Skip to main content

Cyclodextrins-Based Shape Memory Polymers and Self-Healing Polymers

  • Living reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly

Abstract

Shape memory polymers (SMPs) and self-healing polymers (SHPs) are two representative examples of biomimetic smart materials. SMPs have the ability to change from one or more temporary shapes to a predetermined shape in response to external stimulus. SHPs can repair cracks or fracture by themselves after being damaged. When introducing CDs-guest interactions that have been featured as dynamic and reversible into the design of novel SMPs and SHPs, intriguing and unique functionalities have been engendered and thereby broaden their potential applications. In this chapter, we summarize recent progress made in SMPs and SHPs based on CDs-guest interactions, provide insight into their design and mechanism, elucidate and evaluate their properties and performance, and point out possible future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Serrano MC, Ameer GA (2012) Recent insights into the biomedical applications of shape-memory polymers. Macromol Biosci 12:1156–1171

    Article  CAS  PubMed  Google Scholar 

  2. Mather PT, Luo XF, Rousseau IA (2009) Shape memory polymer research. Annu Rev Mater Res 39:445–471

    Article  CAS  Google Scholar 

  3. Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56:1077–1135

    Article  CAS  Google Scholar 

  4. Davies DJ, Vaccaro AR, Morris SM, Herzer N, Schenning AP, Bastiaansen CW (2013) A printable optical time-temperature integrator based on shape memory in a chiral nematic polymer network. Adv Funct Mater 23:2723–2727

    Article  CAS  Google Scholar 

  5. Behl M, Razzaq MY, Lendlein A (2010) Multifunctional shape-memory polymers. Adv Mater 22:3388–3410

    Article  CAS  PubMed  Google Scholar 

  6. Wang L, Yang X, Chen H, Yang G, Gong T, Li W, Zhou S (2013) Multi-stimuli sensitive shape memory poly (vinyl alcohol)-graft-polyurethane. Polym Chem 4:4461–4468

    Article  CAS  Google Scholar 

  7. Luo Y, Guo Y, Gao X, Li BG, Xie T (2013) A general approach towards thermoplastic multishape-memory polymers via sequence structure design. Adv Mater 25:743–748

    Article  CAS  PubMed  Google Scholar 

  8. Calvo-Correas T, Santamaria-Echart A, Saralegi A, Martin L, Valea Á, Corcuera MA, Eceiza A (2015) Thermally-responsive biopolyurethanes from a biobased diisocyanate. Eur Polym J 70:173–185

    Article  CAS  Google Scholar 

  9. Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034–2057

    Article  CAS  Google Scholar 

  10. He Z, Satarkar N, Xie T, Cheng YT, Hilt JZ (2011) Remote controlled multishape polymer nanocomposites with selective radiofrequency actuations. Adv Mater 23:3192–3196

    Article  CAS  PubMed  Google Scholar 

  11. Agarwal P, Chopra M, Archer LA (2011) Nanoparticle netpoints for shape-memory polymers. Angew Chem Int Ed 50:8670–8673

    Article  CAS  Google Scholar 

  12. Rousseau IA (2008) Challenges of shape memory polymers: a review of the progress toward overcoming SMP’s limitations. Polym Eng Sci 48:2075–2089

    Article  CAS  Google Scholar 

  13. Harada A, Hashidzume A, Yamaguchi H, Takashima Y (2009) Polymeric rotaxanes. Chem Rev 109:5974–6023

    Article  CAS  PubMed  Google Scholar 

  14. Li J, Ni X, Zhou Z, Leong KW (2003) Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly (propylene oxide)-poly (ethylene oxide)-poly (propylene oxide) triblock copolymers and α-cyclodextrin. J Am Chem Soc 125:1788–1795

    Article  CAS  PubMed  Google Scholar 

  15. Zhang S, Yu ZJ, Govender T, Luo H, Li BJ (2008) A novel supramolecular shape memory material based on partial α-CD–PEG inclusion complex. Polymer 49:3205–3210

    Article  CAS  Google Scholar 

  16. Luo H, Fan M, Yu ZJ, Meng X, Li BJ, Zhang S (2009) Preparation and properties of degradable shape memory material based on partial α-Cyclodextrin–poly (ε-caprolactone) inclusion complex. Macromol Chem Phys 210:669–676

    Article  CAS  Google Scholar 

  17. Luo H, Liu Y, Yu ZJ, Zhang S, Li BJ (2008) Novel biodegradable shape memory material based on partial inclusion complex formation between α-Cyclodextrin and poly (ϵ-caprolactone). Biomacromolecules 9:2573–2577

