, Zhou Q, Zhai C, Li S et al (2009) Formation of linear main-chain polypseudorotaxanes with supramolecular polymer backbones via two self-sorting host–guest recognition motifs. Chem Commun 29:4375–4377

    Article  Google Scholar 

  24. Jung JH, Kobayashi H, Masuda M, Shimizu T, Shinkai S (2001) Helical ribbon aggregate composed of a crown-appended cholesterol derivative which acts as an amphiphilic gelator of organic solvents and as a template for chiral silica transcription. J Am Chem Soc 123:8785–8789

    Article  CAS  Google Scholar 

  25. Kawano S-i, Fujita N, Shinkai S (2003) Novel host–guest organogels as stabilized by the formation of crown–ammonium pseudo-rotaxane complexes. Chem Commun 12:1352–1353

    Article  Google Scholar 

  26. Jung JH, Lee SJ, Rim JA, Lee H, Bae T-S, Lee SS et al (2005) Stabilization of crown-based organogelators by charge-transfer interaction. Chem Mater 17:459–462

    Article  CAS  Google Scholar 

  27. Dong S, Luo Y, Yan X, Zheng B, Ding X, Yu Y et al (2011) A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition. Angew Chem Int Ed 50:1905–1909

    Article  CAS  Google Scholar 

  28. Chaterji S, Kwon IK, Park K (2007) Smart polymeric gels: redefining the limits of biomedical devices. Prog Polym Sci 32:1083–1122

    Article  CAS  Google Scholar 

  29. Hirst AR, Escuder B, Miravet JF, Smith DK (2008) “High-tech”-Anwendungen von supramolekularen nanostrukturierten Gelmaterialien – von der regenerativen Medizin bis hin zu elektronischen Bauelementen. Angew Chem Int Ed 120:8122–8139

    Article  Google Scholar 

  30. Hirst AR, Escuder B, Miravet JF, Smith DK (2008) High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew Chem Int Ed 47:8002–8018

    Article  CAS  Google Scholar 

  31. Shome A, Debnath S, Das PK (2008) Head group modulated pH-responsive hydrogel of amino acid-based amphiphiles: entrapment and release of cytochrome c and vitamin B12. Langmuir 24:4280–4288

    Article  CAS  Google Scholar 

  32. Ge Z, Hu J, Huang F, Liu S (2009) Responsive supramolecular gels constructed by crown ether based molecular recognition. Angew Chem Int Ed 121:1830–1834

    Article  Google Scholar 

  33. Yan X, Xu D, Chi X, Chen J, Dong S, Ding X et al (2012) A multiresponsive, shape-persistent, and elastic supramolecular polymer network gel constructed by orthogonal self-assembly. Adv Mater 24:362–369

    Article  CAS  Google Scholar 

  34. Nakahata M, Takashima Y, Yamaguchi H, Harada A (2011) Redox-responsive self-healing materials formed from host–guest polymers. Nat Commun 2:511

    Article  Google Scholar 

  35. Zhang M, Xu D, Yan X, Chen J, Dong S, Zheng B et al (2012) Self-healing supramolecular gels formed by crown ether based host–guest interactions. Angew Chem Int Ed 51:7011–7015

    Article  CAS  Google Scholar 

  36. McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100:2537–2574

    Article  CAS  Google Scholar 

  37. Nelson TL, O’Sullivan C, Greene NT, Maynor MS, Lavigne JJ (2006) Cross-reactive conjugated polymers: analyte-specific aggregative response for structurally similar diamines. J Am Chem Soc 128:5640–5641

    Article  CAS  Google Scholar 

  38. Satrijo A, Swager TM (2007) Anthryl-doped conjugated polyelectrolytes as aggregation-based sensors for nonquenching multicationic analytes. J Am Chem Soc 129:16020–16028

    Article  CAS  Google Scholar 

  39. Chong JH, MacLachlan MJ (2009) Iptycenes in supramolecular and materials chemistry. Chem Soc Rev 38:3301–3315

    Article  CAS  Google Scholar 

  40. Su Y-S, Liu J-W, Jiang Y, Chen C-F (2011) Assembly of a self-complementary monomer: formation of supramolecular polymer networks and responsive gels. Chem Eur J 17:2435–2441

    Article  CAS  Google Scholar 

  41. Li S, Lu H-Y, Shen Y, Chen C-F (2013) A stimulus-response and self-healing supramolecular polymer gel based on host–guest interactions. Macromol Chem Phys 214:1596–1601

    Article  CAS  Google Scholar 

  42. Zeng F, Meng Z, Han Y, Chen C-F (2014) Formation of a “pseudosuitane”-type complex between a triptycene-derived bis(crown ether) host and 1,1′-(anthracene-9,10-diyl)bis(N-benzylmethanaminium): a new method for the synthesis of linear polyrotaxanes. Chem Commun 50:7611–7613

    Article  CAS  Google Scholar 

  43. Meng Z, Xiang J-F, Chen C-F (2014) Tristable [n]rotaxanes: from molecular shuttle to molecular cable car. Chem Sci 5:1520–1525

    Article  CAS  Google Scholar 

  44. Zhang C, Li S, Zhang J, Zhu K, Li N, Huang F (2007) Benzo-21-Crown-7/secondary dialkylammonium salt [2]pseudorotaxane- and [2]rotaxane-type threaded structures. Org Lett 9:5553–5556

    Article  CAS  Google Scholar 

  45. Chen L, Tian Y-K, Ding Y, Tian Y-J, Wang F (2012) Multistimuli responsive supramolecular cross-linked networks on the basis of the benzo-21-crown-7/secondary ammonium salt recognition motif. Macromolecules 45:8412–8419

    Article  CAS  Google Scholar 

  46. De Bo G, De Winter J, Gerbaux P, Fustin C-A (2011) Rotaxane-based mechanically linked block copolymers. Angew Chem Int Ed 50:9093–9096

    Article  Google Scholar 

  47. Shi Y, Yang Z, Liu H, Li Z, Tian Y, Wang F (2015) Mechanically linked poly[2]rotaxanes constructed via the hierarchical self-assembly strategy. ACS Macro Lett 4(1):6–10

    Article  CAS  Google Scholar 

  48. Gu R, Yao J, Fu X, Zhou W, Qu D-H (2015) A hyperbranched supramolecular polymer constructed by orthogonal triple hydrogen bonding and host–guest interactions. Chem Commun 51:5429–5431

    Article  CAS  Google Scholar 

  49. Gao L, Xu D, Zheng B (2014) Construction of supramolecular organogels and hydrogels from crown ether based unsymmetric bolaamphiphiles. Chem Commun 50:12142–12145

    Article  CAS  Google Scholar 

  50. Nakazono K, Ishino T, Takashima T, Saeki D, Natsui D, Kihara N et al (2014) Directed one-pot syntheses of crown ether wheel-containing main chain-type polyrotaxanes with controlled rotaxanation ratios. Chem Commun 50:15341–15344

    Article  CAS  Google Scholar 

  51. Xu C, Chen Y, Zhang H-Y, Liu Y (2016) Photo-induced secondary assembly of bis(terpyridyl)dibenzo-24-crown-8/Zn2+ supramolecular polymer. J Photochem Photobiol A Chem 331:240–246

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank NNSFC (21432004, 21672113, 21772099, 21861132001) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fu, HG., Chen, Y., Liu, Y. (2019). Polypseudorotaxanes Constructed by Crown Ethers. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-13-1744-6_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1744-6_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1744-6

  • Online ISBN: 978-981-13-1744-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics