Skip to main content

Molecular Dynamics Characterization of a Force Sensor Integrated Fast Tool Servo for On-Machine Surface Metrology

  • Living reference work entry
  • First Online:
Metrology

Part of the book series: Precision Manufacturing ((PRECISION))

  • 172 Accesses

Abstract

Establishment of the tool-workpiece contact, in which the diamond tool is set on the workpiece surface with a small contact force, determines the depth of cut accuracy in a force sensor-integrated fast tool servo (FS-FTS) for single point diamond microcutting and the scan force and scan depth in the following step of on-machine surface metrology. Molecular dynamics (MD) simulations are carried out to characterize the tool-workpiece contact process. It is clarified that even a small instability induced by the vibration of the workpiece atoms can generate large uncertainties in the subnanometric MD simulation results. Based on the vibration of the workpiece, atoms have a certain period determined by the MD model size; a multi-relaxation time method is proposed for reduction of the atom vibrations and stabilization of the MD model. It is confirmed that the proposed multi-relaxation time method is effective to eliminate the instability over a wide temperature range up to room temperature under which a practical microcutting or surface metrology process is carried out. An accurate elastic-plastic transition contact depth is then evaluated by observing the residual defects on the workpiece surface after the diamond tool is retracted back to its initial position.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aliofkhazrae M (ed) (2014) Anti-abrasive nanocoatings: current and future applications, 1st edn. Elsevier, Cambridge

    Google Scholar 

  • Brinksmeier E, Gläbe R, Schönemann L (2012) Diamond micro chiseling of large- scale retroreflective arrays. Precis Eng 36:650–657

    Article  Google Scholar 

  • Cai Y, Chen YL, Shimizu Y et al (2016a) Molecular dynamics simulation of subnanometric tool-workpiece contact on a force sensor-integrated fast tool servo for ultra-precision microcutting. Appl Surf Sci 369:354–365

    Article  Google Scholar 

  • Cai Y, Chen YL, Shimizu Y et al (2016b) Molecular dynamics simulation of elastic- plastic deformation associated with tool-workpiece contact in force sensor- integrated fast tool servo. Proc Inst Mech Eng Part B-J Eng Manuf. https://doi.org/10.1177/0954405416673116

    Article  Google Scholar 

  • Chen YL, Gao W, Ju BF et al (2014) A measurement method of cutting tool position for relay fabrication of microstructured surface. Meas Sci Technol 25: 064018 (10pp)

    Article  Google Scholar 

  • Chen YL, Shimizu Y, Cai Y et al (2015a) Self-evaluation of the cutting edge contour of a microdiamond tool with a force sensor integrated fast tool servo on an ultra-precision lathe. Int J Adv Manuf Technol 77:2257–2267

    Article  Google Scholar 

  • Chen YL, Wang S, Shimizu Y et al (2015b) An in-process measurement method for repair of defective microstructures by using a fast tool servo with a force sensor. Precis Eng 39:134–142

    Article  Google Scholar 

  • Chen YL, Cai Y, Shimizu Y et al (2016) On-machine measurement of microtool wear and cutting edge chipping by using a diamond edge artifact. Precis Eng 43:462–467

    Article  Google Scholar 

  • Cheng K, Huo D (2013) Micro-cutting: fundamentals and applications. Wiley, London

    Book  Google Scholar 

  • Cheong WCD, Zhang L, Tanaka H (2001) Some essentials of simulation nano- surfacing processed using the molecular dynamics method. Key Eng Mater 196:31–42

    Article  Google Scholar 

  • Cheung CF, Lee WB (2003) Surface generation in ultra-precision diamond turning: modelling and practices. Professional Engineering Publishing Limited, London

    Google Scholar 

  • Faisal NH, Ahmed R, Goel S et al (2014) Influence of test methodology and probe geomrtry on nanoscale fatigue failure of diamond-like carbon film. Surf Coat Technol 242:42–53

    Article  Google Scholar 

  • Fang TH, Weng CI, Chang JG (2003) Molecular dynamics analysis of temperature effects on nanoindentation measurement. Mater Sci Eng A 357:7–12

    Article  Google Scholar 

  • Fang FZ, Zhang XD, Weckenmann A et al (2013) Manufacturing and measurement of freeform optics. CIRP Ann-Manuf Technol 62:823–846

    Article  Google Scholar 

  • Farzad P, Abdolreza R (2015) Numerical-experimental study on the mechanisms of material removal during magnetic abrasive finishing of brittle materials using extended finite element method. Proc Inst Mech Eng Part C-J Eng Mech Eng Sci 0:1–13

    Google Scholar 

  • Gao W, Hocken RJ, Patten JA et al (2000) Construction and testing of a nanomachining instrument. Precis Eng 24:320–328

    Article  Google Scholar 

  • Gao W, Araki T, Kiyono S et al (2003) Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder. Precis Eng 27:289–298

    Article  Google Scholar 

  • Gao W, Aoki J, Ju BF et al (2007) Surface profile measurement of a sinusoidalgrid using an atomic force microscope on a diamond turning machine. Precis Eng 31:304–309

