Skip to main content

Photonic Microcells for Sensing Applications

  • Reference work entry
  • First Online:
  • 2577 Accesses

Abstract

This chapter presents hollow-core and suspended-core photonic microcells (PMCs) made from commercial photonic crystal fibers and single mode fibers (SMFs). These PMCs are in-fiber platforms for strong light-matter interaction and can be connected into standard SMF systems with low loss. The fabrication process and basic properties of the PMCs are introduced. The use of the PMC as gas sensors, liquid-filled temperature sensors, in-fiber micro-cantilever accelerometers, and grating-based sensors is presented. In combination with novel functional materials, the PMCs exhibit great potentials for lab-in/on-fiber and tunable photonic devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • F. Benabid, Photonic microcells based on hollow-core PCF, in (C) Optical Fiber Communication Conference: Optical Society of America, 2011

    Google Scholar 

  • F. Benabid, Photonic microcell: a revival tool for gas lasers, in (C) CLEO-12: Science and Innovations: Optical Society of America, 2012

    Google Scholar 

  • F. Benabid, F. Couny, J. Knight, T. Birks, P.S.J. Russell, Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature 434(7032), 488–491 (2005)

    Article  CAS  Google Scholar 

  • F. Benabid, P. Roberts, F. Couny, P.S. Light, Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells. J. Eur. Opt. Soc. Rapid Publ. 4, 09904-1 (2009)

    Article  Google Scholar 

  • F. Benabid, J.C. Knight, P.s.J. Russell, Particle levitation and guidance in hollow-core photonic crystal fiber. Opt. Express 10(21), 1195–1203 (2002)

    Article  CAS  Google Scholar 

  • A.V. Brakel et al., Cavity ring-down in a photonic bandgap fiber gas cell, in Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008. Conference on, 2008, pp. 1–2

    Google Scholar 

  • J.P. Carvalho et al., Remote system for detection of low-levels of methane based on photonic crystal fibres and wavelength modulation spectroscopy. J. Sens. 2009(2), 10 (2009)

    Google Scholar 

  • Y. Chen et al., Demonstration of an 11km hollow core photonic bandgap fiber for broadband low-latency data transmission, in (C) Optical Fiber Communication Conference Post Deadline Papers, Los Angeles, California: Optical Society of America, 2015, p. Th5A.1

    Google Scholar 

  • F. Couny, F. Benabid, P. Light, Large-pitch kagome-structured hollow-core photonic crystal fiber. Opt. Lett. 31(24), 3574–3576 (2006)

    Article  CAS  Google Scholar 

  • R. Cregan et al., Single-mode photonic band gap guidance of light in air. Science 285(5433), 1537–1539 (1999)

    Article  CAS  Google Scholar 

  • A.M. Cubillas, M. Silva-Lopez, J.M. Lazaro, O.M. Conde, M.N. Petrovich, J.M. Lopez-Higuera, Methane detection at 1670-nm band using a hollow-core photonic bandgap fiber and a multiline algorithm. Opt. Express 15(26), 17570–17576 (2007)

    Article  CAS  Google Scholar 

  • C.J. De Matos, C.M.B. Cordeiro, E.M. Dos Santos, J.S. Ong, A. Bozolan, C.H. Brito Cruz, Liquid-core, liquid-cladding photonic crystal fibers. Opt. Express 15(18), 11207–11212 (2007)

    Article  Google Scholar 

  • D. Donlagic, All-fiber micromachined microcell. Opt. Lett. 36(16), 3148–3150 (2011)

    Article  CAS  Google Scholar 

  • M.A. Finger, T.S. Iskhakov, N.Y. Joly, M.V. Chekhova, P.S.J. Russell, Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum. Phys. Rev. Lett. 115(14), 143602 (2015)

    Article  Google Scholar 

  • M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, S. Takeuchi, Highly efficient coupling of photons from nanoemitters into single-mode optical fibers. Nano Lett. 11(10), 4362–4365 (2011)

    Article  CAS  Google Scholar 

  • Y. Han et al., Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering. Opt. Eng. 47(4), 040502–040502-3 (2008)

    Article  Google Scholar 

  • T.P. Hansen et al., Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling. J. Lightwave Technol. 22(1), 11 (2004)

    Article  CAS  Google Scholar 

  • M. Hautakorpi, M. Mattinen, H. Ludvigsen, Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt. Express 16(12), 8427–8432 (2008)

    Article  Google Scholar 

  • S. Heng et al., Microstructured optical fibers and live cells: a water-soluble, photochromic zinc sensor. Biomacromolecules 14(10), 3376–3379 (2013)

    Article  CAS  Google Scholar 

  • C.J. Hensley, D.H. Broaddus, C.B. Schaffer, A.L. Gaeta, Photonic band-gap fiber gas cell fabricated using femtosecond micromachining. Opt. Express 15(11), 6690–6695 (2007)

    Article  Google Scholar 

  • Y.L. Hoo, W. Jin, C. Shi, H.L. Ho, D.N. Wang, S.C. Ruan, Design and modeling of a photonic crystal fiber gas sensor. Appl. Opt. 42(18), 3509–3515 (2003)

    Article  CAS  Google Scholar 

  • Y. Hoo, W. Jin, H. Ho, J. Ju, D. Wang, Gas diffusion measurement using hollow-core photonic bandgap fiber. Sensors Actuators B Chem. 105(2), 183–186 (2005)

    Article  CAS  Google Scholar 

  • Y. Hoo, S. Liu, H.L. Ho, W. Jin, Fast response microstructured optical fiber methane sensor with multiple side-openings. Photonics Technol. Lett. IEEE 22(5), 296–298 (2010)

    Article  CAS  Google Scholar 

  • J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, J.C. Knight, Metallic mode confinement in microstructured fibres. Opt. Express 16(9), 5983–5990 (2008)

    Article  Google Scholar 

  • G. Huyang, J. Canning, M.L. Åslund, D. Stocks, T. Khoury, M.J. Crossley, Evaluation of optical fiber microcell reactor for use in remote acid sensing. Opt. Lett. 35(6), 817–819 (2010)

    Article  Google Scholar 

  • W. Jin, H. Xuan, H.L. Ho, Sensing with hollow-core photonic bandgap fibers. Meas. Sci. Technol. 21(9), 094014 (2010)

    Article  Google Scholar 

  • L. Jin, W. Jin, J. Ju, Y. Wang, Investigation of long-period grating resonances in hollow-core photonic bandgap fibers. J. Lightwave Technol. 29(11), 1707–1713 (2011)

    Google Scholar 

  • W. Jin, H.L. Ho, Y. Cao, J. Ju, L. Qi, Gas detection with micro- and nano-engineered optical fibers. Opt. Fiber Technol. 19(6), 741–759 (2013)

    Article  CAS  Google Scholar 

  • W. Jin, H. Xuan, C. Wang, W. Jin, Y. Wang, Robust microfiber photonic microcells for sensor and device applications. Opt. Express 22(23), 28132–28141 (2014)

    Article  Google Scholar 

  • W. Jin, Y. Cao, F. Yang, H.L. Ho, Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range. Nat. Commun. 6, 6767 (2015)

    Article  CAS  Google Scholar 

  • A.M. Jones et al., Mid-infrared gas filled photonic crystal fiber laser based on population inversion. Opt. Express 19(3), 2309–2316 (2011)

    Article  CAS  Google Scholar 

  • J. Ju, H.F. Xuan, W. Jin, S. Liu, H.L. Ho, Selective opening of airholes in photonic crystal fiber. Opt. Lett. 35(23), 3886–3888 (2010)

    Article  Google Scholar 

  • K.S. Lee, Y.K. Lee, H.J. Si, A novel grating modulation technique for photonic bandgap fiber gas sensors. IEEE Photon. Technol. Lett. 23(10), 624–626 (2011)

    Article  CAS  Google Scholar 

  • X. Li, J. At, J. Liang, G. Xu, T. Ueda, Fabrication of photonic bandgap fiber gas cell using focused ion beam cutting. Jpn. J. Appl. Phys. 48(6), 06FK05–06FK05 (2009)

    Google Scholar 

  • X. Li, J. Liang, S. Lin, Y. Zimin, Y. Zhang, T. Ueda, NIR Spectrum analysis of natural gas based on hollow-core photonic bandgap fiber. Sens. J. IEEE 12(7), 2362–2367 (2012)

    Article  CAS  Google Scholar 

  • Y. Lin et al., Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre. Sci. Rep. 6, 39410 (2016)

    Article  CAS  Google Scholar 

  • G.A. Miller, G.A. Cranch, Reduction of intensity noise in hollow core optical fiber using angle-cleaved splices. IEEE Photon. Technol. Lett. 28(4), 414–417 (2016)

    Article  Google Scholar 

  • T.M. Monro et al., Sensing with suspended-core optical fibers. Opt. Fiber Technol. 16(6), 343–356 (2010)

    Article  Google Scholar 

  • J. Moura et al., Evaporation of volatile compounds in suspended-core fibers. Opt. Lett. 39(13), 3868–3871 (2014)

    Article  CAS  Google Scholar 

  • K. Murari et al., Kagome-fiber-based pulse compression of mid-infrared picosecond pulses from a Ho:YLF amplifier. Optica 3(8), 816–822 (2016)

    Article  CAS  Google Scholar 

  • J.A. Nwaboh, J. Hald, J.K. Lyngsø, J.C. Petersen, O. Werhahn, Measurements of CO2 in a multipass cell and in a hollow-core photonic bandgap fiber at 2 μm. Appl. Phys. B 110(2), 187–194 (2013)

    Article  CAS  Google Scholar 

  • J.P. Parry et al., Towards practical gas sensing with micro-structured fibres. Meas. Sci. Technol. 20(7), 075301 (2009)

    Article  Google Scholar 

  • T. Ritari et al., Gas sensing using air-guiding photonic bandgap fibers. Opt. Express 12(17), 4080–4087 (2004)

    Article  CAS  Google Scholar 

  • P.S.J. Russell, Photonic-crystal fibers. J. Lightwave Technol. 24(12), 4729–4749 (2006)

    Article  Google Scholar 

  • J.R. Sparks et al., Selective semiconductor filling of microstructured optical fibers. J. Lightwave Technol. 29(13), 2005–2008 (2011)

    Article  Google Scholar 

  • M. Sprague et al., Broadband single-photon-level memory in a hollow-core photonic crystal fibre. Nat. Photonics 8, 287 (2014)

    Article  CAS  Google Scholar 

  • P. Uebel et al., Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes. Opt. Lett. 41(9), 1961–1964 (2016)

    Article  Google Scholar 

  • A.van Brakel, C. Grivas, M.N. Petrovich, D.J. Richardson, Micro-channels machined in microstructured optical fibers by femtosecond laser. Opt. Express 15(14), 8731–8736 (2007)

    Article  Google Scholar 

  • C. Wang, Fiber Bragg gratings inscribed in all-silica suspended-core photonic microcells, in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), Sydney, p. BTh4B.5: Optical Society of America, 2016

    Google Scholar 

  • C. Wang, J. He, J. Zhang, C. Liao, Y. Wang, W. Jin, Y. Wang, and J. Wang, Bragg gratings inscribed in selectively inflated photonic crystal fibers, Opt. Express 25(23), 28442–28450 (2017)

    Article  CAS  Google Scholar 

  • Y. Wang et al., Long period gratings in air-core photonic bandgap fibers. Opt. Express 16(4), 2784–2790 (2008)

