Skip to main content

Compliant Leg Mechanism of Coman

  • Reference work entry
  • First Online:
Humanoid Robotics: A Reference

Abstract

The incorporation of passive compliance in robotic systems has the potential to improve their performance during interactions and impacts, enhance their energy storage and efficiency, and facilitate greater general safety for the robots, humans, and environment. This chapter introduces the design and mechatronics of the leg mechanisms developed for COmpliant huMANoid COMAN. The COMAN leg is powered by passive compliance drives based on a series elastic actuation principle (SEA). Within the chapter, the design and implementation of the COMAN leg is discussed including the details of the SEA drive, the realization of the different leg joints, and the tuning of the joint distributed passive elasticity. The joint stiffness is a critical parameter in the compliant leg design as it defines the overall intrinsic adaptability of the leg, and strongly affects the control of its actuation system. The chapter presents a systematic method to optimally tune the joint elasticity of the multi-dof SEA leg based on resonance analysis and energy storage maximization criteria. The method is applied to the selection of the passive elasticity of COMAN legs. The chapter concludes with a discussion on future research directions and challenges in compliant actuation and robot design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Hirai, Y. Hirose, Y. Haikawa, T. Takenaka, The development of Honda humanoid robot. IEEE ICRA, 1998, pp. 1321–1326

    Google Scholar 

  2. M. Hirose, Y. Haikawa, T. Takenaka, K. Hirai, Development of humanoid robot ASIMO. IEEE IROS workshop, 2001

    Google Scholar 

  3. M. Hirose, K. Ogawa, Honda humanoid robots development. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365, 11–19 (2007)

    Article  Google Scholar 

  4. K. Akachi, K. Kaneko, S. Ota, G. Miyamori, M. Mirata, S. Kajita, F. Kanehiro, Development of humanoid robot HRP-3P. IEEE-RAS International Conference on Humanoid Robots, 2005, pp. 50–55

    Google Scholar 

  5. K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori, K. Akachi, humanoid robot HRP-3. IEEE IROS, 2008, pp. 2471–2478

    Google Scholar 

  6. I.W. Park, J. Lee Kim, J.H. Oh, Mechanical design of the humanoid robot platform hubo. J. Adv. Rob. 21(11), 1305–1322 (2007)

    Article  Google Scholar 

  7. Y. Ogura, H. Aikawa, A. Shimomura, A. Morishima, A. Takanishi, H. Lim, Development of a new humanoid robot WABIAN-2. IEEE ICRA, 2006, pp. 76–81

    Google Scholar 

  8. N.G. Tsagarakis, F. Becchi, L. Righetti, A. Ijspeert, D.G. Caldwell, Lower body realization of the baby humanoid iCub. IEEE IROS, 2007, pp. 3616–3622

    Google Scholar 

  9. N.G. Tsagarakis, Z. Li, J.A. Saglia, D.G. Caldwell, The design of the lower body of the compliant humanoid robot cCub. IEEE ICRA, 2011, pp. 2035–2040

    Google Scholar 

  10. N.G. Tsagarakis, G. Metta, G. Sandini, D. Vernon, R. Beira, F. Becchi, L. Righetti, J. Santos-Victor, A.J. Ijspeert, M.C. Carrozza, et al., Icub: The design and realization of an open humanoid platform for cognitive and neuroscience research. Adv. Robot. 21(10), 1151–1175 (2007)

    Article  Google Scholar 

  11. A. Parmiggiani, M. Maggiali, L. Natale, F. Nori, A. Schmitz, N. Tsagarakis, J.S. Victor, F. Becchi, G. Sandini, G. Metta, The design of the icub humanoid robot. Int. J. Humanoid Rob. 9(04) (2012)

    Article  Google Scholar 

  12. S. Lohmeier, T. Buschmann, H. Ulbrich, F. Pfeiffer, Modular joint design for performance enhanced humanoid robot lola. IEEE ICRA, 2006, pp. 88–93

    Google Scholar 

  13. G. Pratt, M. Williamson, Series elastic actuators. IEEE IROS, 1995, pp. 399–406

    Google Scholar 

  14. A. Bicchi, G. Tonietti, M. Bavaro, M. Piccigallo, Variable stiffness actuators for fast and safe motion control. Interntional Symposium Robotics Research, 2003, pp. 100–110

    Google Scholar 

  15. M. Laffranchi, N.G. Tsagarakis, D.G. Caldwell, Safe human robot interaction via energy regulation control. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS, IEEE, 2009, pp. 35–41

    Google Scholar 

  16. M. Garabini, A. Passaglia, F.A.W. Belo, P. Salaris, A. Bicchi, Optimality principles in variable stiffness control: the VSA hammer. IEEE IROS, 2011, pp. 3770–3775

    Google Scholar 

  17. M. Garabini, A. Passaglia, F. Belo, P. Salaris, A. Bicchi, Optimality principles in stiffness control: the VSA kick. IEEE ICRA, 2012, pp. 3341–336

    Google Scholar 

  18. T.G. Sugar, A novel selective compliant actuator. Mechatronics 12(9), 1157–1171 (2002)

    Article  Google Scholar 

  19. J.W. Hurst, J.E. Chestnutt, A. Rizzi, An actuator with physically variable stiffness for highly dynamic legged locomotion. IEEE ICRA, pp. 4662–4667

    Google Scholar 

  20. G. Tonietti, R. Schiavi, A. Bicchi, Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction. ICRA, 2005, pp. 526–531

    Google Scholar 

  21. R. Van Ham, B. Vanderborght, M. Van Damme, B. Verrelst, D. Lefeber, Maccepa, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot. Robot. Auton. Syst. 55(10), 761–768 (2007)

    Article  Google Scholar 

  22. S. Wolf, G. Hirzinger, A new variable stiffness design: matching requirements of the next robot generation. IEEE International Conference on Robotics and Automation, 2008, pp. 1741–1746

    Google Scholar 

  23. B.S. Kim, J.B. Song, Hybrid dual actuator unit: a design of a variable stiffness actuator based on an adjustable moment arm mechanism. IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2010, pp. 1655–1660

    Google Scholar 

  24. N.G. Tsagarakis, I. Sardellitti, D.G. Caldwell, A new variable stiffness actuator (CompAct-VSA): design and modelling. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2011, pp. 378–383

    Google Scholar 

  25. S. Wolf, O. Eiberger, G. Hirzinger, The DLR FSJ: energy based design of a variable stiffness joint. IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2011, pp. 5082–5089

    Google Scholar 

  26. M.G. Catalano, G. Grioli, M. Garabini, F. Bonomo, M. Mancinit, N. Tsagarakis, A. Bicchi, VSA-CubeBot: a modular variable stiffness platform for multiple degrees of freedom robots. IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2011, pp. 5090–5095

    Google Scholar 

  27. L.C. Visser, R. Carloni, S. Stramigioli, Energy-efficient variable stiffness actuators. IEEE Trans. Robot. 27(5), 865–875 (2011)

    Article  Google Scholar 

  28. A. Jafari, N.G. Tsagarakis, I. Sardellitti, D.G. Caldwell, How design can affect the energy required to regulate the stiffness in variable stiffness actuators. IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2012, pp. 2792–2797

    Google Scholar 

  29. A. Jafari, N.G. Tsagarakis, I. Sardellitti, D.G. Caldwell, A new actuator with adjustable stiffness based on a variable ratio lever mechanism. IEEE/ASME Trans. Mechatron. 99, 1–9 (2012)

    Google Scholar 

  30. A. Jafari, N.G. Tsagarakis, D.G. Caldwell, Exploiting natural dynamics for energy minimization using an actuator with adjustable stiffness (AwAS). IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2011, pp. 4632–4637

    Google Scholar 

  31. B. Vanderborght, N.G. Tsagarakis, R. Van Ham, I. Thorson, D.G. Caldwell, Maccepa 2.0: compliant actuator used for energy efficient hopping robot chobino1d. Auton. Robot. 31(1), 55–65 (2011)

    Article  Google Scholar 

  32. J. Pratt, T. Koolen, T. De Boer, J. Rebula, S. Cotton, J. Carff, M. Johnson, P. Neuhaus, Capturability-based analysis and control of legged locomotion, part 2: application to m2v2, a lower-body humanoid. Int. J. Robot. Res. 31, 1117–1133 (2012)

    Article  Google Scholar 

  33. F. Negrello, M. Garabini, M.G. Catalano, P. Kryczka, W. Choi, D.G. Caldwell, A. Bicchi, N.G. Tsagarakis, Walk-man humanoid lower body design optimization for enhanced physical performance. IEEE international conference on robotics and automation (ICRA), IEEE, 2016, pp. 1817–1824

    Google Scholar 

  34. N.G. Tsagarakis et al, Walk-man: a high performance humanoid platform for realistic environments (2017)

    Article  Google Scholar 

  35. N.G. Tsagarakis, S. Morfey, G. Medrano Cerda, Z. Li, D.G. Caldwell, Compliant humanoid coman: optimal joint stiffness tuning for modal frequency control. IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2013, pp. 673–678

    Google Scholar 

  36. N.G. Tsagarakis, Z. Li, J. Saglia, D.G. Caldwell, The design of the lower body of the compliant humanoid robot cCub. IEEE International Conference on Robotics and Automation (ICRA), 2011, pp. 2035–2040

    Google Scholar 

  37. N.G. Tsagarakis, M. Laffranchi, B. Vanderborght, D.G. Caldwell, A Compact soft actuator for small scale robotic systems. IEEE ICRA, 2009, pp. 4356–4362

    Google Scholar 

  38. J. Hurst, The electric cable differential leg: A novel design approach for walking and running. J. Humanoid Rob. 8(2), 301–321 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos G. Tsagarakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tsagarakis, N.G., Cerda, G.M., Caldwell, D.G. (2019). Compliant Leg Mechanism of Coman. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6046-2_81

Download citation

Publish with us

Policies and ethics