Skip to main content

Modeling and Simulation of Bio-Inspired Nanoarmors

Handbook of Mechanics of Materials

Abstract

The exploitation of bio-inspired solutions and of novel nanomaterials is gaining increasing attention in the field of impact protection. Indeed, especially for advanced applications, there is a growing pressure towards the reduction of the weight of protective structures without compromising their energy absorption capability. The complexity of the phenomena induced by high-energy contacts requires advanced and efficient computational models, which are also fundamental for achieving the optimum, overcoming the limits of experimental tests and physical prototyping in exploring the whole design space. At the same time, the modeling of bio-inspired toughening mechanisms requires additional capability of these methods to efficiently cover and merge different -and even disparate- size and time scales. In this chapter, we review computational methods for modeling the mechanical behavior of materials and structures under high-velocity (e.g., ballistic) impacts and crushing, with a particular focus on the nonlinear finite element method. Some recent developments in numerical simulation of impact are presented underlining merits, limits, and open problems in the modeling of bio-inspired and nanomaterial-based armors. In the end, two modeling examples, a bio-inspired ceramic-composite armor with ballistic protection capabilities and a modified honeycomb structure for energy absorption, are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. NASA. International space station risk of impact from orbital debris; 2015. http://www.nasa.gov/externalflash/iss_impact_risk/

  2. Hoog PJ. Composites in armour. Science. 2006;314(5802):1100–1.

    Article  Google Scholar 

  3. Abrate S. Ballistic impact on composites. In: Proceedings of the 16th International Conference on Composite Materials; Kyoto, Japan; 2007.

    Google Scholar 

  4. Kumar BG, Singh RP, Nakamura T. Degradation of carbon fiber-reinforced epoxy composites by ultraviolet radiation and condensation. J Compos Mater. 2002;36(24):2713–33.

    Article  Google Scholar 

  5. Springer GS. Environmental effects on composite materials, vol. 3. Lancaster: Technomic Publishing; 1988.

    Google Scholar 

  6. Abrate S. Impact on composite structures. Cambridge/New York: Cambridge University Press; 2005.

    Google Scholar 

  7. Hazell PJ. Armour: materials, theory and design. Boca Raton: CRC Press; 2015.

    Book  Google Scholar 

  8. LaSalvia JC, Gyekenyesi A, Halbig M. (Eds.). Advances in Ceramic Armors X. Vol. 35 of Ceramic Engineering and Science Proceedings. Wiley; 2014. ISBN: 978-1-119-04060-6.

    Google Scholar 

  9. Liu W, Chen Z, Chen Z, Cheng X, Wang Y, Chen X, et al. Influence of different back laminate layers on ballistic performance of ceramic composite armor. Mater Des. 2015;87:31–27.

    Google Scholar 

  10. Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–8.

    Article  Google Scholar 

  11. Zhang T, Li X, Kadkhodaei S, Gao H. Flaw insensitive fracture in nanocrystalline graphene. Nano Lett. 2012;12(9):4605–10.

    Article  Google Scholar 

  12. Cranford SW. When is 6 less than 5? Penta- to hexa-graphene transition. Carbon. 2016;96:421–8.

    Article  Google Scholar 

  13. Lee JH, Loya PE, Loeu J, Thomas EL. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration. Science. 2014;346:1092–6.

    Article  Google Scholar 

  14. Lee JH, Veysse D, Singer JP, Retsch M, Saini G, Pezeril T, et al. High strain rate deformation of layered nanocomposites. Nat Commun. 2012;3(1164):1–7.

    Google Scholar 

  15. Yang W, Chen IH, Gludovatz B, Zimmermann EA, Ritchie RO, Meyers MA. Natural flexible dermal armour. Adv Mater. 2013;25(1):31–48.

    Article  Google Scholar 

  16. Goldsmith WJ. IMPACT – the theory and physics of colliding solids. 2nd ed. New York: Dover Publications; 2001.

    MATH  Google Scholar 

  17. Recht RF, Ipson TW. Ballistic perforation dynamics. J Appl Mech. 1963;30(3):384–90.

    Article  Google Scholar 

  18. Goldsmith W. Non-ideal projectile impact on targets. Int J Impact Eng. 1999;22(2–3):95–395.

    Article  Google Scholar 

  19. Porwal PK, Phoenix SL. Modeling system effects in ballistic impact into multi-layered fibrous materials for soft body armor. Int J Fract. 2005;135(1-4):217249.

    Article  MATH  Google Scholar 

  20. Lim CT, Shim VPW, Ng YH. Finite-element modeling of the ballistic impact of fabric armor. Int J Impact Eng. 2003;28(1):13–31.

    Article  Google Scholar 

  21. Signetti S, Bosia F, Pugno NM. Computational modelling of the mechanics of hierarchical materials. MRS Bull. 2016;41(9):694–9.

    Article  Google Scholar 

  22. Signetti S, Pugno NM. Evidence of optimal interfaces in bio-inspired ceramic-composite panels for superior ballistic protection. J Eur Ceram Soc. 2014;34(11):2823–31.

    Article  Google Scholar 

  23. Wang B, Yang W, Vincent R, Sherman R, Meyers MA. Pangolin armor: overlapping, structure, and mechanical properties of the keratinous scales. Acta Biomater. 2016;41:60–74.

    Article  Google Scholar 

  24. Achrai B, Bar-On B, Wagner HD. Bending mechanics of the red-eared slider turtle carapace. J Mech Behav Biomed Mater. 2014;30:223–33.

    Article  Google Scholar 

  25. Bruet BJF, Song J, Boyce MC, Ortiz C. Materials design principles of ancient fish armour. Nat Mater. 2008;7(9):748–56.

    Article  Google Scholar 

  26. Yang W, Sherman VR, Gludovatz B, Mackey M, Zimmermann EA, Chang EH, et al. Protective role of Arapaima gigas fish scales: structure and mechanical behavior. Acta Biomater. 2014;5(8):3599–614.

    Article  Google Scholar 

  27. Rudykh S, Ortiz C, Boyce MC. Flexibility and protection by design: imbricated hybrid microstructures of bio-inspired armor. Soft Matter. 2015;11:2547–54.

    Article  Google Scholar 

  28. Zimmermann EA, Gludovatz B, Schaible E, Dave NKN, Yang W, Meyers MA, et al. Mechanical adaptability of the Bouligand-type structure in natural dermal armour. Nat Commun. 2013;4:2634.

    Article  Google Scholar 

  29. Li L, Ortiz C. A natural 3D interconnected laminated composite with enhanced damage resistance. Adv Funct Mater. 2015;25(23):3463–71.

    Article  Google Scholar 

  30. Garrett KW, E J B. Multiple transverse fracture in 90° cross-ply laminates of a glass fibre-reinforced polyester. J Mater Sci. 1977;12(1):157–68.

    Article  Google Scholar 

  31. Currey JD. Mechanical properties and adaptations of some less familiar bony tissues. J Mech Behav Biomed Mater. 2010;3(5):357–72.

    Article  Google Scholar 

  32. Barthelat F, Tang H, Zavattieri PD, Li CM, Espinosa HD. On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J Mech Phys Solids. 2007;55(2):306–37.

    Article  Google Scholar 

  33. Sen D, Buehler MJ. Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks. Sci Rep. 2011;1(35):1–9.

    Google Scholar 

  34. Bosia F, Abdalrahman T, Pugno NM. Investigating the role of hierarchy on the strength of composite materials: evidence of a crucial synergy between hierarchy and material mixing. Nanoscale. 2012;4:1200–7.

    Article  Google Scholar 

  35. Dimas LS, Buehler MJ. Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties. Soft Matter. 2014;10:4436–42.

    Article  Google Scholar 

  36. Vickaryous MK, Hall BK. Osteoderm morphology and development in the nine-banded armadillo, Dasypus novemcinctus (Mammalia, Xenarthra, Cingulata). J Morphol. 2006;267(11):1273–83.

    Article  Google Scholar 

  37. Rhee H, Horstemeyer MF, Hwang Y, Lim H, Kadiri HE, Trim W. A study on the structure and mechanical behavior of the Terrapene carolina carapace: a pathway to design bio-inspired synthetic composites. Mater Sci Eng C. 2009;29(8):2333–9.

    Article  Google Scholar 

  38. Lin E, Li Y, Weaver JC, Ortiz C, Boyce MC. Tunability and enhancement of mechanical behavior with additively manufactured bio-inspired hierarchical suture interfaces. J Mater Res. 2014;29(17):1867–75.

    Article  Google Scholar 

  39. Vernerey FJ, Barthelat F. On the mechanics of fishscale structures. Int J Solids Struct. 2010;47(17):2268–75.

    Article  MATH  Google Scholar 

  40. Thielen M, Schmitt CNZ, Eckert S, Speck T, Seidel R. Structure-function relationship of the foam-like pomelo peel (Citrus maxima) an inspiration for the development of biomimetic damping materials with high energy dissipation. Bioinspir Biomim. 2013;8(2):025001.

    Article  Google Scholar 

  41. Fischer SF, Thielen M, Weiß P, Seidel R, Speck T, Bührig-Polaczek A, Bünck M. Production and properties of a precision-cast bio-inspired composite. J Mater Sci. 2014;49(1):43–51.

    Article  Google Scholar 

  42. Dimas LS, H G B, Eylon I, Buehler MJ. Tough composites inspired by mineralized natural materials: computation, 3D printing, and testing. Adv Funct Mater. 2013;23(36):4629–38.

    Article  Google Scholar 

  43. Aversa L, Taioli S, Nardo MV, Tatti T, Verrucchi R, Iannotta S. The interaction of C60 on Si(111) 7×7 studied by supersonic molecular beams: interplay between precursor kinetic energy and substrate temperature in surface activated processes. Front Mater. 2015;2(46):12–20.

    Google Scholar 

  44. Brély L, Bosia F, Pugno NM. A hierarchical lattice spring model to simulate the mechanics of 2-D materials-based composites. Fron Mater. 2015;2(51):64–73.

    Google Scholar 

  45. Frenkel D, Smit B. Understanding molecular simulation – from algorithms to applications. 2nd ed. San Diego: Academic; 2002.

    MATH  Google Scholar 

  46. Xu M, Paci JT, Oswald J, Belytschko T. A constitutive equation for graphene based on density functional theory. Int J Solids Struct. 2012;49(18):2582–9.

    Article  Google Scholar 

  47. Tatti R, Aversa L, Verrucchi R, Cavaliere E, Garberoglio G, Pugno NM, et al. Synthesis of single layer graphene on Cu(111) by C60 supersonic molecular beam epitaxy. RSC Adv. 2016;6(44):37982–93.

    Article  Google Scholar 

  48. Signetti S, Taioli S, Pugno NM. 2D materials armors showing superior impact strength of few layers. ACS Appl Mater Inter. 2017;9(46):40820–30.

    Article  Google Scholar 

  49. Yoon K, Ostadhossein A, van Duin ADT. Atomistic-scale simulations of the chemomechanical behavior of graphene under nanoprojectile impact. Carbon. 2016;99:58–64.

    Article  Google Scholar 

  50. Pradhan S, Hansen A, Chakrabarti BK. Failure processes in elastic fiber bundles. Rev Mod Phys. 2010;82(1):499–555.

    Article  Google Scholar 

  51. Pugno NM, Bosia F, Abdalrahman T. Hierarchical fiber bundle model to investigate the complex architectures of biological materials. Phys Rev E. 2012;85:011903.

    Article  Google Scholar 

  52. Zapperi S, Vespignani A, Eugene Stanley H. Plasticity and avalanche behaviour in microfracturing phenomena. Nature. 1997;388(6643):658–60.

    Article  Google Scholar 

  53. Pugno NM, Ruoff RS. Quantized fracture mechanics. Philos Mag. 2004;84(27):2829–45.

    Article  Google Scholar 

  54. Zhang Z, Zhang YW, Gao H. On optimal hierarchy of load-bearing biological materials. Proc R Soc B. 2011;278(1705):519–25.

    Article  Google Scholar 

  55. Panzavolta S, Bracci B, Gualandi C, Focarete ML, Treossi E, Kouroupis-Agalou K, et al. Structural reinforcement and failure analysis in composite nanofibers of graphene oxide and gelatin. Carbon. 2014;78:566–77.

    Article  Google Scholar 

  56. Bosia F, Abdalrahman T, Pugno NM. Self-healing of hierarchical materials. Langmuir. 2014;30(4):1123–33.

    Article  Google Scholar 

  57. Belytschko T, Liu WK, Moran B, Elkhodary K. Nonlinear finite elements for continua and structures. 2nd ed. Hoboken: Wiley; 2013.

    MATH  Google Scholar 

  58. Wriggers P. Computational contact mechanics. 2nd ed. Berlin/Heidelberg: Springer-Verlag; 2006.

    Book  MATH  Google Scholar 

  59. Hallquist JO, Goudreau GL, Benson DJ. Sliding interfaces with contact-impact in large-scale Lagrangian computations. Comput Methods Appl Mech Eng. 1985;51(1):107–37.

    Article  MathSciNet  MATH  Google Scholar 

  60. Cuniff PM. Dimensionless parameters for optimization of textile-based body armor systems. In: Proceedings of the 18th International Symposium of Ballistics. San Antonio; 1999. p. 1303–10.

    Google Scholar 

  61. Cuniff PM. Analysis of the system effects in woven fabrics under ballistic impact. Text Res J. 1992;62(9):495–509.

    Article  Google Scholar 

  62. Belytschko T, Ong JSJ, Liu WK, Kennedy JM. Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng. 1984;43(3):251–76.

    Article  MATH  Google Scholar 

  63. Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids. 2000;48(1):175–209.

    Article  MathSciNet  MATH  Google Scholar 

  64. Silling SA, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Comput Struct. 2005;83(17–18):1526–35.

    Article  Google Scholar 

  65. Laboratories SN. LAMMPS molecular dynamics simulator; 2015. http://lammps.sandia.gov/

  66. Parks ML, Lehoucq RB, Plimpton SJ, Silling SA. Implementing peridynamics within a molecular dynamics code. Comput Phys Commun. 2008;179(11):777–83.

    Article  MATH  Google Scholar 

  67. Silling SA, Bobaru F. Peridynamic modeling of membranes and fibers. Int J Non-Linear Mech. 2005;40(2–3):395–409.

    Article  MATH  Google Scholar 

  68. Lee J, Liu W, Hong JW. Impact fracture analysis enhanced by contact of peridynamic and finite element formulations. Int J Impact Eng. 2016;87:108–19.

    Article  Google Scholar 

  69. Lepore E, Bonaccorso F, Bruna M, Bosia F, Taioli S, Garberoglio G, et al. Silk reinforced with graphene or carbon nanotubes spun by spiders. arXiv. 2016. (arXiv:1504.06751 [cond-mat.mtrl-sci]) 2D Mater. 2017; 4(3):031013.

    Google Scholar 

  70. Forrestal MJ, Tzou DY. A spherical cavity-expansion penetration model for concrete targets. Int J Solids Struct. 1997;34(31–32):4127–46.

    Article  MATH  Google Scholar 

  71. Ben-Dor G, Dubinsky A, Elperin T. High-speed penetration modeling and shape optimization of the projectile penetrating into concrete shields. Mech Based Des Struct Mach. 2009;37(4):538–49.

    Article  Google Scholar 

  72. Jacobs MJN, Dingenen JLJV. Ballistic protection mechanisms in personal armour. J Mater Sci. 2001;36(13):3137–42.

    Article  Google Scholar 

  73. Johnson GR, Holmquist TJ. An improved computational constitutive model for brittle materials. AIP Conf Proc. 1994;309(1):981–4.

    Article  Google Scholar 

  74. Cronin DS, Bui K, Kauffmann C, McIntosh G, Berstad T. Implementation and validation of the Johnson-Holmquist ceramic material model in Ls-Dyna. In: 4th European LS-DYNA Users Conferences; Ulm, Germany; 2011. p. 47–60.

    Google Scholar 

  75. Hetherington JG. The optimization of two component composite armours. Int J Impact Eng. 1992;12(3):409–14.

    Article  Google Scholar 

  76. Matzenmiller A, Lubliner J, Taylor RL. A constitutive model for anisotropic damage in fiber-composites. Mech Mater. 1995;20(2):125–52.

    Article  Google Scholar 

  77. Miller W, Smith CW, Scarpa F, Evans KE. Flatwise buckling optimization of hexachiral and tetrachiral honeycombs. Compos Sci Technol. 2010;70(7):1049–56.

    Article  Google Scholar 

  78. Chen Q, Pugno NM, Zhao K, Li Z. Mechanical properties of a hollow-cylindrical-joint honeycomb. Compos Struct. 2014;109:68–74.

    Article  Google Scholar 

  79. Chen Q, Shi Q, Signetti S, Sun F, Li Z, Zhu F, et al. Plastic collapse of cylindrical shellplate periodic honeycombs under uniaxial compression: experimental and numerical analyses. Int J Mech Sci. 2016;111–112:125–33.

    Article  Google Scholar 

  80. Gibson LJ, Ashby MF. Cellular solids – structure and properties. 2nd ed. Cambridge/New York: Cambridge University Press; 1999.

    MATH  Google Scholar 

  81. Andrews KRF, England GL, Ghani E. Classification of the axial collapse of cylindrical tubes under quasi-static loading. Int J Mech Sci. 1983;25:687–96.

    Article  Google Scholar 

  82. Nedjari S, Schlatter G, Hébraud A. Thick electrospun honeycomb scaffolds with controlled pore size. Mater Lett. 2015;142:180–3.

    Article  Google Scholar 

  83. Applegate MB, Coburn J, Partlow BP, Moreau JE, Mondia JP, Marelli B, et al. Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds. Proc Natl Acad Sci. 2015;112(39):12052–7.

    Article  Google Scholar 

  84. de Touzalin A, Marcus C, Heijman F, Cirac I, Murray R, Calarco T. QUANTUM MANIFESTO – a new era of technology; 2016. http://qurope.eu/manifesto

  85. Chen S., Liu Q, He G., et al. Reticulated Carbon Foam Derived From a Sponge-Like Natural Product as a High Performance Anode in Microbial Fuel Cells. J. Mat. Chem. 2012;22:18609–18613

    Google Scholar 

Download references

Acknowledgments

NMP is supported by the European Commission H2020 under the Graphene Flagship (WP14 “Polymer Composites,” no. 696656) and the FET Proactive (“Neurofibers” no. 732344).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefano Signetti or Nicola M. Pugno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Signetti, S., Pugno, N.M. (2018). Modeling and Simulation of Bio-Inspired Nanoarmors. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6855-3_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6855-3_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6855-3

  • Online ISBN: 978-981-10-6855-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Modeling and Simulation of Bio-Inspired Nanoarmors
    Published:
    26 April 2018

    DOI: https://doi.org/10.1007/978-981-10-6855-3_15-2

  2. Original

    Modeling and Simulation of Bio-Inspired Nanoarmors
    Published:
    06 January 2018

    DOI: https://doi.org/10.1007/978-981-10-6855-3_15-1