    Article  Google Scholar 

  • Y. Wang, C. Liao, D. Wang, Femtosecond laser-assisted selective infiltration of microstructured optical fibers. Opt. Express 18(17), 18056–18060 (2010)

    Article  CAS  Google Scholar 

  • C. Wang, W. Jin, J. Ma, Y. Wang, H.L. Ho, X. Shi, Suspended core photonic microcells for sensing and device applications. Opt. Lett. 38(11), 1881–1883 (2013a)

    Article  CAS  Google Scholar 

  • C. Wang et al., Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells. Appl. Opt. 52(22), 5430–5439 (2013b)

    Article  Google Scholar 

  • C. Wang, W. Jin, J. Ma, W. Jin, H.L. Ho, Photonic microcells for novel devices and sensor applications, in (C) APOS 2013, Wuhan, China, 2013c, vol. 8924, p. 27

    Google Scholar 

  • C. Wang et al., Highly birefringent suspended-core photonic microcells for refractive-index sensing. Appl. Phys. Lett. 105(6), 061105 (2014)

    Article  Google Scholar 

  • C. Wang, W. Jin, W. Jin, J. Ju, J. Ma, H.L. Ho, Evanescent-field photonic microcells and their applications in sensing. Measurement 79, 172–181 (2016)

    Article  Google Scholar 

  • F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, A. Rauschenbeutel, Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers. Opt. Express 15(19), 11952–11958 (2007)

    Article  CAS  Google Scholar 

  • P. Westbrook, B. Eggleton, R. Windeler, A. Hale, T. Strasser, G. Burdge, Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings. Photonics Technol. Lett. IEEE 12(5), 495–497 (2000)

    Article  Google Scholar 

  • R.M. Wynne, B. Barabadi, K.J. Creedon, A. Ortega, Sub-minute response time of a hollow-core photonic bandgap fiber gas sensor. J. Lightwave Technol. 27(11), 1590–1596 (2009)

    Article  CAS  Google Scholar 

  • L. Xiao, M. Demokan, W. Jin, Y. Wang, C.-L. Zhao, Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect. J. Lightwave Technol. 25(11), 3563–3574 (2007)

    Article  Google Scholar 

  • F. Yang, Novel hollow-core optical fiber gas and acoustic sensors, Ph.D, (PolyU) Department of Electrical Engineering, The HK Polytechnic University, 2015

    Google Scholar 

  • F. Yang, W. Jin, All-fiber hydrogen sensor based on stimulated Raman gain spectroscopy with a 1550-nm hollow-core fiber, in 25th International Conference on Optical Fiber Sensors, 2017, vol. 10323, p. 4: SPIE.

    Google Scholar 

  • F. Yang, W. Jin, Y. Lin, C. Wang, H.L. Ho, Y. Tan, Hollow-core microstructured optical fiber gas sensors. J. Lightwave Technol. PP(99), 1–1 (2016a)

    Google Scholar 

  • F. Yang, Y. Tan, W. Jin, Y. Lin, Y. Qi, H.L. Ho, Hollow-core fiber Fabry–Perot photothermal gas sensor. Opt. Lett. 41(13), 3025–3028 (2016b)

    Article  CAS  Google Scholar 

  • F. Yang, W. Jin, Y. Cao, H.L. Ho, Y. Wang, Towards high sensitivity gas detection with hollow-core photonic bandgap fibers. Opt. Express 22(20), 24894–24907 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The Natural Science Fundament of China (Grant Nos. 61405125, 61290313, and 61535004) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Jin .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wang, C., Jin, W., Ho, H.L., Yang, F. (2019). Photonic Microcells for Sensing Applications. In: Peng, GD. (eds) Handbook of Optical Fibers. Springer, Singapore. https://doi.org/10.1007/978-981-10-7087-7_23

Download citation

Publish with us

Policies and ethics