Skip to main content

Microstructured Polymer Optical Fiber Gratings and Sensors

  • Reference work entry
  • First Online:
Book cover Handbook of Optical Fibers

Abstract

This chapter describes the realization of microstructured polymer optical fibers Bragg gratings (mPOFBGs) and their use in various sensing applications. Different grating inscription techniques based on different lasers used in recording grating in mPOF are presented. Grating inscription in mPOFs can be a challenging task compared to step index fibers because the microstructured cladding holes introduce scattering preventing the laser from reaching the core of the fiber easily. Inscription of gratings in mPOFs fabricated from different polymer materials such as Topas, Zeonex, Polycarbonate (PC) is discussed, and their optical and sensing performance is directly compared with the widely used poly(methylmethacrylate)(PMMA). The progress on fabrication of gratings in different types of mPOFs is presented in terms of grating inscription time, strength, and Bragg wavelengths. This chapter also describes the annealing process of mPOFs or mPOFBGs which is one of the curtail step in the development of stable mPOFBG sensors. The different annealing methods that have been applied by the research community are also presented. In addition, an overview on strain, humidity, temperature, pressure, and acceleration sensors developed from mPOFBGs is provided. A direct comparison in terms of their sensitivity, sensing range, and their performance in general is presented. Finally, the way to improve the development of stable mPOFBG sensors and widen their application areas is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • T. Baghdasaryan, T. Geernaert, F. Berghmans, H. Thienpont, Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription. Opt. Express 19(8), 7705–7716 (2011)

    Article  CAS  Google Scholar 

  • T. Bremner, A. Rudin, D.G. Cook, Melt flow index values and molecular weight distributions of commercial thermoplastics. J. Appl. Polym. Sci. 41(78), 1617–1627 (1990)

    Article  CAS  Google Scholar 

  • C. Broadway, D. Gallego, G. Woyessa, A. Pospori, O. Bang, D.J. Webb, G. Carpintero, H. Lamela, in Polymer optical fibre sensors for endoscopic opto-acoustic imaging, Proceedings of SPIE 9539, Opto-Acoustic Methods and Applications in Biophotonics II, 953907 (2015)

    Google Scholar 

  • I.-L. Bundalo, K. Nielsen, C. Markos, O. Bang, Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes. Opt. Express 22(5), 5270–5276 (2014)

    Article  Google Scholar 

  • I.-L. Bundalo, K. Nielsen, O. Bang, Angle dependent fiber Bragg grating inscription in microstructured polymer optical fibers. Opt. Express 23(3), 3699–3707 (2015)

    Article  CAS  Google Scholar 

  • K.E. Carroll, C. Zhang, D.J. Webb, K. Kalli, A. Argyros, M.C.J. Large, Thermal response of Bragg gratings in PMMA microstructured optical fibers. Opt. Express 15(14), 8844–8850 (2007)

    Article  CAS  Google Scholar 

  • Data Sheet Topas 5013S-04, Topas Advanced Polymers Inc., 2015, http://www.topas.com/sites/default/files/TDS_5013S_04_e_1.pdf

  • Data Sheet Topas 8007F-04, Topas Advanced Polymers Inc., 2015, http://www.topas.com/sites/default/files/TDS_8007F-04_english%20units_0.pdf

  • H. Dobb, D.J. Webb, K. Kalli, A. Argyros, M.C.J. Large, M.A. van Eijkelenborg, Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers. Opt. Lett. 30(24), 3296–3298 (2005)

    Article  Google Scholar 

  • G. Emiliyanov, J.B. Jensen, O. Bang, P.E. Hoiby, L.H. Pedersen, E.M. Kjaer, L. Lindvold, Localized biosensing with Topas microstructured polymer optical fiber. Opt. Lett. 32(5), 460–462 (2007)

    Article  Google Scholar 

  • A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H.K. Rasmussen, K. Krebber, O. Bang, Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high temperature resistant fiber Bragg grating strain sensors. Opt. Mater. Express 6(2), 649–659 (2016)

    Article  CAS  Google Scholar 

  • A. Fasano, G. Woyessa, J. Janting, H.K. Rasmussen, O. Bang, Solution-mediated annealing of polymer optical fiber Bragg gratings at room temperature. IEEE Photon. Technol. Lett. 29(8), 687–690 (2017)

    Article  CAS  Google Scholar 

  • GEHR PMMA (Acrylic), http://www.gehrplastics.com/pmma-acrylic.html

  • K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, J. Albert, Bragg gratings fabricated in monomode photosensitive optical fibre by UV exposure through a phase mask. Appl. Phys. Lett. 62(10), 1035–1037 (1993)

    Article  CAS  Google Scholar 

  • X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, C. Caucheteur, BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription. Opt. Lett. 42(11), 2206–2212 (2017)

    Article  Google Scholar 

  • T. Ishigure, M. Hirai, M. Sato, Y. Koike, Graded-index plastic optical fiber with high mechanical properties enabling easy network installations. II. J. Appl. Polym. Sci. 91(1), 404–409 (2004)

    Article  CAS  Google Scholar 

  • J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, A. Bjarklev, Selective detection of antibodies in microstructured polymer optical fibers. Opt. Express 13(15), 5883–5889 (2005)

    Article  CAS  Google Scholar 

  • I.P. Johnson, K. Kalli, D.J. Webb, 827 nm Bragg grating sensor in multimode microstructured polymer optical fibre. Electron. Lett. 46(17), 1217–1218 (2010a)

    Article  CAS  Google Scholar 

  • I.P. Johnson, D.J. Webb, K. Kalli, M.C.J. Large, A. Argyros, Multiplexed FBG sensor recorded in multimode microstructured polymer optical fiber. Proc. SPIE 7714, 77140D (2010b)

    Article  Google Scholar 

  • I.P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H.K. Rasmussen, L. Khan, D.J. Webb, K. Kalli, O. Bang, Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer. Electron. Lett. 47(4), 271–272 (2011)

    Article  CAS  Google Scholar 

  • I.P. Johnson, D.J. Webb, K. Kalli, Hydrostatic pressure sensing using a polymer optical fiber Bragg gratings. Proc. SPIE 8351, 835106 (2012)

    Article  Google Scholar 

  • K. Kalli, C. Riziotis, A. Posporis, C. Markos, C. Koutsides, S. Ambran, A.S. Webb, C. Holmes, J.C. Gates, J.K. Sahu, P.G.R. Smith, Flat fibre and femtosecond laser technology as a novel photonic integration platform for optofluidic based biosensing devices and lab-on-chip applications: Current results and future perspectives. Sens. Actuators B. Chem. 209, 1030–1040 (2015)

    Article  CAS  Google Scholar 

  • G. Khanarian, H. Celanese, Optical properties of cyclic olefin copolymers. Opt. Eng. 40(6), 1024–1029 (2001)

    Article  CAS  Google Scholar 

  • S.G. Leon-Saval, R. Lwin, A. Argyros, Multicore composite single-mode polymer fiber. Opt. Express 20(1), 141–148 (2012)

    Article  CAS  Google Scholar 

  • B. Malo, K.O. Hill, F. Bilodeau, D.C. Johnson, J. Albert, Point-by-point fabrication of micro-Bragg grating in photosensitive fibre using single excimer pulse refractive index modification techniques. Electron. Lett. 29(18), 1668–1669 (1993)

    Article  CAS  Google Scholar 

  • C. Markos, W. Yuan, K. Vlachos, G.E. Town, O. Bang, Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers. Opt. Express 19(8), 7790–7798 (2011)

    Article  CAS  Google Scholar 

  • C. Markos, A. Stefani, K. Nielsen, H.K. Rasmussen, W. Yuan, O. Bang, High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees. Opt. Express 21(4), 4758–4765 (2013)

    Article  CAS  Google Scholar 

  • G.D. Marshall, D.J. Kan, A.A. Asatryan, L.C. Botten, M.J. Withford, Transverse coupling to the core of a photonic crystal fiber: The photo-inscription of gratings. Opt. Express 15(12), 7876–7887 (2007)

    Article  Google Scholar 

  • A. Martinez, M. Dubov, I. Khrushchev, I. Bennion, Direct writing of fibre Bragg gratings by femtosecond laser. Electron. Lett. 40(19), 1170–1172 (2004)

    Article  Google Scholar 

  • G. Meltz, W.W. Morey, W.H. Glenn, Formation of Bragg gratings in optical fibres by a transverse holographic method. Opt. Lett. 14(15), 823–825 (1989)

    Article  CAS  Google Scholar 

  • R. Oliveira, L. Bilro, R. Nogueira, Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds. Opt. Express 23(8), 10181–10187 (2015)

    Article  CAS  Google Scholar 

  • Optical properties of Makrolon and Apec for non-imaging optics, Bayer Material ScienceAG, 2014, http://www.plastics.covestro.com/Products/~/media/B6555362438341FF9804F21A253E5B23.ashx?la=en

  • J.K.M. Pedersen, G. Woyessa, K. Nielsen, O. Bang, Intrinsic pressure response of a single-mode cyclo olefin polymer microstructured optical fibre Bragg grating, in Proceedings of the International Plastic Optical Fibres Conference, Birmingham (2016). ISBN: 978 1 85449 408 5

    Google Scholar 

  • S. Roy, C.Y. Yue, Z.Y. Wang, L. Anand, Thermal bonding of microfluidic devices: Factors that affect interfacial strength of similar and dissimilar cyclic olefin copolymers. Sens. Actuators B Chem. 161(1), 1067–1073 (2012)

