Skip to main content

Measurement of Active Optical Fibers

  • Reference work entry
  • First Online:
Handbook of Optical Fibers

Abstract

Active optical fiber owns its special optical properties to laser-active dopants in fiber. This chapter presents key properties and their characterization, including measurement principles, experimental techniques, as well as test results, of active optical fiber. Firstly, the fundamental optical properties and relations between light and matter in active fiber are introduced, including Einstein relation, the absorption and emission cross sections, energy transfer, as well as up-conversion. Then the measurements of the absorption, emission, and gain are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A. Ehn et al., Opt. Express 20(3) (2012)

    Article  CAS  Google Scholar 

  • V. Fernicola, L. Rosso, Time-and frequency-domain analysis of fluorescence lifetime for temperature sensors, in 2000 Conference on Precision Electromagnetic Measurements Digest, IEEE, 2000

    Google Scholar 

  • S.V. Firstov et al., Opt. Express 19(20) (2011)

    Article  CAS  Google Scholar 

  • K. Grattan, Z. Zhang, Fiber Optic Fluorescence Thermometry, in Topics in Fluorescence Spectroscopy (Springer, London, 1994)

    Google Scholar 

  • J. Hang et al., Opt. Express 21(6) (2013)

    Google Scholar 

  • J.A. Jo et al., J. Biomed. Opt. 9(4) (2004)

    Article  CAS  Google Scholar 

  • M.P. Kalita, S. Yoo, J. Sahu, Opt. Express 16(25) (2008)

    Article  CAS  Google Scholar 

  • W. Koechner, Solid-State Laser Engineering (Springer, New York, 2013)

    Google Scholar 

  • R.I. Laming, S.B. Poole, E. Tarbox, Opt. Lett. 13(12) (1988)

    Article  CAS  Google Scholar 

  • W. Miniscalco, M.J. Digonnet, Rare Earth Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993)

    Google Scholar 

  • W.J. Miniscalco, R.S. Quimby, Opt. Lett. 16(4) (1991)

    Article  CAS  Google Scholar 

  • S. Nagel, IEEE Commun. Mag. 25(4) (1987)

    Article  Google Scholar 

  • Optical Fiber Loss and Attenuation https://www.fiberoptics4sale.com/blogs/archive-posts/95048006

  • G.D. Peng et al., J. Lightwave Technol. 14(10) (1996)

    Google Scholar 

  • G.D. Peng, J. Zhang, Y. Luo, Z. Sathi, A. Zareanborji, J. Canning, Developing new active optical fibers with broadband emissions, in Fourth Asia Pacific Optical Sensors Conference 2013 Oct 15, International Society for Optics and Photonics, p. 89240E

    Google Scholar 

  • G.-D. Pengc, High temperature assessment of an Er3+/Yb3+ co-doped phosphosilicate optical fiber for lasers, amplifiers and sensors, in Proceedings of SPIE. https://doi.org/10.1117/12.2194612

  • J.F. Philipps et al., Appl. Phys. B 74(3) (2002)

    Google Scholar 

  • S. Poole, D.N. Payne, M.E. Fermann, Electron. Lett. 21(17) (1985)

    Article  CAS  Google Scholar 

  • K. Riumkin et al., Opt. Lett. 39(8) (2014)

    Google Scholar 

  • E.J.Z. Sathi, Bismuth, Erbium and Ytterbium Co-doped Fibers for Broadband Applications. University of New South Wales, School of Electrical Engineering & Telecommunications. (2015)

    Google Scholar 

  • R. Scheps, Prog. Quantum Electron. 20(4) (1996)

    Google Scholar 

  • N.K. Thipparapu et al., Opt. Lett. 40(10) (2015)

    Article  CAS  Google Scholar 

  • T. Wei et al., Opt. Mater. Express 4(10) (2014)

    Google Scholar 

  • A. Zareanborji et al., Time-resolved emission characteristics of Bi/Er codoped fiber for ultra-broadband applications, in Workshop on Specialty Optical Fibers and their Applications, Optical Society of America, 2013

    Google Scholar 

  • A. Zareanborji et al., Time-resolved fluorescence measurement based on spectroscopy and DSP techniques for Bi/Er codoped fiber characterisation, in 2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fiber Technology, IEEE, 2014

    Google Scholar 

  • A. Zareanborji, Y. Luo, G.-D. Peng, Characterization and assessment of multiple bismuth active centres in Bi/Er doped fiber, in 2015 2nd International Conference on Opto-Electronics and Applied Optics (IEM OPTRONIX), IEEE, 2015

    Google Scholar 

  • A. Zareanborji et al., J. Lightwave Technol. 34(21) (2016)

    Article  CAS  Google Scholar 

  • J. Zhang et al., Opt. Express 20(18) (2012)

    Google Scholar 

  • B. Zhou et al., Nat Nano 10(11) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui Xiao .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xiao, G., Fallah Tafti, G., Zareanborji, A., Ghaznavi, A., Zhao, Q. (2019). Measurement of Active Optical Fibers. In: Peng, GD. (eds) Handbook of Optical Fibers. Springer, Singapore. https://doi.org/10.1007/978-981-10-7087-7_56

Download citation

Publish with us

Policies and ethics