    Article  CAS  PubMed  Google Scholar 

  18. Fan MM, Yu ZJ, Luo HY, Zhang S, Li BJ (2009) Supramolecular network based on the self-assembly of γ-Cyclodextrin with poly (ethylene glycol) and its shape memory effect. Macromol Rapid Commun 30:897–903

    Article  CAS  PubMed  Google Scholar 

  19. Yasin A, Zhou W, Yang H, Li H, Chen Y, Zhang X (2015) Shape memory hydrogel based on a hydrophobically-modified polyacrylamide (HMPAM)/α-CD mixture via a host-guest approach. Macromol Rapid Commun 36:845–851

    Article  CAS  PubMed  Google Scholar 

  20. Xiao YY, Gong XL, Kang Y, Jiang ZC, Zhang S, Li BJ (2016) Light-, pH-and thermal-responsive hydrogels with the triple-shape memory effect. Chem Commun 52:10609–10612

    Article  CAS  Google Scholar 

  21. Harada A, Takashima Y, Nakahata M (2014) Supramolecular polymeric materials via cyclodextrin–guest interactions. Acc Chem Res 47:2128–2140

    Article  CAS  PubMed  Google Scholar 

  22. Han XJ, Dong ZQ, Fan MM, Liu Y, li JH, Wang YF, Yuan QJ, Li BJ, Zhang S (2012) pH-induced shape-memory polymers. Macromol Rapid Commun 33:1055–1060

    Article  CAS  PubMed  Google Scholar 

  23. Dong ZQ, Cao Y, Yuan QJ, Wang YF, Li JH, Li BJ, Zhang S (2013) Redox-and glucose-induced shape-memory polymers. Macromol Rapid Commun 34:867–872

    Article  PubMed  CAS  Google Scholar 

  24. Pan M, Yuan QJ, Gong XL, Zhang S, Li BJ (2016) A tri-stimuli-responsive shape-memory material using host–guest interactions as molecular switches. Macromol Rapid Commun 37:433–438

    Article  CAS  PubMed  Google Scholar 

  25. Peters O, Ritter H (2013) Supramolecular controlled water uptake of macroscopic materials by a Cyclodextrin-induced hydrophobic-to-hydrophilic transition. Angew Chem Int Ed 52:8961–8963

    Article  CAS  Google Scholar 

  26. Yuan C, Guo J, Yan F (2014) Shape memory poly (ionic liquid) gels controlled by host–guest interaction with β-cyclodextrin. Polymer 55:3431–3435

    Article  CAS  Google Scholar 

  27. Kretschmann O, Steffens C, Ritter H (2007) Cyclodextrin complexes of polymers bearing adamantyl groups: host–guest interactions and the effect of spacers on water solubility. Angew Chem Int Ed 46:2708–2711

    Article  CAS  Google Scholar 

  28. Nakahata M, Takashima Y, Yamaguchi H, Harada A (2011) Redox-responsive self-healing materials formed from host–guest polymers. Nat Commun 2:511–516

    Article  PubMed  CAS  Google Scholar 

  29. Kakuta T, Takashima Y, Nakahata M, Otsubo M, Yamaguchi H, Harada A (2013) Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host–guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv Mater 25:2849–2853

    Article  CAS  PubMed  Google Scholar 

  30. Rodell CB, Highley CB, Chen MH, Dusaj NN, Wang C, Han L, Burdick JA (2016) Evolution of hierarchical porous structures in supramolecular guest–host hydrogels. Soft Matter 12:7839–7847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jia YG, Zhu XX (2014) Self-healing supramolecular hydrogel made of polymers bearing cholic acid and β-cyclodextrin pendants. Chem Mater 27:387–393

    Article  CAS  Google Scholar 

  32. Rodell CB, Kaminske AL, Burdick A (2013) Rational design of network properties in guest-host assembled and shear-thinning hyaluronic acid hydrogel. Biomacromolecules 14:4125–4134

    Article  CAS  PubMed  Google Scholar 

  33. Li G, Wu J, Wang B, Yan S, Zhang K, Ding J, Yin J (2015) Self-healing supramolecular self-assembled hydrogels based on poly(L-glutamic acid). Biomacromolecules 16:3508–3518

    Article  CAS  PubMed  Google Scholar 

  34. Takashima Y, Yonekura K, Koyanagi K, Iwaso K, Nakahata M, Yamaguchi H, Harada A (2017) Multifunctional stimuli-responsive supramolecular materials with stretching, coloring, and self-healing properties functionalized via host–guest interactions. Macromolecules 50:4144–4150

