Skip to main content

Humanoid Kinematics and Dynamics: Open Questions and Future Directions

  • Reference work entry
  • First Online:
Humanoid Robotics: A Reference

Abstract

This chapter raises open questions about kinematics and dynamics for humanoid robots and sketches some possible future trends and directions. This requires to think about possible use cases in order to make good predictions about the future of kinematic and dynamic models. While initially bipedal walking with its conceptual challenges was of large concern, more recently applications such as service robotics, disaster mitigation, elderly care, and medical robotics become more important. The chapter focuses on three respective future directions and argues that, first, novel concepts in mechatronics have to embrace modularity and failure tolerance and to focus on durability and endurance, concepts that may lead to a larger parameter variance in the mechanisms. Second, it is expected that real-time simulation will play a larger role and may even be included in the control loops while coupling elastic, hydraulic, or pneumatic elements with the multibody dynamics. Third, the chapter makes the prediction that the hybrid combination of data-driven and classical modeling will be key toward becoming more flexible and possibly including more soft elements also in humanoid robots. The chapter concludes with the prediction that the future of kinematic and dynamic modeling is to combine advances in classical rigid-body computations with soft mechatronics, real-time simulation, and a mix of fast computing of classical algorithms and learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Abbeel, A.Y. Ng, Apprenticeship learning via inverse reinforcement learning, in Proceedings of the Twenty-First International Conference on Machine Learning (ACM, 2004), p. 1

    Google Scholar 

  2. P.W. Battaglia, J.B. Hamrick, J.B. Tenenbaum, Simulation as an engine of physical scene understanding. Proc. Natl. Acad. Sci. 110(45), 18327–18332 (2013)

    Article  Google Scholar 

  3. K.M. Ben-Gharbia, A.A. Maciejewski, R.G. Roberts, Kinematic design of manipulators with seven revolute joints optimized for fault tolerance. IEEE Trans. Syst. Man Cybern. 46(10), 1364–1373 (2016)

    Article  Google Scholar 

  4. H. Bremer, Elastic Multibody Dynamics (Springer, Dordrecht, 2008)

    Book  Google Scholar 

  5. T Buschmann, Dynamics and control of redundant robots, Technical University of Munich, 2015

    Google Scholar 

  6. K. Caluwaerts, J.J. Steil, Independent joint learning in practice: local error estimates to improve inverse dynamics control, in Humanoids (IEEE, Danvers, 2015), pp. 643–650

    Google Scholar 

  7. K.M. Chai, C. Williams, S. Klanke, S. Vijayakumar, Multi-task gaussian process learning of robot inverse dynamics, in Advances in Neural Information Processing Systems, 2009, pp. 265–272

    Google Scholar 

  8. L. Colasanto, N.G. Tsagarakis, A.J. Ijspeert, A general whole-body compliance framework for humanoid robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2015), pp. 3962–3968

    Google Scholar 

  9. B. Damas, J. Santos-Victor, An online algorithm for simultaneously learning forward and inverse kinematics, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2012), pp. 1499–1506

    Google Scholar 

  10. A. Dearden, Y. Demiris, Learning forward models for robots. IJCAI 5, 1440 (2005)

    Google Scholar 

  11. R. Deimel, O. Brock, Soft hands for reliable grasping strategies, in Soft Robotics, ed. by A. Verl, A. Albu-Schäffer, O. Brock, A. Raatz (Springer, Berlin/Heidelberg), pp. 211–221

    Google Scholar 

  12. M. Florek-Jasińska, T. Wimböck, C. Ott, Humanoid compliant whole arm dexterous manipulation: control design and experiments, in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2014), pp. 1616–1621

    Google Scholar 

  13. M. Gienger, H. Janssen, C. Goerick, Task-oriented whole body motion for humanoid robots, in 2005 5th IEEE-RAS International Conference on Humanoid Robots (IEEE, 2005), pp. 238–244

    Google Scholar 

  14. J.A. Grimes, J.W. Hurst, The design of atrias 1.0 a unique monopod, hopping robot, in Proceedings of the 2012 International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, 2012, pp. 548–554