    Article  Google Scholar 

  • Gao W, Kim SW, Bosse H et al (2015) Measurement technologies for precision positioning. CIRP Ann-Manuf Technol 64:773–796

    Article  Google Scholar 

  • Goel S, Luo X, Reuben RL (2011) Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting. Nanoscale Res Lett 6(9):589

    Article  Google Scholar 

  • Goel S, Beake B, Chan CW et al (2015) Twinning anisotropy of tantalum during nanoindentation. Mater Sci Eng A 627:249–261

    Article  Google Scholar 

  • Huang H, Zhao H (2015) Non-ideal assemble of the driving unit affecting shape of load-displacement curves. Meas Sci Technol 26(8):035601

    Article  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD-visual molecular dynamics. J Mol Graph 14:33–38

    Article  Google Scholar 

  • Johnson KL (1985) Contact mechanics. Cambridge University, Cambridge

    Book  Google Scholar 

  • Lee KW, Noh YJ, Arai Y et al (2011) Precision measurement of micro-lens profile by using a force-controlled diamond cutting tool on an ultra-precision lathe. Int J Precis Technol 2:211–225

    Article  Google Scholar 

  • Mellor A, Hauser H, Wellens C et al (2013) Nanoimprinted diffraction gratings for crystalline silicon solar cells: implementation, characterization and simulation. Opt Express S2:A295–A304

    Article  Google Scholar 

  • Motoki T, Gao W, Kiyono S et al (2006) A nanoindentation instrument for mechanical property measurement of 3D micro/nano-structured surfaces. Meas Sci Technol 17:495–499

    Article  Google Scholar 

  • Müller M, Erhart P, Albe K (2007) Analytic bond-order potential for bcc and fcc iron-comparison with established eam potentials. J Phys Condens Matter 19(23):326220

    Article  Google Scholar 

  • Noh YJ, Arai Y, Tano M et al (2008) Fabrication of large-area micro-lens arrays with fast tool control. Int J Precis Eng Manuf 9:32–38

    Google Scholar 

  • Nosé S (2002) A molecular-dynamics method for simulations in the canonical ensemble. Mol Phys 100:191–198

    Article  Google Scholar 

  • Okamoto J (2014) Theoretical study of charge density waves in transition metal materials. Doctor thesis, Columbia University

    Google Scholar 

  • Oliver WC (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  Google Scholar 

  • Özel T, Zeren E (2004) Determination of work material flow stress and friction for FEA of machining using orthogonal cutting tests. J Mater Process Technol 153-154:1019–1025

    Article  Google Scholar 

  • Page TF, Oliver WC, McHargue CJ (1992) The deformation behavior of ceramic crystals subjected to very low load (nano)indentations. J Mater Res 7:450–473

    Article  Google Scholar 

  • Pei QX, Lu C, Lee HP et al (2009) Study of materials deformation in nanometric cutting by large-scale molecular dynamics simulations. Nanoscale Res Lett 4:444–451

    Article  Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  Google Scholar 

  • Qiu C, Zhu P, Fang F et al (2014) Study of nanoindentation behavior of amorphous alloy using molecular dynamics. Appl Surf Sci 305:101–110

    Article  Google Scholar 

  • Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model Simul Mater Sci Eng 18(7):015012

    Article  Google Scholar 

  • Stukowski A (2012) Structure identification methods for atomistic simulations of crystalline materials. Model Simul Mater Sci Eng 20(15):045021

    Article  Google Scholar 

  • Sun J, Luo X, Chang W (2012) Fabrication of periodic nanostructures by singlepoint diamond turning with focused ion beam built tool tips. J Micromech Microeng 22(12):115014

    Article  Google Scholar 

  • Wang CX, Liu HY, Shi YY et al (1991) Calcluations of relative free energy surfaces in configuration space using an integration method. Chem Phys Lett 179:475–478

    Article  Google Scholar 

  • Wang CT, Jian SR, Jang SC (2008) Multiscale simulation of nanoindentation on Ni (100) thin film. Appl Surf Sci 255:3240–3250

    Article  Google Scholar 

  • Wu CD, Fang TH, Sung PH et al (2012) Critical size, recovery, and mechanical property of nanoimprinted Ni-Al alloys investigation using molecular dynamics simulation. Comput Mater Sci 53:321–328

    Article  Google Scholar 

  • Zhang L, Tanaka H (1997) Towards a deeper understanding of wear and friction on the atomic scale molecular dynamics analysis. Wear 211:44–53

    Article  Google Scholar 

  • Zhao KJ, Chen CQ, Shen YP et al (2009) Molecular dynamics study on the nanovoid growth in face-centered cubic single crystal copper. Comput Mater Sci 46:749–754

    Article  Google Scholar 

  • Zhu PZ, Hu YZ, Wang H et al (2011) study of effect of indenter shape in nanometric scratching process using molecular dynamics. Mater Sci Eng A 528:4522–4527

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yindi Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cai, Y. (2019). Molecular Dynamics Characterization of a Force Sensor Integrated Fast Tool Servo for On-Machine Surface Metrology. In: Gao, W. (eds) Metrology. Precision Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-10-4912-5_21-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4912-5_21-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4912-5

  • Online ISBN: 978-981-10-4912-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics