Skip to main content

Stepping for Balance Maintenance Including Push-Recovery

  • Reference work entry
  • First Online:
Humanoid Robotics: A Reference

Abstract

Taking steps is fundamental to walking since it is necessary for moving ground supports in the direction of travel. Without stepping, a legged system would not get very far. Beyond simply moving from A to B, stepping is critical for balance and disturbance recovery since it allows a legged system to quickly modify its base of support in order to shift the direction of forces on the center of mass. When humans are pushed, trip, or otherwise disturbed during walking, they will typically take a very fast step or two to recover balance. To be robust to disturbances, humanoid robots must likewise be able to fairly quickly and accurately step to an appropriate place.

This chapter will focus on where to step, how quickly, and how accurately, in order to maintain or regain balance. While focused on stepping, this analysis will also briefly include the center of pressure and angular momentum–based balance strategies, which can be combined with stepping. Analysis will show the relative merits of each strategy using a common metric. Simple models will be used to analyze stepping strategies and motivate control algorithms for balance recovery via stepping. The linear inverted pendulum model will provide a set of linear differential equations governing walking. This model leads to the instantaneous capture point. n-Step capturability will be used to analyze situations where multiple steps may be required to regain balance. More complex models will provide additional resolution, particularly when the center of mass height and vertical velocity fluctuates significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. G. Hobbelen, M. Wisse, in Limit Cycle Walking, ed. by M. Hackel (I-Tech Education and Publishing, Vienna 2007), pp. 277–294.

    Google Scholar 

  2. A. Goswami, B. Espiau, A. Keramane, Limit cycles and their stability in a passive bipedal gait, in Robotics and Automation, 1996. Proceedings. 1996. IEEE International Conference on, Minneapolis, (1996)

    Google Scholar 

  3. H. Miura, I. Shimoyama, Dynamic walk of a biped. Int. J. Robot Res. 3(2), 60–74 (1984)

    Article  Google Scholar 

  4. P. Sardain, G. Bessonnet, Forces acting on a biped robot. Center of pressure-zero moment point. IEEE Trans. Syst. Man. Cybernet. Part A Syst. Hum. 34(5), 630–637 (2004)

    Article  Google Scholar 

  5. M. Vukobratovic, B. Borovac, Zero-moment point – thirty five years of its life. Intl. J. Human. Robot. 1, 157–173 (2004)

    Article  Google Scholar 

  6. A. Goswami, Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int. J. Robot Res. 18, 523–533 (1999)

    Article  Google Scholar 

  7. M. Vukobratovic, B. Borovac, V. Potkonjak, ZMP: a review of some basic misunderstandings. Intl. J. Human Robot. 3, 153–175 (2006)

    Article  Google Scholar 

  8. S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, H. Hirukawa, The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation, in Proceedings of the IEEE-RSJ International Conference on Intelligent Robots and Systems, Maui, (2001)

    Google Scholar 

  9. S. Kajita, K. Tani, Study of dynamic biped locomotion on rugged terrain-derivation and application of the linear inverted pendulum mode, in Proceedings of the IEEE International Conference on Robotics and Automation, Sacramento, (1991).

    Google Scholar 

  10. T. Takenaka, T. Matsumoto, T. Yoshiike, Real time motion generation and control for biped robot -1st report: Walking gait pattern generation, in The IEEE/RSJ International Conference on Intelligent Robots and Systems (2009), St. Louis, pp. 1084–1091

    Google Scholar 

  11. T. Takenaka, T. Matsumoto, T. Yoshiike, S. Shirokura, Real time motion generation and control for biped robot -2nd report: running gait pattern generation, in The IEEE/RSJ International Conference on Intelligent Robots and Systems (2009), St. Louis, pp. 1092–1099

    Google Scholar 

  12. S. Kajita, T. Nagasaki, K. Kaneko, K. Yokoi and K. Tanie, A running controller of humanoid biped HRP-2LR, in Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, (2005)

    Google Scholar 

  13. S. Kajita, M. Morisawa, K. Miura, S. Nakaoka, K. Harada, K. Kaneko, F. Kanehiro, K. Yokoi, Biped walking stabilization based on linear inverted pendulum tracking, in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, Taipei, (2010).

    Google Scholar 

  14. I.-W. Park, J.-Y. Kim, J.-H. Oh, Online walking pattern generation and its application to a biped humanoid robot – KHR-3 (HUBO). Adv. Robot. 22, 159–190 (2008)

    Article  Google Scholar 

  15. S. Feng, E. Whitman, X. Xinjilefu, C. G. Atkeson, Optimization based full body control for the atlas robot, in Humanoid Robots (Humanoids), 2014 14th IEEE-RAS International Conference on (2014), Madrid

    Google Scholar 

  16. J. E. Pratt, S. V. Drakunov, Derivation and application of a conserved orbital energy for the inverted pendulum bipedal walking model, in Robotics and Automation, 2007 IEEE International Conference on, Rome, (2007)

    Google Scholar 

  17. J. Pratt, J. Carff and S. Drakunov, Capture point: a step toward humanoid push recovery, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots, Genova, (2006)

    Google Scholar 

  18. D.L. Wight, E.G. Kubica, D.W. Wang, Introduction of the foot placement estimator: a dynamic measure of balance for bipedal robotics. J. Comput. Nonlinear Dyn. 3(1), 011009 (2008)

    Article  Google Scholar 

  19. A.L. Hof, The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking. Hum. Mov. Sci. 27(1), 112–125 (2008)

    Article  Google Scholar 

  20. T. Koolen, T. De Boer, J. Rebula, A. Goswami, J. Pratt, Capturability-based analysis and control of legged locomotion, part 1: theory and application to three simple gait models. Int. J. Robot. Res. 31, 1094–1113 (2012)

    Article  Google Scholar 

  21. J. Pratt, R. Tedrake, Velocity-based stability margins for fast bipedal walking, in Fast Motions in Biomechanics and Robotics, M. Diehl, K. Mombaur, vol. 340 (Springer Berlin/Heidelberg, 2006), pp. 299–324.

