Skip to main content

Differential Kinematics

  • Reference work entry
  • First Online:
Humanoid Robotics: A Reference

Abstract

Kinematics play an essential role in motion analysis, motion generation, and control. This chapter focuses on the differential kinematic relations pertinent to open-loop and closed-loop kinematic chains. It is assumed that readers are familiar with the basic concepts concerning systems of rigid bodies, such as representations of positions and orientations, the kinematics of joints, coordinate frame assignment techniques for serial-link and parallel-link mechanisms, coordinate transformations, and the forward and inverse kinematic problems. First, the role of differential kinematics for instantaneous motion analysis is highlighted. The forward and inverse differential kinematic problems for open-loop systems are then formulated using first-order (velocity level) and second-order (acceleration level) relationships. Further on, instantaneous motion analysis and methods for motion generation at special (singular) configurations are discussed. Generic singular configurations for humanoid robots with and without kinematically redundant limbs are highlighted, and the notion of manipulability ellipsoid is introduced. Special attention is paid to solutions to the inverse instantaneous motion problem for kinematic chains with kinematic redundancy. Two basic cases are discussed for redundancy pertinent to a single limb and the whole-body chain. In the latter case, solution methods for multiple-task constraints are highlighted, covering both fixed and variable-priority tasks within a hierarchical structure. Finally, differential kinematic relations within chains with motion constraints stemming from contacts with the environment are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Sciavicco, B. Siciliano, Modelling and Control of Robot Manipulators (Springer Science & Business Media, London, 2000)

    Google Scholar 

  2. R. Featherstone, Rigid Body Dynamics Algorithms (Springer, Boston, 2008)

    Chapter  Google Scholar 

  3. J. Denavit, R. Hartenberg, A kinematic notation for lower-pair mechanisms based on matrices. Trans. ASME. J. Appl. Mech. 22, 215–221 (1955)

    Google Scholar 

  4. R.M. Murray, Z. Li, S.S. Sastry, A Mathematical Introduction to Robotic Manipulation (CRC Press, Boca Raton, 1994)

    Google Scholar 

  5. J. Yuan, Closed-loop manipulator control using quaternion feedback. IEEE J. Robot. Autom. 4(4), 434–440 (1988)

    Article  Google Scholar 

  6. H.G. Kwatny, G. Blankenship, Nonlinear Control and Analytical Mechanics: A Computational Approach (Springer, New York/Birkhauser, 2000)

    Book  Google Scholar 

  7. G. Strang, Linear Algebra and Its Applications, Cengage Learning, 4th edn., 19 July 2005

    Google Scholar 

  8. K. Kreutz-Delgado, M. Long, H. Seraji, Kinematic analysis of 7-DoF manipulators. Int. J. Robot. Res. 11(5), 469–481 (1992)

    Article  Google Scholar 

  9. A. Sekiguchi, Y. Atobe, K. Kameta, D. Nenchev, Y. Tsumaki, On motion generation for humanoid robot by the SC approach, in Annual Conference of the Robotics Society of Japan, vol. 2, 2003, p. 2A27

    Google Scholar 

  10. Y. Ogura, H.-O. Lim, A. Takanishi, Stretch walking pattern generation for a biped humanoid robot, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003, pp. 352–357

    Google Scholar 

  11. R. Kurazume, S. Tanaka, M. Yamashita, T. Hasegawa, K. Yoneda, Straight legged walking of a biped robot, in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2 (IEEE, 2005), pp. 337–343

    Google Scholar 

  12. M. Morisawa, S. Kajita, K. Kaneko, K. Harada, F. Kanehiro, K. Fujiwara, H. Hirukawa, Pattern generation of biped walking constrained on parametric surface, in IEEE International Conference on Robotics and Automation, 2005, pp. 2405–2410

    Google Scholar 

  13. K. Kameta, A. Sekiguchi, Y. Tsumaki, D. Nenchev, Walking control using the SC approach for humanoid robot, in IEEE-RAS International Conference on Humanoid Robots, 2005, pp. 289–294

    Google Scholar 

  14. K. Takahashi, M. Noda, D. Nenchev, Y. Tsumaki, A. Sekiguchi, Static walk of a humanoid robot based on the singularity-consistent method, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, pp. 5484–5489

    Google Scholar 

  15. K. Kameta, A. Sekiguchi, Y. Tsumaki, Y. Kanamiya, Walking control around singularity using a spherical inverted pendulum with an underfloor pivot, in IEEE-RAS International Conference on Humanoid Robots, 2007, pp. 210–215

    Google Scholar 

  16. N. Handharu, J. Yoon, G. Kim, Gait pattern generation with knee stretch motion for biped robot using toe and heel joints, in IEEE-RAS International Conference on Humanoid Robots, Daejeon, Korea, 2008, pp. 265–270

    Google Scholar 

  17. Z. Li, N.G. Tsagarikis, D.G. Caldwell, B. Vanderborght, Trajectory generation of straightened knee walking for humanoid robot iCub, in IEEE International Conference on Control, Automation, Robotics and Vision, 2010, pp. 2355–2360

    Google Scholar 

  18. Y. Harada, J. Takahashi, D. Nenchev, D. Sato, Limit cycle based walk of a powered 7DoF 3D biped with flat feet, in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct 2010, pp. 3623–3628

    Google Scholar 

  19. S. Kotosaka, H. Ohtaki, Selective utilization of actuator for a humanoid robot by singular configuration. J. Robot. Soc. Jpn. 25(8), 115–121 (2007)

    Article  Google Scholar 

  20. H. Arisumi, S. Miossec, J.-R. Chardonnet, K. Yokoi, Dynamic lifting by whole body motion of humanoid robots, in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, pp. 668–675

    Google Scholar 

  21. K. Levenberg, A method for the solution of certain non-linear problems in least squares. Q. J. Appl. Math. II(2), 164–168 (1944)

    Article  MathSciNet  Google Scholar 

  22. Y. Nakamura, H. Hanafusa, Inverse kinematic solutions with singularity robustness for robot manipulator control. J. Dyn. Syst. Meas Control 108(3), 163 (1986)

    Article  Google Scholar 

  23. C.W. Wampler, Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods. IEEE Trans. Syst. Man Cybern. 16(1), 93–101 (1986)

    Google Scholar 

  24. T. Sugihara, Solvability-unconcerned inverse kinematics by the Levenberg-Marquardt method. IEEE Trans. Robot. 27(5), 984–991 (2011)

    Article  Google Scholar 

  25. D. Nenchev, Tracking manipulator trajectories with ordinary singularities: a null space-based approach. Int. J. Robot. Res. 14(4), 399–404 (1995)

    Article  Google Scholar 

  26. D. Nenchev, Y. Tsumaki, M. Uchiyama, Singularity-consistent parameterization of robot motion and control. Int. J. Robot. Res. 19(2), 159–182 (2000)

    Article  Google Scholar 

  27. S. Taki, D. Nenchev, A novel singularity-consistent inverse kinematics decomposition for S-R-S type manipulators, in IEEE International Conference on Robotics and Automation, Hong Kong, China, 2014, pp. 5070–5075

    Google Scholar 

  28. Y. Tsumaki, D. Nenchev, S. Kotera, M. Uchiyama, Teleoperation based on the adjoint Jacobian approach. IEEE Control Syst. Mag. 17(1), 53–62 (1997)

    Google Scholar 

  29. G.H. Golub, C.F. Van Loan, Matrix computations (Johns Hopkins University Press, Baltimore, 1996)

    Google Scholar 

  30. A.A. Maciejewski, C.A. Klein, The singular value decomposition: computation and applications to robotics. Int. J. Robot. Res. 8(6), 63–79 (1989)

    Article  Google Scholar 

  31. T. Yoshikawa, Manipulability of robotic mechanisms. Int. J. Robot. Res. 4(2), 3–9 (1985)

    Google Scholar 

  32. Y. Ogura, H. Aikawa, K. Shimomura, H. Kondo, A. Morishima, H.-O. Lim, A. Takanishi, Development of a new humanoid robot WABIAN-2, in IEEE International Conference on Robotics and Automation, 2006, pp. 76–81

    Google Scholar 

  33. T. Wimbock, D. Nenchev, A. Albu-Schaffer, G. Hirzinger, Experimental study on dynamic reactionless motions with DLR’s humanoid robot Justin, in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, St. Louis, 2009), pp. 5481–5486

    Google Scholar 

  34. K. Kaneko, F. Kanehiro, M. Morisawa, K. Akachi, G. Miyamori, A. Hayashi, N. Kanehira, Humanoid robot HRP-4 – humanoid robotics platform with lightweight and slim body, in IEEE International Conference on Intelligent Robots and Systems, 2011, pp. 4400–4407

    Google Scholar 

  35. I.-W. Park, J.-Y. Kim, J. Lee, J.-H. Oh, Mechanical design of the humanoid robot platform, HUBO. Adv. Robot. 21(11), 1305–1322 (2007)

    Article  Google Scholar 

  36. M. Zucker, S. Joo, M. Grey, C. Rasmussen, E. Huang, M. Stilman, A. Bobick, A general-purpose system for teleoperation of the DRC-HUBO humanoid robot. J. Field Robot. 32(3), 336–351 (2015)

    Article  Google Scholar 

  37. T. Buschmann, S. Lohmeier, H. Ulbrich, Humanoid robot Lola: design and walking control. J. Physiol. Paris 103(3–5), 141–148 (2009)

    Article  Google Scholar 

  38. A. Ben-Israel, T.N. Greville, Generalized Inverses – Theory and Applications. CMS Books in Mathematics, 2nd edn. (Springer, New York, 2003)

    Google Scholar 

  39. A. Liegeois, Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Trans. Syst. Man Cybern. 7(12), 868–871 (1977)

    Google Scholar 

  40. Y. Nakamura, Advanced Robotics: Redundancy and Optimization (Addison-Wesley Publishing Company, Reading, 1991)

    Google Scholar 

  41. T. Asfour, R. Dillmann, Human-like motion of a humanoid robot arm based on a closed-form solution of the inverse kinematics problem, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas (IEEE, 2003), pp. 1407–1412

    Google Scholar 

  42. M. Shimizu, H. Kakuya, W.-K. Yoon, K. Kitagaki, K. Kosuge, Analytical inverse kinematic computation for 7-DoF redundant manipulators with joint limits and its application to redundancy resolution. IEEE Trans. Robot. 24(5), 1131–1142 (2008)

    Article  Google Scholar 

  43. R.C. Luo, T.-W. Lin, Y.-H. Tsai, Analytical inverse kinematic solution for modularized 7-DoF redundant manipulators with offsets at shoulder and wrist, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, 2014, pp. 516–521

    Google Scholar 

  44. J. Burdick, On the inverse kinematics of redundant manipulators: characterization of the self-motion manifolds, in IEEE International Conference on Robotics and Automation, Scottsdale, 1989, pp. 264–270

    Google Scholar 

  45. D. Whitney, Resolved motion rate control of manipulators and human prostheses. IEEE Trans. Man Mach. Syst. 10(2), 47–53 (1969)

    Article  Google Scholar 

  46. D. Nenchev, Redundancy resolution through local optimization: a review. J. Robot. Syst. 6(6), 769–798 (1989)

    Article  Google Scholar 

  47. B. Siciliano, Kinematic control of redundant robot manipulators: a tutorial. J. Intell. Robot. Syst. 3(3), 201–212 (1990)

    Article  Google Scholar 

  48. T. Yoshikawa, Analysis and control of robot arms with redundancy, in First International Symposium on Robotics Research, Pittsburg (MIT Press, Cambridge, MA, 1994), pp. 735–747

    Google Scholar 

  49. C.A. Klein, B.E. Blaho, Dexterity measures for the design and control of kinematically redundant manipulators. Int. J. Robot. Res. 6(2), 72–83 (1987)

    Article  Google Scholar 

  50. K.L. Doty, C. Melchiorri, C. Bonivento, A theory of generalized inverses applied to robotics. Int. J. Robot. Res. 12(1), 1–19 (1993)

    Article  Google Scholar 

  51. J. Baillieul, Avoiding obstacles and resolving kinematic redundancy, in IEEE International Conference on Robotics and Automation, 1986, pp. 1698–1704

    Google Scholar 

  52. H. Seraji, Configuration control of redundant manipulators: theory and Implementation. IEEE Trans. Robot. Autom. 5(4), 472–490 (1989)

    Article  Google Scholar 

  53. J. Park, W. Chung, Y. Youm, On dynamical decoupling of kinematically redundant manipulators, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 1999, pp. 1495–1500

    Google Scholar 

  54. O. Kanoun, F. Lamiraux, P.-B. Wieber, Kinematic control of redundant manipulators: generalizing the task-priority framework to inequality task. IEEE Trans. Robot. 27(4), 785–792 (2011)

    Article  Google Scholar 

  55. M. Liu, A. Micaelli, P. Evrard, A. Escande, C. Andriot, Interactive virtual humans: a two-level prioritized control framework with wrench bounds. IEEE Trans. Robot. 28(6), 1309–1322 (2012)

    Article  Google Scholar 

  56. M. Brandao, L. Jamone, P. Kryczka, N. Endo, K. Hashimoto, A. Takanishi, Reaching for the unreachable: integration of locomotion and whole-body movements for extended visually guided reaching, in IEEE-RAS International Conference on Humanoid Robots, 2013

    Google Scholar 

  57. A.E. Albert, Regression and the Moore-Penrose Pseudoinverse, 1st edn. (Academic Press, New York, 1972)

    Google Scholar 

  58. M.S. Konstantinov, M.D. Markov, D. Nenchev, Kinematic control of redundant manipulators, in 11th International Symposium on Industrial Robots, Tokyo, 1981, pp. 561–568

    Google Scholar 

  59. H. Hanafusa, T. Yoshikawa, Y. Nakamura, Analysis and control of articulated robot arms with redundancy, in Prep. of the IFAC ’81 World Congress, 1981, pp. 78–83.

    Article  Google Scholar 

  60. D. Nenchev, Restricted Jacobian matrices of redundant manipulators in constrained motion tasks. Int. J. Robot. Res. 11(6), 584–597 (1992)

    Article  Google Scholar 

  61. D. Nenchev, Recursive local kinematic inversion with dynamic task-priority allocation, in IEEE International Conference on Robotics and Automation, Munich, 1994, pp. 2698–2703

    Google Scholar 

  62. B. Siciliano, J.-J. Slotine, A general framework for managing multiple tasks in highly redundant robotic systems, in Fifth International Conference on Advanced Robotics (IEEE, 1991), pp. 1211–1216

    Google Scholar 

  63. G. Antonelli, Stability analysis for prioritized closed-loop inverse kinematic algorithms for redundant robotic systems. IEEE Trans. Robot. 25(5), 985–994 (2009)

    Article  Google Scholar 

  64. H. Sadeghian, L. Villani, M. Keshmiri, B. Siciliano, Dynamic multi-priority control in redundant robotic systems. Robotica 31, 1–13 (2013)

    Article  Google Scholar 

  65. L. Sentis, O. Khatib, Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. Int. J. Humanoid Robot. 2(4), 505–518 (2005)

    Article  Google Scholar 

  66. A.A. Maciejewski, C.A. Klein, Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. Int. J. Robot. Res. 4(3), 109–117 (1985)

    Article  Google Scholar 

  67. O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)

    Google Scholar 

  68. K. Glass, R. Colbaugh, D. Lim, H. Seraji, Real-time collision avoidance for redundant manipulators. IEEE Trans. Robot. Autom. 11(3), 448–457 (1995)

    Article  Google Scholar 

  69. D. Nenchev, Z. Sotirov, Dynamic task-priority allocation for kinematically redundant robotic mechanisms, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Munich, 1994, pp. 518–524

    Google Scholar 

  70. O. Brock, O. Khatib, S. Viji, Task-consistent obstacle avoidance and motion behavior for mobile manipulation, in IEEE International Conference on Robotics and Automation, 2002, pp. 388–393

    Google Scholar 

  71. A. Dietrich, T. Wimbock, A. Albu-Schaffer, G. Hirzinger, Reactive whole-body control: dynamic mobile manipulation using a large number of actuated degrees of freedom. IEEE Robot. Autom. Mag. 19(2), 20–33 (2012)

    Article  Google Scholar 

  72. F. Keith, P.-B. Wieber, N. Mansard, A. Kheddar, Analysis of the discontinuities in prioritized tasks-space control under discreet task scheduling operations, in IEEE International Conference on Intelligent Robots and Systems, 2011, pp. 3887–3892

    Google Scholar 

  73. J. Lee, N. Mansard, J. Park, Intermediate desired value approach for task transition of robots in kinematic control. IEEE Trans. Robot. 28(6), 1260–1277 (2012)

    Article  Google Scholar 

  74. T. Petrič, L. Žlajpah, Smooth continuous transition between tasks on a kinematic control level: Obstacle avoidance as a control problem. Robot. Auton. Syst. 61(9), 948–959 (2013)

    Article  Google Scholar 

  75. D. Nenchev, Y. Tsumaki, M. Uchiyama, Real-time motion control in the neighborhood of singularities: a comparative study between the SC and the DLS methods, in IEEE International Conference on Robotics and Automation, 1999, pp. 506–511

    Google Scholar 

  76. N. Mansard, O. Khatib, A. Kheddar, A unified approach to integrate unilateral constraints in the stack of tasks. IEEE Trans. Robot. 25(3), 670–685 (2009)

    Article  Google Scholar 

  77. T. Petrič, A. Gams, J. Babič, L. Žlajpah, Reflexive stability control framework for humanoid robots. Auton. Robots 34(4), 347–361 (2013)

    Article  Google Scholar 

  78. A. Dietrich, T. Wimbock, A. Albu-Schaffer, G. Hirzinger, Integration of reactive, torque-based self-collision avoidance into a task hierarchy. IEEE Trans. Robot. 28(6), 1278–1293 (2012)

    Article  Google Scholar 

  79. H. Sugiura, M. Gienger, H. Janssen, C. Goerick, Real-time collision avoidance with whole body motion control for humanoid robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, pp. 2053–2058

    Google Scholar 

  80. O. Stasse, A. Escande, N. Mansard, S. Miossec, P. Evrard, A. Kheddar, Real-time (self)-collision avoidance task on a HRP-2 humanoid robot, in IEEE International Conference on Robotics and Automation (IEEE, 2008), pp. 3200–3205

    Google Scholar 

  81. J. Zhao, N.I. Badler, Real time inverse kinematics with joint limits and spatial constraints. Tech. Rep., University of Pennsylvania, 1989

    Google Scholar 

  82. M. De Lasa, A. Hertzmann, Prioritized optimization for task-space control, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 5755–5762

    Google Scholar 

  83. H. Isermann, Linear lexicographic optimization. OR Spektrum 4(4), 223–228 (1982)

    Article  Google Scholar 

  84. D.E. Stewart, J.C. Trinkle, An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and coulomb friction. Int. J. Numer. Methods Eng. 39(15), 2673–2691 (1996)

    Article  MathSciNet  Google Scholar 

  85. K. Yamane, Y. Nakamura, A numerically robust LCP solver for simulating articulated rigid bodies in contact, in Robotics: Science and Systems IV, Zurich (MIT Press, 2008), pp. 89–104

    Google Scholar 

  86. N. Mansard, F. Chaumette, Task sequencing for high-level sensor-based control. IEEE Trans. Robot. 23(1), 60–72 (2007)

    Article  Google Scholar 

  87. N. Mansard, O. Khatib, Continuous control law from unilateral constraints, in IEEE International Conference on Robotics and Automation, 2008, pp. 3359–3364

    Google Scholar 

  88. N. Mansard, A. Remazeilles, F. Chaumette, Continuity of varying-feature-set control laws. IEEE Trans. Autom. Control 54(11), 2493–2505 (2009)

    Article  MathSciNet  Google Scholar 

  89. O. Kanoun, F. Lamiraux, P.-B. Wieber, F. Kanehiro, E. Yoshida, J.-P. Laumond, Prioritizing linear equality and inequality systems: application to local motion planning for redundant robots, in IEEE International Conference on Robotics and Automation, 2009, pp. 2939–2944

    Google Scholar 

  90. A. Escande, N. Mansard, P.-B. Wieber, Fast resolution of hierarchized inverse kinematics with inequality constraints, in IEEE International Conference on Robotics and Automation, 2010, pp. 3733–3738

    Google Scholar 

  91. O. Kanoun, Real-time prioritized kinematic control under inequality constraints for redundant manipulators, in Robotics: Science and Systems VII, ed. by H. Durrant-Whyte, N. Roy, P. Abbeel (MIT Press, Cambridge, MA, 2012), pp. 145–152

    Google Scholar 

  92. D. Montana, The kinematics of contact and grasp. Int. J. Robot. Res. 7(3), 17–32 (1988)

    Article  Google Scholar 

  93. K.H. Hunt, Structural kinematics of in-parallel-actuated robot-arms. J. Mech. Trans. Autom. Des. 105(4), 705 (1983)

    Article  Google Scholar 

  94. A. Dietrich, C. Ott, A. Albu-Schaffer, Multi-objective compliance control of redundant manipulators: Hierarchy, control, and stability, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2013), pp. 3043–3050

    Google Scholar 

  95. L. Sentis, J. Petersen, R. Philippsen, Implementation and stability analysis of prioritized whole-body compliant controllers on a wheeled humanoid robot in uneven terrains. Auton. Robots 35(4), 301–319 (2013)

    Article  Google Scholar 

  96. A. Rennuit, A. Micaelli, X. Merlhiot, C. Andriot, F. Guillaume, N. Chevassus, D. Chablat, P. Chedmail, Passive control architecture for virtual humans, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, pp. 1432–1437

    Google Scholar 

  97. C. Ott, A. Dietrich, A. Albu-Schaffer, Prioritized multi-task compliance control of redundant manipulators. Automatica 53, 416–423 (2015)

    Article  MathSciNet  Google Scholar 

  98. B. Dariush, G.B. Hammam, D. Orin, Constrained resolved acceleration control for humanoids, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, pp. 710–717

    Google Scholar 

  99. G.B. Hammam, P.M. Wensing, B. Dariush, D.E. Orin, Kinodynamically consistent motion retargeting for humanoids. Int. J. Humanoid Robot. 12, 1550017 (2015)

    Google Scholar 

Download references

Acknowledgements

The figures were created with the help of Jie Chen and Keita Sagara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragomir Nenchev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nenchev, D. (2019). Differential Kinematics. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6046-2_2

Download citation

Publish with us

Policies and ethics