Skip to main content

Steam Explosion Pretreatment and Saccharification of Lignocellulosic Biomass

  • Living reference work entry
  • First Online:
Handbook of Biorefinery Research and Technology

Abstract

The efficient conversion of lignocellulosic biomass is a worldwide scientific and technological issue. Pretreatment and enzymatic hydrolysis are two key unit operations in which biomass is fractionated into fermentable sugars and then used for biofuels and biochemical production. Steam explosion has been recognized as one of the most effective pretreatments, which improves the subsequent enzymatic hydrolysis performance. High solids enzymatic hydrolysis could improve overall productivity and reduce the cost of enzymatic hydrolysis. This chapter mainly introduced steam explosion pretreatment and enzymatic hydrolysis in biorefining, analyzed the principle of steam explosion and its action mechanism on lignocellulosic biomass, and introduced periodic peristalsis technology in the system of high-solids enzymatic hydrolysis, in order to improve the widespread interpretation and application of steam explosion pretreatment and periodic peristalsis enzymatic saccharification in biorefinery field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Chen HZ, Qiu WH, Liu SJ et al (2010) Key technologies for bioethanol production from lignocellulose. Biotechnol Adv 28(5):556–562

    Article  Google Scholar 

  2. Popp J, Lakner Z, Harangi-Rákos M et al (2014) The effect of bioenergy expansion: Food, energy, and environment. Renew Sustain Energy Rev 32(32):559–578

    Article  Google Scholar 

  3. Chen HZ, Li GH (2013) An industrial level system with nonisothermal simultaneous solid state saccharification, fermentation and separation for ethanol production. Biochem Eng J 74(74):121–126

    Article  CAS  Google Scholar 

  4. Chen HZ, Li H, Liu L (2011) The inhomogeneity of corn stover and its effects on bioconversion. Biomass Bioenergy 35(5):1940–1945

    Article  CAS  Google Scholar 

  5. Chen HZ (2015) Gas explosion technology and biomass refinery. Springer, Dordrecht

    Book  Google Scholar 

  6. Chen HZ, Li GH, Li HQ (2014) Novel pretreatment of steam explosion associated with ammonium chloride preimpregnation. Bioresour Technol 153(1):154–159

    Article  CAS  Google Scholar 

  7. De Souza ROMA, Miranda LSM, Luque R (2014) ChemInform abstract: Bio(chemo)technological strategies for biomass conversion into bioethanol and key carboxylic acids. Green Chem 45(27):2386–2405

    Article  Google Scholar 

  8. Da CSL, Chundawat SP, Balan V et al (2009) “Cradle-to-grave” assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20(3):339–347

    Article  Google Scholar 

  9. Chen HZ, Han Y, Xu J (2008) Simultaneous saccharification and fermentation of steam exploded wheat straw pretreated with alkaline peroxide. Process Biochem 43(12):1462–1466

    Article  CAS  Google Scholar 

  10. Yu B, Chen HZ (2010) Effect of the ash on enzymatic hydrolysis of steam exploded rice straw. Bioresour Technol 101(23):9114–9119

    Article  Google Scholar 

  11. Chen HZ, Qiu WH (2007) The crucial problems and recent advance on producing fuel alcohol by fermentation of straw. Progr Chem 19(7):1116–1121

    CAS  Google Scholar 

  12. Chen HZ, Fu XG (2016) Industrial technologies for bioethanol production from lignocellulosic biomass. Renew Sustain Energy Rev 57(MAY):468–478

    Article  CAS  Google Scholar 

  13. Chen G, Chen HZ (2011) Enhancement of oil extraction from sumac fruit using steam-explosion pretreatment. J Am Oil Chem Soc 88(1):151–156

    Article  CAS  Google Scholar 

  14. Chen HZ, Sui WJ (2017) Steam explosion as a hydrothermal pretreatment in the biorefinery concept. In: Hydrothermal processing in biorefineries. Springer, Cham

    Google Scholar 

  15. Sui WJ, Chen HZ (2014) Multi-stage energy analysis of steam explosion process. Chem Eng Sci 116(SEP):254–262

    Article  CAS  Google Scholar 

  16. Sui WJ, Chen HZ (2015) Water transfer in steam explosion process of corn stalk. Ind Crop Prod 76:977–986

    Article  CAS  Google Scholar 

  17. Sui WJ, Chen HZ (2016) Effects of water states on steam explosion of lignocellulosic biomass. Bioresour Technol 199:155–163

    Article  CAS  Google Scholar 

  18. Chen HZ, Liu L (2007) Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresour Technol 98(3):666–676

    Article  Google Scholar 

  19. Chen HZ, Liu ZH (2015) Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnol J 10(6):866–885

    Article  CAS  Google Scholar 

  20. Zhao JY, Chen HZ (2013) Correlation of porous structure, mass transfer and enzymatic hydrolysis of steam exploded corn stover. Chem Eng Sci 104(12m):1036–1044

    Article  CAS  Google Scholar 

  21. Qiu WH, Chen HZ (2012) Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment. Bioresour Technol 118(4):8–12

    Article  CAS  Google Scholar 

  22. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291

    Article  CAS  Google Scholar 

  23. Chen HZ (2002) No-contaminative steam explosion and its application. J Cellulose Sci Technol 10:47–52

    CAS  Google Scholar 

  24. Liu ZH, Chen HZ (2016) Periodic peristalsis enhancing the high solids enzymatic hydrolysis performance of steam exploded corn stover biomass. Biomass Bioenergy 93:13–24

    Article  CAS  Google Scholar 

  25. Galbe M, Zacchi G, Maniatis K et al (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46(6):70–78

    Article  CAS  Google Scholar 

  26. Mood SH, Golfeshan AH, Tabatabaei M et al (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27(6):77–93

    Article  Google Scholar 

  27. Kim S, Dale BE (2015) Comparing alternative cellulosic biomass biorefining systems: Centralized versus distributed processing systems. Biomass Bioenergy 74:135–147

    Article  Google Scholar 

  28. Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185

    Article  Google Scholar 

  29. Chen HZ (2014) Biotechnology of lignocellulose. Springer, Netherlands, pp 403–510

    Google Scholar 

  30. Gusakov AV, Sinitsyn AP, Klyosov AA (1985) Kinetics of the enzymatic hydrolysis of cellulose: 1. A mathematical model for a batch reactor process. Enzym Microb Technol 7(7):346–352

    Article  CAS  Google Scholar 

  31. Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89(1):17

    Article  CAS  Google Scholar 

  32. South CR, Hogsett DAL, Lynd LR (1995) Modeling simultaneous saccharification and fermentation of lignocellulose to ethanol in batch and continuous reactors. Enzym Microb Technol 17(9):797–803

    Article  CAS  Google Scholar 

  33. Yang S, Ding W, Chen HZ (2006) Enzymatic hydrolysis of rice straw in a tubular reactor coupled with uf membrane. Process Biochem 41(3):721–725

    Article  CAS  Google Scholar 

  34. Jørgensen H, Vibepedersen J, Larsen J et al (2007) Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 96(5):862

    Article  Google Scholar 

  35. Koppram R, Tomás-Pejó E, Xiros C et al (2014) Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends Biotechnol 32(1):46–53

    Article  CAS  Google Scholar 

  36. Chen HZ (2013) Modern solid state fermentation. Springer, Netherlands, pp 243–305

    Google Scholar 

  37. Chen HZ, Liu ZH, Dai SH (2014) A novel solid state fermentation coupled with gas stripping enhancing the sweet sorghum stalk conversion performance for bioethanol. Biotechnol Biofuels 7(1):53

    Article  Google Scholar 

  38. Liu ZH, Chen HZ (2016) Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. Bioresour Technol 201:15

    Article  CAS  Google Scholar 

  39. Kristensen JB, Felby C, Jørgensen H (2009) Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 2(1):11

    Article  Google Scholar 

  40. Modenbach AA, Nokes SE (2013) ChemInform abstract: enzymatic hydrolysis of biomass at high-solids loadings – a review. Biomass Bioenergy 56(38):526–544

    Article  CAS  Google Scholar 

  41. Liu ZH, Chen HZ (2016) Periodic peristalsis releasing constrained water in high solids enzymatic hydrolysis of steam exploded corn stover. Bioresour Technol 205(APR):142

    CAS  PubMed  Google Scholar 

  42. Chen HZ, Qiu WH (2010). A cyclic leaching bionic periodic peristaltic enzymatic hydrolysis reactor and method. China Patent 101768545 A

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhang Chen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wang, L., Kong, F., Chen, H. (2018). Steam Explosion Pretreatment and Saccharification of Lignocellulosic Biomass. In: Park, J. (eds) Handbook of Biorefinery Research and Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6724-9_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6724-9_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6724-9

  • Online ISBN: 978-94-007-6724-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics