Skip to main content

Human Motion Imitation

  • Reference work entry
  • First Online:

Abstract

Reproducing human behaviors and movement has long been the inspiration behind humanoid robotics research. This chapter introduces the field of imitation learning, and the key methods for observing and modeling human movement, and reproducing it by humanoid robots. A key challenge when reproducing human movement is to account for the differences in the kinematic and dynamic properties between the human and the robot and ensure that the robot maintains postural stability while reproducing the movement as closely as possible. This chapter overviews the typical data processing pipeline, starting from human observation and progressing through motion modeling, and reproduction. Next, the various approaches for modeling human movement, adapting it to ensure feasibility and controlling the robot to replicate the desired movement are overviewed. This chapter ends with a discussion of open problems and current research directions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Abbeel, A.Y. Ng, Apprenticeship learning via inverse reinforcement learning, in Proceedings of the Twenty-First International Conference on Machine learning (ACM, 2004)

    Google Scholar 

  2. A. Alissandrakis, C.L. Nehaniv, K. Dautenhahn, Imitation with ALICE: learning to imitate corresponding actions across dissimilar embodiments. IEEE Trans. Syst. Man Cybern. Syst. Hum. 32(4), 482–496 (2002)

    Article  Google Scholar 

  3. B. Argall, S. Chernova, M. Veloso, B. Browning, A survey of robot learning from demonstration. Robot. Auton. Syst. 57, 469–483 (2009)

    Article  Google Scholar 

  4. A. Billard, S. Calinon, R. Dillmann, S. Schaal, Robot programming by demonstration, in Handbook of Robotics (Springer Berlin Heidelberg, 2008), pp. 1371–1394

    Chapter  Google Scholar 

  5. C. Breazeal, B. Scassellati, Robots that imitate humans. Trends Cogn. Sci. 6(11), 481–487 (2002)

    Article  Google Scholar 

  6. R. Chalodhorn, D.B. Grimes, K. Grochow, R.P.N. Rao. Learning to walk through imitation, in IJCAI, vol. 7, 2007, pp. 2084–2090

    Google Scholar 

  7. G.J. Chang, D. Kulić, Robot task learning from demonstration using petri nets, in Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication, 2013, pp. 31–36

    Google Scholar 

  8. J.B. Cole, D.B. Grimes, R.P.N. Rao, Learning full-body motions from monocular vision: dynamic imitation in a humanoid robot, in Proceedings of the IEEE/RJS International Conference on Intelligent Robots and Systems, 2007, pp. 240–246

    Google Scholar 

  9. B. Dariush, M. Gienger, B. Jian, C. Goerick, K. Fujimura, Whole body humanoid control from human motion descriptors, in Proceedings of the IEEE International Conference on Robotics and Automation, 2008, pp. 2677–2684

    Google Scholar 

  10. B. Dariush, M. Gienger, A. Arumbakkam, Y. Zhu, B. Jian, K. Fujimura, C. Goerick, Online transfer of human motion to humanoids. Int. J. Humanoid Robot. 6(2), 265–289 (2009)

    Article  Google Scholar 

  11. A. Gams, B. Nemec, A.J. Ijspeert, A. Ude, Coupling movement primitives: interaction with the environment and bimanual tasks. IEEE Trans. Robot. 30(4), 816–830 (2014)

    Article  Google Scholar 

  12. A. Gams, J. van den Kieboom, F. Dzeladini, A. Ude, A.J. Ijspeert, Real-time full body motion imitation on the COMAN humanoid robot. Robotica 33, 1049–1061 (2015)

    Article  Google Scholar 

  13. M. González-Fierro, C. Balaguer, N. Swann, T. Nanayakkara, Full-body postural control of a humanoid robot with both imitation learning and skill innovation. Int. J. Humanoid Robot. 11(02), 1450012 (2014)

    Article  Google Scholar 

  14. D.B. Grimes, R. Chalodhorn, R.P.N. Rao, Dynamic imitation in a humanoid robot through nonparametric probabilistic inference, in Proceedings of Robotics: Science and Systems, 2006

    Google Scholar 

  15. F. Guenter, A.G. Billard, Using reinforcement learning to adapt an imitation task, in Proceedings of the IEEE/RJS International Conference on Intelligent Robots and Systems, 2007, pp. 1022–1027

    Google Scholar 

  16. K. Harada, K. Miura, M. Morisawa, K. Kaneko, S. Nakaoka, F. Kanehiro, T. Tsuji, S. Kajita, Toward human-like walking pattern generator, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 1071–1077

    Google Scholar 

  17. M. Howard, S. Klanke, M. Gienger, C. Goerick, S. Vijayakumar, Learning potential-based policies from constrained motion, in Proceedings of the IEEE International Conference on Humanoid Robots, 2008, pp. 714–720

    Google Scholar 

  18. M. Howard, D.J. Braun, S. Vijayakumar, Transferring human impedance behavior to heterogeneous variable impedance actuators. IEEE Trans. Robot. 29(4), 847–862 (2013)

    Article  Google Scholar 

  19. A.J. Ijspeert, J. Nakanishi, S. Schaal, Learning rhythmic movements by demonstration using nonlinear oscillators, in Proceedings of the IEEE International Conference on Intelligent Robots and Systems, 2002, pp. 958–963

    Google Scholar 

  20. A.J. Ijspeert, J. Nakanishi, S. Schaal, Movement imitation with nonlinear dynamical systems in humanoid robots, in Proceedings of the IEEE International Conference on Robotics and Automation, 2002, pp. 1398–1403

    Google Scholar 

  21. A.J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal, Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25, 328–373 (2013)

    Article  MathSciNet  Google Scholar 

  22. T. Inamura, I. Toshima, H. Tanie, Y. Nakamura, Embodied symbol emergence based on mimesis theory. Int. J. Robot. Res. 23(4–5), 363–377 (2004)

    Article  Google Scholar 

  23. M. Karg, A.-A. Samadani, R. Gorbet, K. Kuhnlenz, J. Hoey, D. Kulic, Body movements for affective expression: a survey of automatic recognition and generation. IEEE Trans. Affect. Comput. 4(4), 341–359 (2013)

    Google Scholar 

  24. J.-Y. Kim, Y.-S. Kim, Whole-body motion generation of android robot using motion capture and nonlinear constrained optimization. Int. J. Humanoid Robot. 10(02), 1350003 (2013)

    Article  Google Scholar 

  25. J. Kober, J.A. Bagnell, J. Peters, Reinforcement learning in robotics: a survey. Int. J. Robot. Res. 21(11), 1238–1274 (2013)

    Article  Google Scholar 

  26. J. Koenemann, F. Burget, M. Bennewitz, Real-time imitation of human whole-body motions by humanoids, in 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 2806–2812

    Google Scholar 

  27. D. Kulić, W. Takano, Y. Nakamura, Incremental learning, clustering and hierarchy formation of whole body motion patterns using adaptive hidden Markov chains. Int. J. Robot. Res. 27(7), 761–784 (2008)

    Google Scholar 

  28. D. Kulić, W. Takano, Y. Nakamura, On-line segmentation and clustering from continuous observation of whole body motions. IEEE Trans. Robot. 25(5), 1158–1166 (2009)

    Article  Google Scholar 

  29. D. Kulić, C. Ott, D. Lee, J. Ishikawa, Y. Nakamura, Incremental learning of full body motion primitives and their sequencing through human motion observation. Int. J. Robot. Res. 31(3), 330–345 (2012)

    Article  Google Scholar 

  30. D. Kulic, M. Choudry, G. Venture, K. Miura, E. Yoshida, Quantitative human and robot motion comparison for enabling assistive device evaluation, in 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids), 2013, pp. 196–202

    Google Scholar 

  31. D. Kulić, G. Venture, K. Yamane, E. Demircan, I. Mizuuchi, K. Mombaur, Anthropomorphic movement analysis and synthesis: a survey of methods and applications. IEEE Trans. Robot. 32(4) 776–795 (2016)

    Article  Google Scholar 

  32. K. Lee, Y. Su, T.-K. Kim, Y. Demiris, A syntactic approach to robot imitation learning using probabilistic activity grammars. Robot. Auton. Syst. 61(12), 1323–1334 (2013)

    Article  Google Scholar 

  33. H.C. Lin, M. Howard, S. Vijayakumar, Learning null space projections, in IEEE International Conference on Robotics and Automation, 2015, pp. 2613–2619

    Google Scholar 

  34. C. Ott, D. Lee, Y. Nakamura, Motion capture based human motion recognition and imitation by direct marker control, in Proceedings of the IEEE International Conference on Humanoid Robots, 2008, pp. 399–405

    Google Scholar 

  35. K. Miura, E. Yoshida, Y. Kobayashi, Y. Endo, F. Kanehioro, K. Homma, I. Kajitani, Y. Matsumoto, T. Tanaka, Humanoid robot as an evaluator of assistive devices, in IEEE International Conference on Robotics and Automation, 2013, pp. 671–677

    Google Scholar 

  36. K. Mombaur, A. Truong, J.P. Laumond, From human to humanoid locomotion – an inverse optimal control approach. Auton. Robot. 28, 369–383 (2010)

    Article  Google Scholar 

  37. K. Mombaur, A.-H. Olivier, A. Crétual, Forward and inverse optimal control of bipedal running, in Modeling, Simulation and Optimization of Bipedal Walking, ed. by K. Mombaur, K. Berns. Cognitive Systems Monographs, vol. 18 (Springer, Berlin/Heidelberg, 2013), pp. 165–179

    Google Scholar 

  38. Y. Nakamura, K. Yamane, Dynamics computation of structure-varying kinematic chains and its application to human figures. IEEE Trans. Robot. Autom. 16(2), 124–134 (2000)

    Article  Google Scholar 

  39. J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, M. Kawato, Learning from demonstration and adaptation of biped locomotion. J. Robot. Auton. Syst. 47, 79–91 (2004)

    Article  Google Scholar 

  40. S. Nakaoka, A. Nakazawa, K. Yokoi, K. Ikeuchi, Leg motion primitives for a humanoid robot to imitate human dances. J. Three Dimens. Images 18(1), 73–78 (2004)

    Google Scholar 

  41. A. Nakazawa, S. Nakaoka, T. Shiratori, K. Ikeuchi, Analysis and synthesis of human dance motions, in Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, MFI2003 (IEEE, 2003), pp. 83–88

    Google Scholar 

  42. S. Nakoka, A. Nakazawa, K. Yokoi, H. Hirukawa, K. Ikeuchi, Generating whole body motions for a biped humanoid robot from captured human dances, in Proceedings of the IEEE International Conference on Robotics and Automation, 2003, pp. 3905–3910

    Google Scholar 

  43. T. Okamoto, T. Shiratori, S. Kudoh, S. Nakaoka, K. Ikeuchi, Toward a dancing robot with listening capability: keypose-based integration of lower-, middle-, and upper-body motions for varying music tempos. Trans. Robot. 30(3), 771–778 (2014)

    Article  Google Scholar 

  44. J. Peters, S. Schaal, Natural actor-critic. Neurocomputing 71(7), 1180–1190 (2008)

    Article  Google Scholar 

  45. J. Peters, S. Schaal, Reinforcement learning of motor skills with policy gradients. Neural netw. 21(4), 682–697 (2008)

    Article  Google Scholar 

  46. K. Ramirez-Amaro, M. Beetz, G. Cheng, Understanding the intention of human activities through semantic perception: observation, understanding and execution on a humanoid robot. Adv. Robot. 29(5), 345–362 (2015)

    Article  Google Scholar 

  47. L. Rozo, S. Calinon, D.G. Caldwell, P. Jimenez, C. Torras, Learning physical collaborative robot behaviors from human demonstrations. IEEE Trans. Robot. 32(3), 513–527 (2016)

    Article  Google Scholar 

  48. S. Schaal, A. Ijspeert, A. Billard, Computational approaches to motor learning by imitation. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 358, 537–547 (2003)

    Article  Google Scholar 

  49. L. Sentis, J. Park, O. Khatib, Modeling and control of multi-contact centers of pressure and internal forces in humanoid robots, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 453–460

    Google Scholar 

  50. M. Sreenivasa, P. Souères, J.-P. Laumond, Walking to grasp: modeling of human movements as invariants and an application to humanoid robotics. IEEE Trans. Syst. Man Cybern. Syst. Hum. 42(4), 880–893 (2012)

    Article  Google Scholar 

  51. T. Sugihara, Y. Nakamura, A fast online gait planning with boundary condition relaxation for humanoid robots, in Proceedings of the IEEE International Conference on Robotics and Automation, 2005, pp. 306–311

    Google Scholar 

  52. N. Sylla, V. Bonnet, G. Venture, N. Armande, P. Fraisse, Human arm optimal motion analysis in industrial screwing task, in IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2014, pp. 964–969

    Google Scholar 

  53. W. Takano, K. Yamane, Y. Nakamura, Primitive communication of humanoid robot with human via hierarchical mimesis model on the proto symbol space, in Proceedings of the IEEE/RAS International Conference on Humanoid Robots, 2005, pp. 167–174

    Google Scholar 

  54. W. Takano, K. Yamane, T. Sugihara, K. Yamamoto, Y. Nakamura, Primitive communication based on motion recognition and generation with hierarchical mimesis model, in Proceedings of the IEEE International Conference on Robotics and Automation, 2006, pp. 3602–3608

    Google Scholar 

  55. G.W. Taylor, G.E. Hinton, S. Roweis, Modeling human motion using binary latent variables, in Proceedings of the Conference on Neural Information Processing Systems, 2006, pp. 1345–1352

    Google Scholar 

  56. R. Vuga, M. Ogrinc, A. Gams, T. Petric, N. Sugimoto, A. Ude, J. Morimoto, Motion capture and reinforcement learning of dynamically stable humanoid movement primitives, in 2013 IEEE International Conference on Robotics and Automation (ICRA), 2013, pp. 5284–5290

    Google Scholar 

  57. K. Yamane, Y. Nakamura, Dynamics filter – concept and implementation of online motion generator for human figures. IEEE Trans. Robot. Autom. 19(3), 421–432 (2003)

    Article  Google Scholar 

  58. K. Yamane, Y. Nakamura, Natural motion animation through constraining and deconstraining at will. IEEE Trans. Vis. Comput. Graph. 9(3), 352–360 (2003)

    Article  Google Scholar 

  59. Y. Zheng, K. Yamane, Human motion tracking control with strict contact force constraints for floating-base humanoid robots, in IEEE-RAS International Conference on Humanoid Robots, 2013, pp. 34–41

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Kulić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kulić, D. (2019). Human Motion Imitation. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6046-2_34

Download citation

Publish with us

Policies and ethics