    Article  CAS  Google Scholar 

  • D. Sáez-Rodríguez, K. Nielsen, H.K. Rasmussen, O. Bang, D.J. Webb, Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core. Opt. Lett. 38(19), 3769–3772 (2013)

    Article  Google Scholar 

  • E.E. Shafee, Effect of photodegradation on the [beta]-relaxation in poly(methylmethacrylate). Polym. Degrad. Stab. 53, 57–61 (1996)

    Article  CAS  Google Scholar 

  • L.S.A. Smith, V. Schmitz, The effect of water on the glass transition temperature of poly (methyl methacrylate). Polymer 29(10), 1871–1878 (1988)

    Article  CAS  Google Scholar 

  • G. Statkiewicz-Barabach, K. Tarnowski, D. Kowal, P. Mergo, W. Urbanczyk, Fabrication of multiple Bragg gratings in microstructured polymer fibers using a phase mask with several diffraction orders. Opt. Express 21(7), 8521–8534 (2013)

    Article  CAS  Google Scholar 

  • A. Stefani, W. Yuan, C. Markos, O. Bang, Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers. IEEE Photon. Technol. Lett. 23(10), 660–662 (2011)

    Article  CAS  Google Scholar 

  • A. Stefani, M. Stecher, G.E. Town, O. Bang, Direct writing of fiber Bragg grating in microstructured polymer optical fiber. IEEE Photon. Technol. Lett. 24(13), 1148–1150 (2012a)

    Article  CAS  Google Scholar 

  • A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, O. Bang, High sensitivity polymer optical fiber-Bragg-grating-based accelerometer. IEEE Photon. Technol. Lett. 24(9), 763–765 (2012b)

    Article  CAS  Google Scholar 

  • Technical data, Zeonex, Cyclo Olifen Polymer (COC), 2017, http://www.zeonex.com/optics.aspx

  • Topas COC product overview, Topas Advanced Polymers Inc., 2014, http://www.topas.com/sites/default/files/files/TOPAS_Brochure_E_2014_06(1).pdf

  • É. Torres, M.N. Berberan-Santos, M.J. Brites, Synthesis, photophysical and electrochemical properties of perylene dyes. Dyes Pigments 112, 298–304 (2015)

    Article  CAS  Google Scholar 

  • D.L. Williams, Photosensitivity: The phenomenon and its applications, Advanced Photonic Topics, (Universidad de Cantabria, Santander, 1997). books.google.com

    Google Scholar 

  • D.R.G. Williams, P.E.M. Allen, V.T. Truong, Glass transition temperature and stress relaxation of methanol equilibrated poly (methyl methacrylate). Eur. Polym. J. 22(11), 911–919 (1986)

    Article  CAS  Google Scholar 

  • G. Woyessa, K. Nielsen, A. Stefani, C. Markos, O. Bang, Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor. Opt. Express 24(2), 1206–1213 (2016)

    Article  CAS  Google Scholar 

  • G. Woyessa, A. Fasano, C. Markos, A. Stefani, H.K. Rasmussen, O. Bang, Zeonex microstructured polymer optical fiber: Fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing. Opt. Mater. Express 7(1), 286–295 (2017a)

    Article  CAS  Google Scholar 

  • G. Woyessa, A. Fasano, C. Markos, H.K. Rasmussen, O. Bang, Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing. IEEE Photon. Technol. Lett. 29(7), 575–578 (2017b)

    Article  CAS  Google Scholar 

  • G. Woyessa, J.M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H.K. Rasmussen, O. Bang, Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing. Opt. Lett. 42(6), 1161–1164 (2017c)

    Article  CAS  Google Scholar 

  • Z. Xiong, G.D. Peng, B. Wu, P.L. Chu, Effects of the zeroth-order diffraction of a phase mask on Bragg gratings. J. Lightwave Technol. 17(11), 2361–2365 (1999)

    Article  Google Scholar 

  • W. Yuan, L. Khan, D.J. Webb, K. Kalli, H.K. Rasmussen, A. Stefani, O. Bang, Humidity insensitive TOPAS polymer fiber Bragg grating sensor. Opt. Express 19(20), 19731–19739 (2011)

    Article  CAS  Google Scholar 

  • W. Yuan, A. Stefani, O. Bang, Tunable polymer fiber Bragg grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors. IEEE Photon. Technol. Lett. 24(5), 401–403 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n 608382 and Danish Council for Independent Research (FTP Case No. 4184-00359B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Getinet Woyessa .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Woyessa, G., Fasano, A., Markos, C. (2019). Microstructured Polymer Optical Fiber Gratings and Sensors. In: Peng, GD. (eds) Handbook of Optical Fibers. Springer, Singapore. https://doi.org/10.1007/978-981-10-7087-7_2

Download citation

Publish with us

Policies and ethics