Skip to main content

Multi-body Simulation

  • Reference work entry
  • First Online:
Humanoid Robotics: A Reference
  • 241 Accesses

Abstract

Forward dynamics of general articulated rigid bodies has been an active research area for long, and a number of algorithms have been developed over the years. While most of these algorithms can be applied to humanoid robots, there are some unique features that make some algorithms more preferable than others. For example, humanoid robots usually have tens of joints, and, therefore, the numerical complexity of an algorithm becomes more important. Humanoid robots often form complex closed kinematic chains by grasping an object or getting in contact with the environment. The forward dynamics algorithm should be able to handle these situations efficiently.

This chapter reviews some of the forward dynamics algorithms often used for humanoid robot and character simulation. Readers are referred to chapter “Dynamic Formulations and Computational Algorithms” for inverse dynamics algorithms used for analyzing joint torques and chapter “Contact Simulation” for contact force computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.W. Walker, D.E. Orin, Efficient dynamic computer simulation of robot manipulators. ASME J. Dyn. Syst. Meas. Control 104, 205–211 (1982)

    Google Scholar 

  2. R. Featherstone, Robot Dynamics Algorithm (Springer Science + Business Media, New York, 1987)

    Book  Google Scholar 

  3. D.S. Bae, E.J. Haug, A recursive formulation for constrained mechanical system dynamics: part I. Open loop systems. Mech. Struct. Mach. 15(3), 359–382 (1987)

    Article  Google Scholar 

  4. D.S. Bae, E.J. Haug, A recursive formulation for constrained mechanical system dynamics: part II. Closed loop systems. Mech. Struct. Mach. 15(4), 481–506 (1987–88)

    Article  Google Scholar 

  5. D.E. Rosenthal, An order n formulation for robotic systems. J. Astronaut. Sci. 38(4), 511–529 (1990)

    Google Scholar 

  6. A. Fijany, I. Sharf, G.M.T. D’Eleuterio, Parallel \(O(\log N)\) algorithms for computation of manipulator forward dynamics. IEEE Trans. Robot. Autom. 11(3), 389–400 (1995)

    Google Scholar 

  7. D. Baraff, Linear-time dynamics using lagrange multipliers, in Proceedings of SIGGRAPH’96, 1996, pp. 137–146

    Google Scholar 

  8. R. Featherstone, A divide-and-conquer articulated-body algorithm for parallel \(O(\log (n))\) calculation of rigid-body dynamics. Part 1: basic algorithm. Int. J. Robot. Res. 18(9), 867–875 (1999)

    Google Scholar 

  9. R. Featherstone, A divide-and-conquer articulated-body algorithm for parallel \(O(\log (n))\) calculation of rigid-body dynamics. Part 2: trees, loops, and accuracy. Int. J. Robot. Res. 18(9), 876–892 (1999)

    Google Scholar 

  10. K.S. Anderson, S. Duan, Highly parallelizable low-order dynamics simulation algorithm for multi-rigid-body systems. AIAA J. Guid. Control Dyn. 23(2), 355–364 (2000)

    Article  Google Scholar 

  11. K. Yamane, Y. Nakamura, Comparative study on serial and parallel forward dynamics algorithms for kinematic chains. Int. J. Robot. Res. 28, 622–629 (2009)

    Article  Google Scholar 

  12. K. Yamane, Y. Nakamura, Efficient parallel dynamics computation of human figures, in Proceedings of the IEEE International Conference on Robotics and Automation, 2002, pp. 530–537

    Google Scholar 

  13. R. Featherstone, Efficient factorization of the joint space inertia matrix for branched kinematic trees. Int. J. Robot. Res. 24(6), 487–500 (2005)

    Google Scholar 

  14. R. Smith, Open Dynamics Engine. HYPERLINK “http://www.ode.orgwww.ode.org. Retrieved Aug 2017

  15. Bullet Physics Library. bulletphysics.org. Retrieved Aug 2017

    Google Scholar 

  16. GameWorks PhysX Overview. developer.nvidia.com/gameworks-physx-overview. Retrieved Aug 2017

    Google Scholar 

  17. R. Featherstone, A. Fijany, A technique for analyzing constrained rigid-body systems, and its application to the constraint force algorithm. IEEE Trans. Robot. Autom. 15(6), 1140–1144 (1999)

    Article  Google Scholar 

  18. H. Brandl, R. Johanni, M. Otter, An algorithm for the simulation of multibody systems with kinematic loops, in Proceedings of the IFToMM Seventh World Congress on the Theory of Machines and Mechanisms, 1987, 407–411

    Google Scholar 

  19. Y. Nakamura, M. Ghodoussi, Dynamics computation of closed-link robot mechanisms with nonredundant and redundant actuators. IEEE Trans. Robot. Autom. 5(3), 294–302 (1989)

    Article  Google Scholar 

  20. Y. Nakamura, K. Yamane, Dynamics computation of structure-varying kinematic chains and its application to human figures. IEEE Trans. Robot. Autom. 16(2), 124–134 (2000)

    Article  Google Scholar 

  21. K. Yamane, Y. Nakamura, Automatic scheduling for parallel forward dynamics computation of open kinematic chains, in Proceedings of Robotics: Science and Systems, 2007

    Google Scholar 

  22. K. Yamane, S.O. Anderson, J.K. Hodgins, Controlling humanoid robots with human motion data: experimental validation, in Proceedings of IEEE-RAS International Conference on Humanoid Robots, 2010, pp. 504–510

    Google Scholar 

  23. J.J. Craig, Introduction to Robotics: Mechanics and Control, 3rd edn. (Pearson Prentice Hall, Upper Saddle River, 1986)

    Google Scholar 

  24. Y. Nakamura, K. Yamane, Y. Fujita, I. Suzuki, Somatosensory computation for man-machine interface from motion capture data and musculoskeletal human model. IEEE Trans. Robot. 21(1), 58–66 (2005)

    Article  Google Scholar 

  25. Y. Yang, Y. Wu, J. Pan, Parallel dynamics computation using prefix sum operations. IEEE Robot. Autom. Lett. 2(3), 1296–1303 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsu Yamane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yamane, K. (2019). Multi-body Simulation. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6046-2_74

Download citation

Publish with us

Policies and ethics