    Article  CAS  Google Scholar 

  35. Zhang H, Zhang X, Bao C, Li X, Sun D, Duan F, Yang J (2018) Direct microencapsulation of pure polyamine by integrating microfluidic emulsion and interfacial polymerization for practical self-healing materials. J Mater Chem A 6:24092–24099

    Article  CAS  Google Scholar 

  36. Kang J, Son D, Wang GJN, Liu Y, Lopez J, Kim Y, Jin L (2018) Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv Mater 30:1706846

    Article  CAS  Google Scholar 

  37. Chandler DL (2018) Biomedical materials learn to heal themselves: self-healing polymers, hydrogels, and artificial muscles are mimicking Nature’s repair mechanisms. IEEE Pulse 9:10–14

    Article  PubMed  Google Scholar 

  38. Xu T, Chu M, Wu Y, Liu J, Chi B, Xu H, Mao C (2018) Safer cables based on advanced materials with a self-healing technique that can be directly powered off and restored easily at any time. New J Chem 42:4803–4806

    Article  CAS  Google Scholar 

  39. Suleiman AR, Nehdi ML (2018) Effect of environmental exposure on autogenous self-healing of cracked cement-based materials. Cem Concr Res 111:197–208

    Article  CAS  Google Scholar 

  40. Zhang DL, Ju X, Li LH, Kang Y, Gong XL, Li BJ, Zhang S (2015) An efficient multiple healing conductive composite via host–guest inclusion. Chem Commun 51:6377–6380

    Article  CAS  Google Scholar 

  41. Guo K, Zhang DL, Zhang XM, Zhang J, Ding LS, Li BJ, Zhang S (2015) Conductive elastomers with autonomic self-healing properties. Angew Chem Int Ed 54:12127–12133

    Article  CAS  Google Scholar 

  42. Wang YM, Pan M, Liang XY, Li BJ, Zhang S (2017) Electromagnetic wave absorption coating material with self-healing properties. Macromol Rapid Commun 38:1700447

    Article  CAS  Google Scholar 

  43. Liang XY, Wang L, Wang YM, Ding LS, Li BJ, Zhang S (2017) UV-blocking coating with self-healing capacity. Macromol Chem Phys 218:1700213

    Article  CAS  Google Scholar 

  44. Liang XY, Wang L, Chang ZY, Ding LS, Li BJ, Zhang S (2017) Reusable xergel containg quantum dots with high fluorescence retention. Polymers 10:310–315

    Article  CAS  Google Scholar 

  45. Guo K, Lin MS, Feng JF, Pan M, Ding LS, Li BJ, Zhang S (2017) The deeply understanding of the self-healing mechanism for self-healing behavior of supramolecular materials based on Cyclodextrin–guest interactions. Macromol Chem Phys 218:1600593

    Article  CAS  Google Scholar 

  46. Kirkby EL, Rule JD, Michaud VJ, Sottos NR, White SR, Månson JAE (2008) Embedded shape-memory alloy wires for improved performance of self-healing polymers. Adv Funct Mater 18:2253–2260

    Article  CAS  Google Scholar 

  47. Li G, Shojaei A (2012) A viscoplastic theory of shape memory polymer fibres with application to self-healing materials. Proc R Soc A 468:2319–2346

    Article  CAS  Google Scholar 

  48. Meng H, Xiao P, Gu J, Wen X, Xu J, Zhao C, Chen T (2014) Self-healable macro−/microscopic shape memory hydrogels based on supramolecular interactions. Chem Commun 50:12277–12280

    Article  CAS  Google Scholar 

  49. Miyamae K, Nakahata M, Takashima Y, Harada A (2015) Self-healing, expansion–contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host–guest interactions. Angew Chem Int Ed 54:8984–8987

    Article  CAS  Google Scholar 

  50. Li G, Zhang H, Fortin D, Xia H, Zhao Y (2015) Poly (vinyl alcohol)–poly (ethylene glycol) double-network hydrogel: a general approach to shape memory and self-healing functionalities. Langmuir 31:11709–11716

    Article  CAS  PubMed  Google Scholar 

  51. Jiang ZC, Xiao YY, Kang Y, Li BJ, Zhang S (2017) Semi-IPNs with moisture-triggered shape memory and self-healing properties. Macromol Rapid Commun 38:1700149

    Article  CAS  Google Scholar 

  52. Kuang Q, Lao C, Wang ZL, Xie Z, Zheng L (2007) High-sensitivity humidity sensor based on a single SnO2 nanowire. J Am Chem Soc 129:6070–6071

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, S., Zeng, SL., Li, BJ. (2019). Cyclodextrins-Based Shape Memory Polymers and Self-Healing Polymers. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-13-1744-6_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1744-6_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1744-6

  • Online ISBN: 978-981-13-1744-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics