Skip to main content

Fiber Grating Devices

  • Reference work entry
  • First Online:
Handbook of Optical Fibers
  • 2573 Accesses

Abstract

Biosensors made of an optical fiber section coated with a thin noble metal layer constitute a miniaturized counterpart to the Kretschmann-Raether prism configuration. They allow easy light injection and offer remote operation in very small volumes of analyte. They are perfectly suited to yield in situ (or even possibly in vivo) molecular detection. Usually, such biosensors are obtained from a gold-coated fiber segment for which the core-guided light is outcoupled and brought into contact with the surrounding medium, either by reducing the cladding diameter (through etching or side-polishing) or by using grating coupling. In the latter case, a refractive index modulation is photo-imprinted in the fiber core. Roughly 10 years ago, surface plasmon resonance (SPR) excitation was reported with gold-coated tilted fiber Bragg gratings (TFBGs). TFBGs are short-period gratings whose refractive index modulation is slightly angled with respect to the perpendicular to the optical fiber propagation axis. These devices probe the surrounding medium with narrowband (∼200 pm) cladding mode resonances, which is compatible with the use of high-resolution interrogators as a read-out technique. These gratings remain the single configuration able to probe all the fiber cladding modes individually, with high Q-factors. These unique spectral features are used to sense various analytes, such as proteins and cells. Impressive limit of detection (LOD) and sensitivity are reported, which paves the way to the practical use of such immunosensors, in very small volumes of analytes or even possibly in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J. Albert, L.-Y. Shao, C. Caucheteur, Tilted fiber Bragg grating sensors. Laser Photonics Rev. 7, 83–108 (2013a)

    Article  CAS  Google Scholar 

  • J. Albert, S. Lepinay, C. Caucheteur, M.C. Derosa, High resolution grating-assisted surface plasmon resonance fiber optic aptasensor. Methods 63, 239–254 (2013b)

    Article  CAS  Google Scholar 

  • F. Baldini, M. Brenci, F. Chiavaioli, A. Gianetti, C. Trono, Optical fiber gratings as tools for chemical and biochemical sensing. Anal. Bioanal. Chem. 402, 109–116 (2012)

    Article  CAS  Google Scholar 

  • W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  CAS  Google Scholar 

  • B.M. Beam, N.R. Armstrong, S.B. Mendes, An electroactive fiber optic chip for spectroelectrochemical characterization of ultra-thin redox-active films. Analyst 134, 454–459 (2008)

    Article  Google Scholar 

  • C. Caucheteur, P. Mégret, Demodulation technique for weakly tilted fiber Bragg grating refractometer. Photon. Technol. Lett. 17, 2703–2705 (2005)

    Article  Google Scholar 

  • C. Caucheteur, Y.Y. Shevchenko, L.-Y. Shao, M. Wuilpart, J. Albert, High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement. Opt. Express 19, 1656–1664 (2011a)

    Article  Google Scholar 

  • C. Caucheteur, C. Chen, V. Voisin, P. Berini, J. Albert, A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors. Appl. Phys. Lett. 99, 041118 (2011b)

    Article  Google Scholar 

  • C. Caucheteur, V. Voisin, J. Albert, Polarized spectral combs probe optical fiber surface plasmons. Opt. Express 21, 3055–3066 (2013)

    Article  Google Scholar 

  • C. Caucheteur, T. Guo, J. Albert, Review of recent plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal. Bioanal. Chem. 407, 3883–3897 (2015)

    Article  CAS  Google Scholar 

  • C. Caucheteur, T. Guo, F. Liu, B.O. Guan, J. Albert, Ultrasensitive plasmonic sensing in air using optical fibre spectral combs. Nat. Commun. 7, 13371 (2016)

    Article  CAS  Google Scholar 

  • C.F. Chan, C. Chen, A. Jafari, A. Laronche, D.J. Thomson, J. Albert, Optical fiber refractometer using narrowband cladding-mode resonance shifts. Appl. Opt. 46, 1142–1149 (2007)

    Article  Google Scholar 

  • C. Chen, J. Albert, Stain-optic coefficients of individual cladding modes of single mode fibre: theory and experiment. Electron. Lett. 42, 1027–1028 (2006)

    Article  Google Scholar 

  • X. Chen, J. Xu, X. Zhang, T. Guo, B.O. Guan, Wide range refractive index measurement using a multi-angle tilted fiber Bragg grating. IEEE Photon. Technol. Lett. 29, 719–722 (2017)

    Article  CAS  Google Scholar 

  • R.W. Cohen, G.D. Cody, M.D. Coutts, B. Abeles, Optical properties of granular silver and gold films. Phys. Rev. B 8, 3689 (1973)

    Article  CAS  Google Scholar 

  • T. Erdogan, Fiber grating spectra. J. Lightwave Technol. 15, 1277–1294 (1997)

    Article  Google Scholar 

  • T. Erdogan, J.E. Sipe, Tilted fiber phase gratings. J. Opt. Soc. Am. A 13, 296–313 (1996)

    Article  CAS  Google Scholar 

  • D. Feng, W. Zhou, X. Qiao, J. Albert, High resolution fiber optic surface plasmon resonance sensors with single-sided gold coatings. Opt. Express 24, 16456–16464 (2016)

    Article  CAS  Google Scholar 

  • Y. Guan, X.N. Shan, S.P. Wang, P.M. Zhang, N.J. Tao, Detection of molecular binding via charge-induced mechanical response of optical fibers. Chem. Sci. 5, 4375–4381 (2014)

    Article  CAS  Google Scholar 

  • T. Guo, F. Liu, Y. Liu, N.K. Chen, B.O. Guan, J. Albert, In situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors. Biosens. Bioelectron. 55, 452–458 (2014)

    Article  CAS  Google Scholar 

  • B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D.W. Pohl, Local excitation, scattering, and interference of surface plasmons. Phys. Rev. Lett. 77, 1889–1892 (1996)

    Article  CAS  Google Scholar 

  • J. Homola, M. Piliarik, Surface plasmon resonance (SPR) sensors. Springer Ser. Chem. Sensors Biosens. 4, 45–67 (2006)

    Article  CAS  Google Scholar 

  • J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review. Sensors Actuators B 54, 3–15 (1999)

    Article  CAS  Google Scholar 

  • X.P. Huang, S.P. Wang, X.N. Shan, X.J. Chang, N.J. Tao, Flow-through electrochemical surface plasmon resonance: detection of intermediate reaction products. J. Electroanal. Chem. 649, 37–41 (2010)

    Article  CAS  Google Scholar 

  • A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, Thinned fiber Bragg gratings as high sensitivity refractive index sensor. IEEE Photon. Technol. Lett. 16, 1149–1151 (2004)

    Article  Google Scholar 

  • K. Imai, T. Okazaki, N. Hata, S. Taguchi, K. Sugawara, H. Kuramitz, Simultaneous multiselective spectroelectrochemical fiber-optic sensor: demonstration of the concept using methylene blue and ferrocyanide. Anal. Chem. 87, 2375–2382 (2015)

    Article  CAS  Google Scholar 

  • X.Q. Jiang, Z.J. Cao, H. Tang, L. Tan, Q.J. Xie, S.Z. Yao, Electrochemical surface plasmon resonance studies on the deposition of the charge-transfer complex from electrooxidation of o-tolidine and effects of dermatan sulfate. Electrochem. Commun. 10, 1235–1237 (2008)

    Article  CAS  Google Scholar 

  • E. Kretschmann, H. Raether, Radiative decay of non radiative surface plasmon excited by light. Z. Naturforsch. 23, 2135 (1968)

    CAS  Google Scholar 

  • G. Laffont, P. Ferdinand, Tilted short-period fiber Bragg grating induced coupling to cladding modes for accurate refractometry. Meas. Sci. Technol. 12, 765–772 (2001)

    Article  CAS  Google Scholar 

  • B. Liedberg, C. Nylander, I. Lungstrom, Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4, 299–304 (1984)

    Article  Google Scholar 

  • J. Lu, W. Wang, S.P. Wang, X.N. Shan, J.H. Li, N.J. Tao, Plasmonic-based electrochemical impedance spectroscopy: application to molecular binding. Anal. Chem. 84, 327–333 (2012)

    Article  CAS  Google Scholar 

  • V. Malachovska, C. Ribaut, V. Voisin, M. Surin, P. Leclère, R. Wattiez, C. Caucheteur, Fiber-optic SPR immunosensors tailored to target epithetial cells through membrane receptors. Anal. Chem. 87, 5957–5965 (2015)

    Article  CAS  Google Scholar 

  • G.V. Naik, J. Kim, A. Boltasseva, Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Express 1, 1090–1099 (2011)

    Article  CAS  Google Scholar 

  • K. Nakamoto, R. Kurita, O. Niwa, Electrochemical surface plasmon resonance measurement based on gold nanohole array fabricated by nanoimprinting technique. Anal. Chem. 84, 3187–3191 (2012)

    Article  CAS  Google Scholar 

  • P. Offermans, M.C. Shaafsma, S.R.K. Rodriguez, Y. Zhang, M. Crego-Calama, S.H. Brongersma, J.G. Rivas, Universal scaling of the figure of merit of plasmonic sensors. ACS Nano 5, 5151–5157 (2011)

    Article  CAS  Google Scholar 

  • A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, 1999)

    Google Scholar 

  • J. Pollet, F. Delport, K.P.F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, J. Lammertyn, Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions. Biosens. Bioelectron. 25, 864–869 (2009)

    Article  CAS  Google Scholar 

  • C. Ribaut, V. Voisin, V. Malachovska, V. Dubois, P. Mégret, R. Wattiez, C. Caucheteur, Small biomolecule immunosensing with plasmonic optical fiber grating sensor. Biosens. Bioelectron. 77, 315–322 (2016). https://doi.org/10.1016/j.bios.2015.09.019

    Article  CAS  Google Scholar 

  • R.S. Sennett, G.D. Scott GD, The structure of evaporated metal films and their optical properties. J.Opt. Soc. Am. 40, 203–211 (1950)

    Article  CAS  Google Scholar 

  • A.K. Sharma, J. Rajan, B.D. Gupta, Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sensors J. 7, 1118–1129 (2007)

    Article  Google Scholar 

  • Y.Y. Shevchenko, J. Albert, Plasmon resonances in gold-coated tilted fiber Bragg gratings. Opt. Lett. 32, 211–213 (2007)

    Article  CAS  Google Scholar 

  • Y. Shevchenko, T.J. Francis, D.A.D. Blair, R. Walsh, M.C. DeRosa, J. Albert, In situ biosensing with a surface plasmon resonance fiber grating aptasensor. Anal. Chem. 83, 7027–7034 (2011)

    Article  CAS  Google Scholar 

  • Y. Shevchenko, G. Camci-Unal, D.F. Cuttica, M.R. Dokmeci, J. Albert, A. Khademhosseini, Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior. Biosens. Bioelectron. 56, 359–367 (2014)

    Article  CAS  Google Scholar 

  • V. Svorcik, J. Siegel, P. Sutta, J. Mistrik, P. Janicek, P. Worsch, Z. Kolská, Annealing of gold nanostructures sputtered on glass substrate. Appl. Phys. A 102, 605–610 (2011)

    Article  CAS  Google Scholar 

  • J.J. Tu, C.C. Homes, M. Strongin, Optical properties of ultrathin films: evidence for a dielectric anomaly at the insulator-to-metal transition. Phys. Rev. Lett. 90, 017402 (2003)

    Article  CAS  Google Scholar 

  • A.M. Vengsarkar, P.J. Lemaire, J.B. Judkins, V. Bhatia, T. Erdogan, J.E. Sipe, Long-period fiber gratings as band-rejection filters. J. Lightwave Technol. 14, 58–65 (1996)

    Article  Google Scholar 

  • V. Voisin, C. Caucheteur, P. Mégret, J. Albert, Interrogation technique for TFBG-SPR refractometers based on differential orthogonal light states. Appl. Opt. 50, 4257–4261 (2011)

    Article  Google Scholar 

  • V. Voisin, J. Pilate, P. Damman, P. Mégret, C. Caucheteur, Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors. Biosens. Bioelectron. 51, 249–254 (2014)

    Article  CAS  Google Scholar 

  • S.P. Wang, X.P. Huang, X.N. Shan, K.J. Foley, N.J. Tao, Electrochemical surface plasmon resonance: basic formalism and experimental validation. Anal. Chem. 82, 935–941 (2010)

    Article  CAS  Google Scholar 

  • I.M. White, X.D. Fan, On the performance quantification of resonant refractive index sensors. Opt. Express 16, 1020–1028 (2008)

    Article  Google Scholar 

  • Y. Yuan, T. Guo, X.H. Qiu, J.H. Tang, Y.Y. Huang, L. Zhuang, S.G. Zhou, Z.H. Li, B.O. Guan, X.M. Zhang, J. Albert, Electrochemical surface Plasmon resonance fiber-optic sensor: in-situ detection of electroactive biofilms. Anal. Chem. 88, 7609–7761 (2016)

    Article  CAS  Google Scholar 

  • K. Zhou, A.G. Simpson, L. Zhang, I. Bennion, Side detection of strong radiation-mode out-coupling from blazed FBGs in single-mode and multimode fibers. IEEE Photon. Technol. Lett. 15, 936–938 (2003)

    Article  Google Scholar 

  • K. Zhou, L. Zhang, X. Chen, I. Bennion, Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of >80° tilted structures. Opt. Lett. 31, 1193–1195 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Caucheteur .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Caucheteur, C., Guo, T. (2019). Fiber Grating Devices. In: Peng, GD. (eds) Handbook of Optical Fibers. Springer, Singapore. https://doi.org/10.1007/978-981-10-7087-7_42

Download citation

Publish with us

Policies and ethics