Skip to main content

Multi-contact Motion Planning and Control

  • Reference work entry
  • First Online:

Abstract

The essence of humanoid robots is their ability to reproduce human skills in locomotion and manipulation. Early efforts in humanoid research were dedicated to bipedal walking, first on flat terrains and recently on uneven ones, while the manipulation capabilities inherit from the literature in bimanual and dexterous-hand manipulation. In practice, the two problems interact largely. Locomotion in cluttered spaces benefits from extra contacts between any part of the robot and the environment, such as when grippers grasp a handrail during stair climbing, while legs can conversely enhance manipulation capabilities, such as when arching the whole body to augment contact pressure at an end effector. The two problems share the same background: they are governed by non-smooth dynamics (friction and impacts at contacts) under viability constraints including dynamic stability. Consequently, they are now solved jointly. This chapter highlights the state-of-the-art techniques used for this purpose in multi-contact planning and control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Arakawa, T. Fukuda, Natural motion generation of biped locomotion robot using hierarchical trajectory generation method consisting of GA, EP layers, in IEEE International Conference on Robotics and Automation, vol. 1, 1997, pp. 211–216

    Google Scholar 

  2. H. Audren, A. Kheddar, P. Gergondet, Stability polygons reshaping and morphing for smooth multi-contact transitions and force control of humanoid robots, in IEEE-RAS International Conference on Humanoid Robots, Cancun, 2016, pp. 1037–1044

    Google Scholar 

  3. H. Audren, J. Vaillant, A. Kheddar, A. Escande, K. Kaneko, E. Yoshida, Model preview control in multi-contact motion – application to a humanoid robot, in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, 2014, pp. 4030–4035

    Google Scholar 

  4. D.J. Balkcom, J.C. Trinkle, Computing wrench cones for planar rigid body contact tasks. Int. J. Robot. Res. 21(12), 1053–1066 (2002)

    Article  Google Scholar 

  5. M. Benallegue, A. Escande, S. Miossec, A. Kheddar, Fast C1 proximity queries using support mapping of sphere-torus-patches bounding volumes, in 2009 IEEE International Conference on Robotics and Automation, Kobe, 2009, pp. 483–488

    Google Scholar 

  6. A. Bolotnikova, K. Chappellet, A. Paolillo, A. Escande, G. Anbarjafari, A. Suarez-Roos, P. Rabaté, A. Kheddar, A circuit-breaker use-case operated by a humanoid in aircraft manufacturing, in IEEE Conference on Automation Science and Engineering, Xi’an, 2017

    Google Scholar 

  7. K. Bouyarmane, A. Escande, F. Lamiraux, A. Kheddar, Potential field guide for humanoid multicontacts acyclic motion planning, in 2009 IEEE International Conference on Robotics and Automation, Kobe, 2009, pp. 1165–1170

    Google Scholar 

  8. K. Bouyarmane, A. Kheddar, Static multi-contact inverse problem for multiple Humanoid robots and manipulated objects, in 2010 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, 2010, pp. 8–13

    Google Scholar 

  9. K. Bouyarmane, A. Kheddar, Fem-based static posture planning for a humanoid robot on deformable contact support, in 2011 11th IEEE-RAS International Conference on Humanoid Robots, Bled, 2011, pp. 487–492

    Google Scholar 

  10. K. Bouyarmane, A. Kheddar, Multi-contact stances planning for multiple agents, in IEEE International Conference on Robotics and Automation, Shanghai, 2011, pp. 5246–5253

    Google Scholar 

  11. K. Bouyarmane, A. Kheddar, Using a multi-objective controller to synthesize simulated humanoid robot motion with changing contact configurations, in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, 2011, pp. 4414–4419

    Google Scholar 

  12. K. Bouyarmane, A. Kheddar, Humanoid robot locomotion and manipulation step planning. Adv. Robot. 26(10), 1099–1126 (2012)

    Article  Google Scholar 

  13. K. Bouyarmane, A. Kheddar, On the dynamics modeling of free-floating-base articulated mechanisms and applications to humanoid whole-body dynamics and control, in 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (IEEE, 2012), pp. 36–42

    Google Scholar 

  14. K. Bouyarmane, A. Kheddar, Non-decoupled locomotion and manipulation planning for low-dimensional systems. Int. J. Intell. Robot. Syst. (to appear). https://doi.org/10.1007/s10846-017-0692-5

    Article  Google Scholar 

  15. K. Bouyarmane, J. Vaillant, N. Sugimoto, F. Keith, J.I. Furukawa, J. Morimoto, Brain-machine interfacing control of whole-body humanoid motion. Front. Syst. Neurosci. 8, 138 (2014)

    Google Scholar 

  16. C. Brasseur, A. Sherikov, C. Collette, D. Dimitrov, P.B. Wieber, A robust linear MPC approach to online generation of 3d biped walking motion, in IEEE-RAS International Conference on Humanoid Robots (IEEE, 2015), pp. 595–601

    Google Scholar 

  17. T. Bretl, Motion planning of multi-limbed robots subject to equilibrium constraints: the free-climbing robot problem. Int. J. Robot. Res. 25(4), 317–342 (2006)

    Google Scholar 

  18. T. Bretl, S. Lall, Testing static equilibrium for legged robots. IEEE Trans. Robot. 24(4), 794–807 (2008)

    Article  Google Scholar 

  19. S. Brossette, A. Escande, G. Duchemin, B. Chretien, A. Kheddar, Humanoid posture generation on non-Euclidean manifolds, in IEEE-RAS International Conference on Humanoid Robots, 2015, pp. 352–358. doi: https://doi.org/10.1109/HUMANOIDS.2015.7363574

  20. S. Caron, Computational foundation for planner-in-the-loop multi-contact whole-body control of humanoid robots. Ph.D. thesis, The University of Tokyo, 2016. See p. 81 for a proof of Proposition 4

    Google Scholar 

  21. S. Caron, A. Kheddar, Multi-contact walking pattern generation based on model preview control of 3D COM accelerations, in IEEE-RAS International Conference on Humanoid Robots, Cancun, 2016, pp. 550–557

    Google Scholar 

  22. S. Caron, A. Kheddar, Dynamic walking over rough terrains by nonlinear predictive control of the floating-base inverted pendulum, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, 2017

    Google Scholar 

  23. S. Caron, Q.C. Pham, Y. Nakamura, Leveraging cone double description for multi-contact stability of humanoids with applications to statics and dynamics, in Robotics: Science and System, 2015

    Google Scholar 

  24. S. Caron, Q.C. Pham, Y. Nakamura, Stability of surface contacts for humanoid robots: closed-form formulae of the contact wrench for rectangular support areas, in IEEE International Conference on Robotics and Automation, 2015, pp. 5107–5112

    Google Scholar 

  25. S. Caron, Q.C. Pham, Y. Nakamura, ZMP support areas for multi-contact mobility under frictional constraints. IEEE Trans. Robot. 33, 67–80 (2017). doi: https://doi.org/10.1109/TRO.2016.2623338

    Article  Google Scholar 

  26. J. Carpentier, S. Tonneau, M. Naveau, O. Stasse, N. Mansard, A versatile and efficient pattern generator for generalized legged locomotion, in IEEE International Conference on Robotics and Automation, Stockholm, 2016

    Google Scholar 

  27. J. Chestnutt, J. Kuffner, K. Nishiwaki, S. Kagami, Planning biped navigation strategies in complex environments, in IEEE-RAS International Conference on Humanoid Robots, 2003

    Google Scholar 

  28. B. Chrétien, A. Escande, A. Kheddar, Continuously satisfying constraints with contact forces in trajectory optimization for humanoid robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2015, pp. 3956–3961. doi: https://doi.org/10.1109/IROS.2015.7353934

  29. B. Chrétien, A. Escande, A. Kheddar, GPU robot motion planning using semi-infinite nonlinear programming. IEEE Trans. Parallel Distrib. Syst. 27(10), 2926–2939 (2016)

    Article  Google Scholar 

  30. R. Cisneros, K. Yokoi, E. Yoshida, Yaw moment compensation by using full body motion, in 2014 IEEE International Conference on Mechatronics and Automation (ICMA) (IEEE, 2014), pp. 119–125

    Google Scholar 

  31. H. Dai, R. Tedrake, Planning robust walking motion on uneven terrain via convex optimization, in IEEE-RAS International Conference on Humanoid Robots, Cancun, 2016, pp. 579–586

    Google Scholar 

  32. A. Del Prete, S. Tonneau, N. Mansard, Fast algorithms to test robust static equilibrium for legged robots, in IEEE International Conference on Robotics and Automation, Stockholm, 2016

    Google Scholar 

  33. A. Escande, A. Kheddar, Contact planning for acyclic motion with tasks constraints, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009

    Google Scholar 

  34. A. Escande, A. Kheddar, S. Miossec, Planning support contact-points for humanoid robots and experiments on HRP-2, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006

    Google Scholar 

  35. A. Escande, A. Kheddar, S. Miossec, Planning contact points for humanoid robots. Robot. Auton. Syst. 61(5), 428–442 (2013)

    Article  Google Scholar 

  36. A. Escande, A. Kheddar, S. Miossec, S. Garsault, Planning support contact-points for acyclic motions and experiments on HRP-2, in International Symposium on Experimental Robotics, 2008

    Google Scholar 

  37. C. Esteves, G. Arechavelata, J. Pettré, J.P. Laumond, Animation planning for virtual characters cooperation. ACM Trans. Graph. 25(2), 319–339 (2006)

    Article  Google Scholar 

  38. B. Faverjon, P. Tournassoud, Planning of manipulators with a high number of degrees of freedom, in IEEE International Conference on Robotics and Automation, 1987

    Google Scholar 

  39. R. Featherstone, Rigid Body Dynamics Algorithms (Springer, US, 2014)

    Google Scholar 

  40. F. Flacco, A. Paolillo, A. Kheddar, Residual-based contacts estimation for humanoid robots, in IEEE-RAS International Conference on Humanoid Robots, Cancun, 2016, pp. 409–415

    Google Scholar 

  41. K. Fukuda, A. Prodon, Double description method revisited, in Combinatorics and Computer Science ed. by M. Deza, R. Euler, I. Manoussakis. Lecture Notes in Computer Science, vol 1120 (Springer, Berlin/Heidelberg, 1996), pp. 91–111

    Chapter  Google Scholar 

  42. E.G. Gilbert, D.W. Johnson, S.S. Keerthi, A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE Trans. Robot. Autom. 4, 193–203 (1988)

    Article  Google Scholar 

  43. K. Harada, S. Kajita, F. Kanehiro, K. Fujiwara, K. Kaneko, K. Yokoi, H. Hirukawa, Real-time planning of humanoid robot’s gait for force-controlled manipulation. IEEE/ASME Trans. Mechatron. 12(1), 53–62 (2007)

    Article  Google Scholar 

  44. K. Hauser, Fast interpolation and time-optimization with contact. Int. J. Robot. Res. 33(9), 1231–1250 (2014)

    Article  Google Scholar 

  45. K. Hauser, T. Bretl, J.C. Latombe, Non-gaited humanoid locomotion planning, in IEEE-RAS International Conference on Humanoid Robots, 2005

    Google Scholar 

  46. K. Hauser, T. Bretl, J.C. Latombe, K. Harada, B. Wilcox, Motion planning for legged robots on varied terrain. Int. J. Robot. Res. 27(11–12), 1325–1349 (2008)

    Article  Google Scholar 

  47. A. Herdt, H. Diedam, P.B. Wieber, D. Dimitrov, K. Mombaur, M. Diehl, Online walking motion generation with automatic footstep placement. Adv. Robot. 24(5–6), 719–737 (2010)

    Article  Google Scholar 

  48. A. Herzog, N. Rotella, S. Schaal, L. Righetti, Trajectory generation for multi-contact momentum control, in IEEE-RAS International Conference on Humanoid Robots, 2015, pp. 874–880

    Google Scholar 

  49. H. Hirukawa, S. Hattori, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro, K. Fujiwara, M. Morisawa, A universal stability criterion of the foot contact of legged robots – adios ZMP, in IEEE International Conference on Robotics and Automation, 2006

    Google Scholar 

  50. M.A. Hopkins, D.W. Hong, A. Leonessa, Humanoid locomotion on uneven terrain using the time-varying divergent component of motion, in 2014 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (IEEE, 2014), pp. 266–272

    Google Scholar 

  51. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’03), vol. 2 (IEEE, 2003), pp. 1620–1626

    Google Scholar 

  52. S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, H. Hirukawa, The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation, in Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1 (IEEE, 2001), pp. 239–246

    Google Scholar 

  53. L.E. Kavraki, P. Svestka, J. Claude Latombe, M.H. Overmars, Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12, 566–580 (1996)

    Article  Google Scholar 

  54. M. Kudruss, M. Naveau, O. Stasse, N. Mansard, C. Kirches, P. Soueres, K. Mombaur, Optimal control for whole-body motion generation using center-of-mass dynamics for predefined multi-contact configurations, in 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (IEEE, 2015), pp. 684–689

    Google Scholar 

  55. J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, H. Inoue, Dynamically-stable motion planning for humanoid robots. Auton. Robot. 12, 105–118 (2002)

    Google Scholar 

  56. J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, H. Inoue, Footstep planning among obstacles for biped robots, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001

    Google Scholar 

  57. S. Kuindersma, F. Permenter, R. Tedrake, An efficiently solvable quadratic program for stabilizing dynamic locomotion, in 2014 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2014), pp. 2589–2594

    Google Scholar 

  58. A. Kumar Pandey, R. Gelin, R. Alami, R. Viry, A. Buendia, R. Meertens, M. Chetouani, L. Devilliers, M. Tahon, D. Filliat, Y. Grenier, M. Maazaoui, A. Kheddar, F. Lerasle, L.F. Duval, Romeo2 project: humanoid robot assistant and companion for everyday life: I. Situation assessment for social intelligence, in International Workshop on Artificial Intelligence and Cognition, Torino, 2014, pp. 140–147

    Google Scholar 

  59. J.C. Latombe, Robot Motion Planning (Kluwer Academic Publishers, Boston, 1991)

    Google Scholar 

  60. S. LaValle, J. Kuffner, Rapidly-exploring random trees: progress and prospects, in Algorithmic and Computational Robotics: New Direction, ed. by B. Donald, K. Lynch, D. Rus (A. K. Peters, Wellesley, 2001), pp. 293–308

    Google Scholar 

  61. S.M. LaValle, Planning Algorithms (Cambridge University Press, New York, 2006)

    Google Scholar 

  62. O. Lefebvre, F. Lamiraux, D. Bonnafous, Fast computation of robot-obstacle interactions in nonholonomic trajectory deformation, in Proceedings of the IEEE International Conference on Robotics and Automation, 2005

    Google Scholar 

  63. S. Lengagne, J. Vaillant, E. Yoshida, A. Kheddar, Generation of whole-body optimal dynamic multi-contact motions. Int. J. Robot. Res. 32(9–10), 1104–1119 (2013)

    Article  Google Scholar 

  64. A.M. López, J. Vaillant, F. Keith, P. Fraisse, A. Kheddar, Compliant control of a humanoid robot helping a person stand up from a seated position, in 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (IEEE, 2014), pp. 817–822

    Google Scholar 

  65. L. Manuelli, R. Tedrake, Localizing external contact using proprioceptive sensors: the contact particle filter, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejon, 2016, pp. 5062–5069

    Google Scholar 

  66. T. Mattioli, M. Vendittelli, Interaction force reconstruction for humanoid robots. IEEE Robot. Autom. Lett. 2(1), 282–289 (2017)

    Article  Google Scholar 

  67. I. Mordatch, M. De Lasa, A. Hertzmann, Robust physics-based locomotion using low-dimensional planning. ACM Trans. Graph. (SIGGRAPH)) 29(4), 71 (2010)

    Google Scholar 

  68. I. Mordatch, E. Todorov, Z. Popović, Discovery of complex behaviors through contact-invariant optimization. ACM Trans. Graph. (TOG) 31(4), 43 (2012)

    Article  Google Scholar 

  69. T. Moulard, F. Lamiraux, K. Bouyarmane, E. Yoshida, Roboptim: an optimization framework for robotics, in Robomec, 2013, p. 4p

    Google Scholar 

  70. K. Nagasaka, T. Fukushima, H. Shimomura, Whole-body control of a humanoid robot based on generalized inverse dynamics and multi-contact stabilizer that can take acount of contact constraints, in Robotics Symposium (In Japanese), vol. 17, 2012

    Google Scholar 

  71. M. Naveau, M. Kudruss, O. Stasse, C. Kirches, K. Mombaur, P. Souères, A reactive walking pattern generator based on nonlinear model predictive control. IEEE Robot. Autom. Lett. 2(1), 10–17 (2017)

    Article  Google Scholar 

  72. D.E. Orin, A. Goswami, S.H. Lee, Centroidal dynamics of a humanoid robot. Auton. Robot. 35(2–3), 161–176 (2013)

    Article  Google Scholar 

  73. J.S. Pang, J. Trinkle, Stability characterizations of rigid body contact problems with coulomb friction. ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech. 80(10), 643–663 (2000)

    Article  MathSciNet  Google Scholar 

  74. A. Paolillo, P. Gergondet, A. Cherubini, M. Vendittelli, A. Kheddar, Autonomous car driving by a humanoid robot. J. Field Robot. (to appear). https://doi.org/10.1002/rob.21731

    Article  Google Scholar 

  75. J. Pettré, J.P. Laumond, T. Siméon, A 2-stages locomotion planner for digital actors, in Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2003

    Google Scholar 

  76. K. Pfeiffer, A. Escande, A. Kheddar, Nut fastening with a humanoid robot, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, 2017

    Google Scholar 

  77. Q.C. Pham, O. Stasse, Time-optimal path parameterization for redundantly actuated robots: a numerical integration approach. IEEE/ASME Trans. Mechatron. 20(6), 3257–3263 (2015)

    Article  Google Scholar 

  78. B. Ponton, A. Herzog, S. Schaal, L. Righetti, A convex model of humanoid momentum dynamics for multi-contact motion generation, in IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids) (IEEE, 2016), pp. 842–849

    Google Scholar 

  79. Z. Qiu, A. Escande, A. Micaelli, T. Robert, Human motions analysis and simulation based on a general criterion of stability, in International Symposium on Digital Human Modeling, 2011

    Google Scholar 

  80. L. Righetti, M. Mistry, J. Buchli, S. Schaal, Inverse dynamics control of floating-base robots with external contraints: an unified view, in Proceedings of the IEEE International Conference on Robotics and Automation, 2011

    Google Scholar 

  81. L. Saab, O. Ramos, N. Mansard, P. Soueres, J.Y. Fourquet, Generic dynamic motion generation with multiple unilateral constraints, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011

    Google Scholar 

  82. L. Saab, O.E. Ramos, F. Keith, N. Mansard, P. Souères, J.Y. Fourquet, Dynamic whole-body motion generation under rigid contacts and other unilateral constraints. IEEE Trans. Robot. 29(2), 346–362 (2013)

    Article  Google Scholar 

  83. T. Saida, Y. Yokokohji, T. Yoshikawa, Fsw (feasible solution of wrench) for multi-legged robots, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’03), vol. 3 (IEEE, 2003), pp. 3815–3820

    Google Scholar 

  84. J. Salini, V. Padois, P. Bidaud, Synthesis of complex humanoid whole-body behavior: a focus on sequencing and tasks transitions, in Proceedings of the IEEE International Conference on Robotics and Automation, 2011

    Google Scholar 

  85. P. Sardain, G. Bessonnet, Forces acting on a biped robot. Center of pressure-zero moment point. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 34(5), 630–637 (2004)

    Article  Google Scholar 

  86. L. Sentis, J. Park, O. Khatib, Compliant control of multi-contact and center of mass behaviors in humanoid robots. IEEE Trans. Robot. 26(3), 483–501 (2010)

    Article  Google Scholar 

  87. T. Siméon, J.P. Laumond, J. Cortès, A. Sahbani, Manipulation planning with probabilistic roadmaps. Int. J. Robot. Res. 23(7–8), 729–746 (2004)

    Article  Google Scholar 

  88. J.C. Trinkle, J.S. Pang, S. Sudarsky, G. Lo, On dynamic multi-rigid-body contact problems with coulomb friction. ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech. 77(4), 267–279 (1997)

    Article  MathSciNet  Google Scholar 

  89. B. Ugurlu, J.A. Saglia, N.G. Tsagarakis, D.G. Caldwell, Yaw moment compensation for bipedal robots via intrinsic angular momentum constraint. Int. J. Humanoid Robot. 9(04) (2012)

    Article  Google Scholar 

  90. J. Vaillant, K. Bouyarmane, A. Kheddar, Multi-character physical and behavioral interactions controller. IEEE Trans. Vis. Comput. Graph. 23(6), 1650–1662 (2017)

    Article  Google Scholar 

  91. J. Vaillant, A. Kheddar, H. Audren, F. Keith, S. Brossette, A. Escande, K. Bouyarmane, K. Kaneko, M. Morisawa, P. Gergondet, E. Yoshida, S. Kajita, F. Kanehiro, Multi-contact vertical ladder climbing with an HRP-2 humanoid. Auton. Robot. 40(3), 561–580 (2016)

    Article  Google Scholar 

  92. K. Van Heerden, Real-time variable center of mass height trajectory planning for humanoids robots. IEEE Robot. Autom. Lett. 2(1), 135–142 (2017)

    Article  Google Scholar 

  93. J. Vorndamme, M. Schappler, S. Haddadin, Collision detection, isolation and identification for humanoids, in IEEE International Conference on Robotics and Automation, 2017, pp. 4754–4761

    Google Scholar 

  94. A. Wachter, L.T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)

    Article  MathSciNet  Google Scholar 

  95. P.M. Wensing, D.E. Orin, High-speed humanoid running through control with a 3D-slip model, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2013), pp. 5134–5140

    Google Scholar 

  96. P.B. Wieber, Holonomy and nonholonomy in the dynamics of articulated motion, in Fast Motions in Biomechanics and Robotics, 2006, pp. 411–425

    Google Scholar 

  97. P.B. Wieber, Trajectory free linear model predictive control for stable walking in the presence of strong perturbations, in 6th IEEE-RAS International Conference on Humanoid Robots (IEEE, 2006), pp. 137–142

    Google Scholar 

  98. K. Yamane, J. Kuffner, J.K. Hodgins, Synthesizing animations of human manipulation tasks. ACM Trans. Grap. (Proc. SIGGRAPH 2004) 23(3), 530–537 (2004)

    Google Scholar 

  99. K. Yamane, Y. Nakamura, Dynamics filter-concept and implementation of online motion generator for human figures. IEEE Trans. Robot. Autom. 19(3), 421–432 (2003)

    Article  Google Scholar 

  100. E. Yoshida, C. Esteves, I. Belousov, J.P. Laumond, K. Yokoi, Planning 3D collision-free dynamic robotic motion through iterative reshaping. IEEE Trans. Robot. 24(5), 1186–1198 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Bouyarmane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bouyarmane, K., Caron, S., Escande, A., Kheddar, A. (2019). Multi-contact Motion Planning and Control. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6046-2_32

Download citation

Publish with us

Policies and ethics