    Google Scholar 

  22. J. Englsberger, C. Ott, A. Albu-Schaffer, Three-dimensional bipedal walking control based on divergent component of motion. IEEE Trans. Robot. 31(2), 355–368 (2015)

    Article  Google Scholar 

  23. J. Pratt, T. Koolen, T. De Boer, J. Rebula, S. Cotton, J. Carff, M. Johnson, P. Neuhaus, Capturability-based analysis and control of legged locomotion, part 2: application to M2V2, a lower-body humanoid. Int. J. Robot. Res. 31, 1117–1133 (2012)

    Article  Google Scholar 

  24. P.-B. Wieber, Viability and predictive control for safe locomotion, in Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, Nice, (2008)

    Google Scholar 

  25. P.-B. Wieber, On the stability of walking systems, in Proceedings of the International Workshop on Humanoid and Human Friendly Robotics, Tsukuba, (2002)

    Google Scholar 

  26. B. Stephens, Integral control of humanoid balance, in Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, San Diego, (2007)

    Google Scholar 

  27. Z. Aftab, T. Robert, P.-B. Wieber, Ankle, hip and stepping strategies for humanoid balance recovery with a single Model Predictive Control scheme, in Humanoid Robots (Humanoids), 2012 12th IEEE-RAS International Conference on, Osaka, (2012)

    Google Scholar 

  28. M.B. Popovic, A. Goswami, H. Herr, Ground reference points in legged locomotion: definitions, biological trajectories and control implications. Int. J. Robot. Res. 24, 1013–1032 (2005)

    Article  Google Scholar 

  29. Z. Li, C. Zhou, H. Dallali, N. G. Tsagarakis, D. G. Caldwell, Comparison study of two inverted pendulum models for balance recovery, in Humanoid Robots (Humanoids), 2014 14th IEEE-RAS International Conference on (2014), Madrid

    Google Scholar 

  30. J.K. Hodgins, M.H. Raibert, Adjusting step length for rough terrain locomotion. IEEE Trans. Robot. Autom. 7, 289–298 (1991)

    Article  Google Scholar 

  31. M.H. Raibert, Legged Robots that Balance (MIT Press, Cambridge, 1986)

    MATH  Google Scholar 

  32. J. E. Pratt, Exploiting Inherent Robustness and Natural Dynamics in the Control of Bipedal Walking Robots (Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, MA, 2000)

    Google Scholar 

  33. J. E. Pratt, G. A. Pratt, Exploiting natural dynamics in the control of a planar bipedal walking robot, in Proceedings of the Annual Allerton Conference on Communication, Control, and Computing, Monticello, (1998)

    Google Scholar 

  34. S.-H. Hyon, G. Cheng, Disturbance rejection for biped humanoids, in Robotics and Automation, 2007 IEEE International Conference on, Rome, (2007)

    Google Scholar 

  35. S. Kajita, O. Matsumoto, M. Saigo, Real-time 3D walking pattern generation for a biped robot with telescopic legs, in Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, (2001)

    Google Scholar 

  36. B. J. Stephens, C. G. Atkeson, Push recovery by stepping for humanoid robots with force controlled joints, in Humanoid Robots (Humanoids), 2010 10th IEEE-RAS International Conference on, Nashville, (2010)

    Google Scholar 

  37. G. Nelson, A. Saunders, N. Neville, B. Swilling, J. Bondaryk, D. Billings, C. Lee, R. Playter, M. Raibert, Petman: a humanoid robot for testing chemical protective clothing. J. Robot. Soc. Jpn. 30(4), 372–377 (2012)

    Article  Google Scholar 

  38. S. Feng, Online Hierarchical Optimization for Humanoid Control (Carnegie Mellon University, Pittsburgh, 2016)

    Google Scholar 

  39. N. G. Tsagarakis, S. Morfey, G. M. Cerda, L. Zhibin, D. G. Caldwell, Compliant humanoid coman: Optimal joint stiffness tuning for modal frequency control, in Robotics and Automation (ICRA), 2013 IEEE International Conference on, Karlsruhe, (2013)

    Google Scholar 

  40. J. Urata, K. Nshiwaki, Y. Nakanishi, K. Okada, S. Kagami, M. Inaba, Online decision of foot placement using singular lq preview regulation, in Humanoid Robots (Humanoids), 2011 11th IEEE-RAS International Conference on, Bled, (2011)

    Google Scholar 

  41. T. Takenaka, T. Matsumoto, T. Yoshiike, T. Hasegawa, S. Shirokura, H. Kaneko, A. Orita, Real time motion generation and control for biped robot -4th report: integrated balance control, in The IEEE/RSJ International Conference on Intelligent Robots and Systems, St Louis, (2009), pp. 1601–1608

    Google Scholar 

  42. J. Pratt, B. Krupp, Design of a bipedal walking robot, in Proceedings of the SPIE, Orlando, (2008)

    Google Scholar 

  43. A. Goswami, W. Kallem, Rate of change of angular momentum and balance maintenance of biped robots, in Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on, New Orleans, (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry E. Pratt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pratt, J.E., Bertrand, S., Koolen, T. (2019). Stepping for Balance Maintenance Including Push-Recovery. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6046-2_41

Download citation

Publish with us

Policies and ethics