    Chapter  Google Scholar 

  15. I. Ha, Y. Tamura, H. Asama, J. Han, D.W. Hong, Development of open humanoid platform darwin-op, in 2011 Proceedings of SICE Annual Conference (SICE) (IEEE, 2011), pp. 2178–2181

    Google Scholar 

  16. M. Hersch, E. Sauser, A. Billard, Online learning of the body schema. Int. J. Humanoid Rob. 5(02), 161–181 (2008)

    Article  Google Scholar 

  17. S. Ivaldi, J. Peters, V. Padois, F. Nori, Tools for simulating humanoid robot dynamics: a survey based on user feedback, in 2014 IEEE-RAS International Conference on Humanoid Robots (IEEE, 2014), pp. 842–849

    Google Scholar 

  18. A. Jain, M.D. Killpack, A. Edsinger, C.C. Kemp, Reaching in clutter with whole-arm tactile sensing. Int. J. Robot. Res. 32, 458–482 (2013)

    Article  Google Scholar 

  19. M.I. Jordan, D.E. Rumelhart, Forward models: supervised learning with a distal teacher. Cogn. Sci. 16(3), 307–354 (19920

    Article  Google Scholar 

  20. S. Kim, C. Laschi, B. Trimmer, Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31(5), 287–294 (2013)

    Article  Google Scholar 

  21. S. Kim, A. Shukla, A. Billard, Catching objects in flight. IEEE Trans. Robot. 30(5), 1049–1065 (2014)

    Article  Google Scholar 

  22. N. Koenig, A. Howard, Design and use paradigms for gazebo, an open-source multi-robot simulator, in Proceedings. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3 (IEEE), pp. 2149–2154

    Google Scholar 

  23. M. Lapeyre, P. Rouanet, J. Grizou, S. Nguyen, F. Depraetre, A. Le Falher, P.-Y. Oudeyer, Poppy project: open-source fabrication of 3D printed humanoid robot for science, education and art, in Digital Intelligence 2014, Nantes, 2014, p. 6

    Google Scholar 

  24. K. Loffler, M. Gienger, F. Pfeiffer, Control of a biped jogging robot, in 2000 Proceedings of 6th International Workshop on Advanced Motion Control (IEEE, 2000), pp. 601–605

    Google Scholar 

  25. M. Lopes, B. Damas, A learning framework for generic sensory-motor maps, in IROS, 2007, pp. 1533–1538

    Google Scholar 

  26. F. Meier, D. Kappler, N. Ratliff, S. Schaal, Towards robust online inverse dynamics learning, in Proceedings of IROS (IEEE, 2016), pp. 4034–4039

    Google Scholar 

  27. K. Mombaur, A. Truong, J.-P. Laumond, From human to humanoid locomotion – an inverse optimal control approach. Auton. Robot. 28(3), 369–383 (2010)

    Article  Google Scholar 

  28. D. Nguyen-Tuong, J. Peters, Using model knowledge for learning inverse dynamics, in ICRA, 2010, pp. 2677–2682

    Google Scholar 

  29. D. Nguyen-Tuong, J. Peters, Model learning for robot control: a survey. Cogn. Process. 12(4), 319–340 (2011)

    Article  Google Scholar 

  30. G. Pratt, J. Manzo, The darpa robotics challenge [competitions]. IEEE Robot. Autom. Mag. 20(2), 10–12 (2013)

    Article  Google Scholar 

  31. G.A. Pratt, M.M. Williamson, Series elastic actuators, in Proceedings. 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems’95. Human Robot Interaction and Cooperative Robots, vol. 1 (IEEE, 1995), pp. 399–406

    Google Scholar 

  32. R.F. Reinhart, J.J. Steil, Neural learning and dynamical selection of redundant solutions for inverse kinematic control, in 2011 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (IEEE, 2011), pp. 564–569

    Google Scholar 

  33. M. Rolf, J.J. Steil, M. Gienger, Goal babbling permits direct learning of inverse kinematics. IEEE Trans. Auton. Ment. Dev. 2(3), 216–229 (2010)

    Article  Google Scholar 

  34. M. Rolf, J.J. Steil, Efficient exploratory learning of inverse kinematics on a bionic elephant trunk. IEEE Trans. Neural Netw. Learn. Syst. 25(6), 1147–1160 (2014)

    Google Scholar 

  35. M. Rolf, J.J. Steil, M. Gienger, Learning flexible full body kinematics for humanoid tool use, in International Symposium on Learning and Adaptive Behavior in Robotic Systems, 2010

    Google Scholar 

  36. M. Rolf, J.J. Steil, M. Gienger, Mastering growth while bootstrapping sensorimotor coordination, in International Conference on Epigenetic Robotics, 2010

    Google Scholar 

  37. G. Schillaci, V.V. Hafner, Random movement strategies in self-exploration for a humanoid robot, in Proceedings of the 6th International Conference on Human-Robot Interaction (ACM, 2011), pp. 245–246

    Google Scholar 

  38. J. Scholz, M. Levihn, C. Isbell, D. Wingate, A physics-based model prior for object-oriented MDPs, in Proceedings of the 31st International Conference on Machine Learning (ICML-14), 2014, pp. 1089–1097

    Google Scholar 

  39. Z. Shareef, F. Reinhart, J. Steil, Generalizing the inverse dynamical model of KUKA LWR IV+ for load variations using regression in the model space, in Proceedings of IROS (IEEE, 2016), pp. 606–611

    Google Scholar 

  40. A.D. Souza, S. Vijayakumar, S. Schaal, Learning inverse kinematics, in Proceedings. 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1 (IEEE, 2001), pp. 298–303

    Google Scholar 

  41. N.G. Tsagarakis, G. Metta, G. Sandini, D. Vernon, R. Beira, F. Becchi, L. Righetti, J. Santos-Victor, A.J. Ijspeert, M.C. Carrozza et al., iCub: the design and realization of an open humanoid platform for cognitive and neuroscience research. Adv. Robot. 21(10), 1151–1175 (2007)

    Article  Google Scholar 

  42. T.T. Um, M.S. Park, J.M. Park, Independent joint learning: a novel task-to-task transfer learning scheme for robot models, in ICRA, 2014, pp. 5679–5684

    Google Scholar 

  43. B. Vanderborght, A. Albu-Schäffer, A. Bicchi, E. Burdet, D.G. Caldwell, R. Carloni, M. Catalano, O. Eiberger, W. Friedl, G. Ganesh et al., Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013)

    Article  Google Scholar 

  44. S. Vijayakumar, A. D’souza, S. Schaal, Incremental online learning in high dimensions. Neural Comput. 17(12), 2602–2634 (2005)

    Article  MathSciNet  Google Scholar 

  45. S. Wittmeier, C. Alessandro, N. Bascarevic, K. Dalamagkidis, D. Devereux, A. Diamond, M. Jäntsch, K. Jovanovic, R. Knight, H.G. Marques et al., Toward anthropomimetic robotics: development, simulation, and control of a musculoskeletal torso. Artif. Life 19(1), 171–193 (2013)

    Article  Google Scholar 

  46. S. Wrede, C. Emmerich, R. Grünberg, A. Nordmann, A. Swadzba, J.J. Steil, A user study on kinesthetic teaching and learning for efficient reconfiguration of redundant robots. J. Human-Rob. Interaction 2(1), 56–81 (2013)

    Google Scholar 

  47. E. Yoshida, V. Hugel, P. Blazevic, K. Yokoi, K. Harada, in Dexterous Humanoid Whole-Body Manipulation by Pivoting, Humanoid Robots, Human-like Machines, ed. by M. Hackel (InTech, 2007), https://doi.org/10.5772/4818

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gienger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gienger, M., Steil, J.J. (2019). Humanoid Kinematics and Dynamics: Open Questions and Future Directions. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6046-2_8

Download citation

Publish with us

Policies and ethics