Skip to main content

Applications in HHI: Physical Cooperation

  • Reference work entry
  • First Online:
Humanoid Robotics: A Reference

Abstract

Humans critically depend on permanent verbal and nonverbal interaction – for aligning their mental states, for synchronizing their intentions and goals, and also for performing joint tasks, such as carrying a heavy object together, manipulating of objects in a common workspace, or handing over components and building or assembling larger structures in teams. Typically, physical interaction is initiated by a short joint planning dialog and then further accompanied by a stream of verbal utterances. For obtaining a smooth interaction flow in a given situation, humans typically use all their communication modalities and senses, and this often happens even unconsciously. As we move toward the introduction of robotic co-workers that serve humans – some of them will be humanoids; others will be of a different shape – humans will expect them to be integrated into the execution of the task at hand, just as well as if a human co-worker was involved. Such a flawless replacement will only be possible if these robots provide a number of basic action primitives, for example, handover from human to robot and vice versa. The robots must also recognize and anticipate the intention of the human by analyzing and understanding the scene as far as necessary for jointly working on the task. Most importantly, the robotic co-worker must be able to carry on a verbal and nonverbal dialog with the human partner, in parallel with and relating to the physical interaction process. In this chapter, we give an overview of the ingredients of an integrated physical interaction scenario. This includes methods to plan activities, to produce safe and human-interpretable motion, to interact through multimodal communication, to schedule actions for a joint task, and to align and synchronize the interaction by understanding human intentions. We summarize the state of the art in physical human-humanoid interaction systems and conclude by presenting three humanoid systems as case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Ambrose, H. Aldridge, R. Askew, R.R. Burridge, W. Bluethmann, M. Diftler, C. Lovchik, D. Magruder, F. Rehnmark, Robonaut: NASA’s space humanoid. IEEE Intell. Syst. Appl. 15(4), 57–63 (2000). https://doi.org/10.1109/5254.867913

    Article  Google Scholar 

  2. R.C. Arkin, Behavior-Based Robotics. Intelligent Robotics and Autonomous Agents (MIT Press, Cambridge, 1998)

    Google Scholar 

  3. L. Aryananda, J. Weber, MERTZ: A quest for a robust and scalable active vision humanoid head robot, in Proceedings of the IEEE/RAS International Conference on Humanoid Robots, Santa Monica, 2004, pp. 513–532. https://doi.org/10.1109/ICHR.2004.1442668

  4. E.G. Bard, R.L. Hill, M.E. Foster, M. Araia, Tuning accessibility of referring expressions in situated dialogue. Lang. Cogn. Neurosci. 29(8), 928–949 (2014). https://doi.org/10.1080/23273798.2014.895845

    Article  Google Scholar 

  5. H. Bekkering, E.R.A. de Bruijn, R.H. Cuijpers, R. Newman-Norlund, H.T. van Schie, R. Meulenbroek, Joint action: neurocognitive mechanisms supporting human interaction. Top. Cogn. Sci. 1(2), 340–352 (2009). https://doi.org/10.1111/j.1756-8765.2009.01023.x

    Article  Google Scholar 

  6. M. Bender, M. Braun, P. Rally, O. Scholtz, Lightweight Robots in Manual Assembly – Best to Start Simply! Examining Companies’ Initial Experiences with Lightweight Robots. Fraunhofer Institute for Industrial Engineering, Stuttgart, 2016

    Google Scholar 

  7. E. Bicho, L. Louro, N. Hipólito, W. Erlhagen, A dynamic field approach to goal inference and error monitoring for human-robot interaction, in Proceedings of the Symposium on New Frontiers in Human-Robot Interaction, Adaptive and Emergent Behaviour and Complex Systems Convention, Edinburgh, 2009, pp. 31–37

    Google Scholar 

  8. A. Billard, S. Calinon, R. Dillmann, S. Schaal, Robot programming by demonstration, chap. 59, in Springer Handbook of Robotics, ed. by B. Siciliano, O. Khatib, 1st edn. (Springer, Heidelberg, 2008), pp. 1371–1394

    Chapter  Google Scholar 

  9. C. Breazeal, A. Brooks, D. Chilongo, J. Gray, G. Hoffman, C. Kidd, H. Lee, J. Lieberman, A. Lockerd, Working collaboratively with humanoid robots, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots, Santa Monica, 2004, pp. 253–272. https://doi.org/10.1109/ICHR.2004.1442126

  10. A. van Breemen, X. Yan, B. Meerbeek, iCat: an animated user-interface robot with personality, in Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, Utrecht, 2005, pp. 143–144. https://doi.org/10.1145/1082473.1082823

  11. M. Brenner, I. Kruijff-Korbayová, A continual multiagent planning approach to situated dialogue, in Proceedings of the Workshop on Semantics and Pragmatics of Dialogue, London, 2008

    Google Scholar 

  12. J. Carletta, R.L Hill, C. Nicol, T. Taylor, J.P. de Ruiter, E.G. Bard, Eyetracking for two-person tasks with manipulation of a virtual world. Behav. Res. Methods 42(1), 254–265 (2010). https://doi.org/10.3758/BRM.42.1.254

    Article  Google Scholar 

  13. H.H Clark, Pointing and placing, in Pointing: Where Language, Culture, and Cognition Meet, ed. by S. Kita (Lawrence Erlbaum Associates, Mahwah, 2003)

    Google Scholar 

  14. H.H. Clark, D. Wilkes-Gibbs, Referring as a collaborative process. Cognition 22(1), 1–39 (1986). https://doi.org/10.1016/0010-0277(86)90010-7

    Article  Google Scholar 

  15. R. Dale, E. Reiter, Computational interpretations of the Gricean maxims in the generation of referring expressions. Cogn. Sci. 19(2), 233–263 (1995). https://doi.org/10.1207/s15516709cog1902_3

    Article  Google Scholar 

  16. M.A. Diftler, J.S. Mehling, M.E. Abdallah, N.A. Radford, L.B. Bridgwater, A.M. Sanders, R.S. Askew, D.M. Linn, J.D. Yamokoski, F.A. Permenter, B.K. Hargrave, R. Platt, R.T. Savely, R.O. Ambrose, Robonaut 2 – the first humanoid robot in space, in Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, 2011, pp. 2178–2183. https://doi.org/10.1109/ICRA.2011.5979830

  17. A. Edsinger, Robot manipulation in human environments. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, 2007

    Google Scholar 

  18. A. Edsinger, C.C. Kemp, Two arms are better than one: a behavior based control system for assistive bimanual manipulation, in Recent Progress in Robotics: Viable Robotic Service to Human, vol. 370, ed. by S. Lee, I.H. Suh, M.S. Kim, Lecture Notes in Control and Information Sciences (Springer, Berlin/Heidelberg, 2007), pp. 345–355. https://doi.org/10.1007/978-3-540-76729-9_27

  19. M.E. Foster, E.G. Bard, R.L. Hill, M. Guhe, J. Oberlander, A. Knoll, The roles of haptic-ostensive referring expressions in cooperative, task-based human-robot dialogue, in Proceedings of the ACM/IEEE International Conference on Human Robot Interaction, Amsterdam, 2008, pp. 295–302. https://doi.org/10.1145/1349822.1349861

  20. M.E. Foster, A. Gaschler, M. Giuliani, How can I help you? Comparing engagement classification strategies for a robot bartender, in Proceedings of the International Conference on Multimodal Interaction, Sydney, 2013, pp. 255–262. https://doi.org/10.1145/2522848.2522879

  21. M.E. Foster, A. Gaschler, M. Giuliani, A. Isard, M. Pateraki, R.P.A. Petrick, Two people walk into a bar: dynamic multi-party social interaction with a robot agent, in Proceedings of the ACM International Conference on Multimodal Interaction, Santa Monica, 2012, pp. 3–10. https://doi.org/10.1145/2388676.2388680

  22. M.E. Foster, M. Giuliani, A. Isard, Task-based evaluation of context-sensitive referring expressions in human-robot dialogue. Lang. Cogn. Neurosci. 29(8), 1018–1034 (2014). https://doi.org/10.1080/01690965.2013.855802

    Article  Google Scholar 

  23. M.E. Foster, M. Giuliani, T. Müller, M. Rickert, A. Knoll, W. Erlhagen, E. Bicho, N. Hipólito, L. Louro, Combining goal inference and natural-language dialogue for human-robot joint action, in Proceedings of the International Workshop on Combinations of Intelligent Methods and Applications, European Conference on Artificial Intelligence, Patras, 2008

    Google Scholar 

  24. M.E. Foster, C. Matheson, Following assembly plans in cooperative, task-based human-robot dialogue, in Proceedings of the Workshop on the Semantics and Pragmatics of Dialogue, London, 2008

    Google Scholar 

  25. A. Gaschler, S. Jentzsch, M. Giuliani, K. Huth, J. de Ruiter, A. Knoll, Social behavior recognition using body posture and head pose for human-robot interaction, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, 2012, pp. 2128–2133. https://doi.org/10.1109/IROS.2012.6385460

  26. A. Gaschler, I. Kessler, R.P.A. Petrick, A. Knoll, Extending the knowledge of volumes approach to robot task planning with efficient geometric predicates, in Proceedings of the IEEE International Conference on Robotics and Automation, Seattle, 2015, pp. 3061–3066. https://doi.org/10.1109/ICRA.2015.7139619

  27. A. Gaschler, R.P.A. Petrick, M. Giuliani, M. Rickert, A. Knoll, KVP: a knowledge of volumes approach to robot task planning, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, 2013, pp. 202–208. https://doi.org/10.1109/IROS.2013.6696354

  28. M. Giuliani, A. Knoll, MultiML – a general purpose representation language for multimodal human utterances, in Proceedings of the IEEE International Conference on Multimodal Interfaces, Chania, 2008, pp. 165–172. https://doi.org/10.1145/1452392.1452424

  29. M. Giuliani, R. Petrick, M.E. Foster, A. Gaschler, A. Isard, M. Pateraki, M. Sigalas, Comparing task-based and socially intelligent behaviour in a robot bartender, in Proceedings of the ACM International Conference on Multimodal Interaction, Sydney, 2013, pp. 263–270. https://doi.org/10.1145/2522848.2522869

  30. S. Glasauer, M. Huber, P. Basili, A. Knoll, T. Brandt, Interacting in time and space: investigating human-human and human-robot joint action, in Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication, Viareggio, 2010, pp. 252–257. https://doi.org/10.1109/ROMAN.2010.5598638

  31. S. Haddadin, A. Albu-Schäffer, G. Hirzinger, Requirements for safe robots: measurements, analysis and new insights. Int. J. Robot. Res. 28(11–12), 1507–1527 (2009). https://doi.org/10.1177/0278364909343970

    Article  Google Scholar 

  32. M. Henning, A new approach to object-oriented middleware. IEEE Internet Comput. 8(1), 66–75 (2004). https://doi.org/10.1109/MIC.2004.1260706

    Article  MathSciNet  Google Scholar 

  33. H. Hirukawa, Kanehiro, K. Kaneko, S. Kajita, K. Fujiwara, Y. Kawai, F. Tomita, S. Hirai, K. Tanie, T. Isozumi, K. Akachi, T. Kawasaki, S. Ota, K. Yokoyama, H. Handa, Y. Fukase, J. ichiro Maeda, Y. Nakamura, S. Tachi, H. Inoue, Humanoid robotics platforms developed in HRP. Robot. Auton. Syst. 48(4), 165–175 (2004). https://doi.org/10.1016/j.robot.2004.07.007

    Article  Google Scholar 

  34. M. Huber, A. Knoll, T. Brandt, S. Glasauer, When to assist? – modelling human behaviour for hybrid assembly systems, in Proceedings of the International Symposium and the German Conference on Robotics, Munich, 2010, pp. 165–170

    Google Scholar 

  35. M. Huber, H. Radrich, C. Wendt, M. Rickert, A. Knoll, T. Brandt, S. Glasauer, Evaluation of a novel biologically inspired trajectory generator in human-robot interaction, in Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication, Toyama, 2009, pp. 639–644. https://doi.org/10.1109/ROMAN.2009.5326233

  36. M. Huber, M. Rickert, A. Knoll, T. Brandt, S. Glasauer, Human-robot interaction in handing-over tasks, in Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication, Munich, 2008, pp. 107–112. https://doi.org/10.1109/ROMAN.2008.4600651

  37. M. Hulstijn, R. Meulenbroek, M. Wijers, J.P. de Ruiter, A frequency analysis of joint-action primitives. Deliverable D2.3, EU FP6 IST Cognitive Systems Integrated Project JAST (FP6-003747-IP) (2005)

    Google Scholar 

  38. S. Jentzsch, A. Gaschler, O. Khatib, A. Knoll, MOPL: a multi-modal path planner for generic manipulation tasks, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, 2015, pp. 6208–6214. https://doi.org/10.1109/IROS.2015.7354263

  39. M. Jindai, S. Shibata, T. Yamamoto, A. Shimizu, A study on robot-human system with consideration of individual preferences. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 46(3), 1075–1083 (2003). https://doi.org/10.1299/jsmec.46.1075

    Article  Google Scholar 

  40. H. Kazerooni, Exoskeletons for human performance augmentation, chap. 33, in Springer Handbook of Robotics, , 1st edn. ed. by B. Siciliano, O. Khatib (Springer, Heidelberg, 2008), pp. 773–793

    Chapter  Google Scholar 

  41. F.P. Kirgis, P. Katsos, M. Kohlmaier, Collaborative robotics, in Robotic Fabrication in Architecture, Art and Design, ed. by D. Reinhardt, R. Saunders, J. Burry (Springer, Cham, 2016), pp. 448–453. https://doi.org/10.1007/978-3-319-26378-6_36

    Chapter  Google Scholar 

  42. A. Knoll, B. Hildenbrandt, J. Zhang, Instructing cooperating assembly robots through situated dialogues in natural language, in Proceedings of the IEEE International Conference on Robotics and Automation, Albuquerque, 1997, pp. 888–894. https://doi.org/10.1109/ROBOT.1997.620146

  43. S. Kock, T. Vittor, B. Matthias, H. Jerregard, M. Kllman, I. Lundberg, R. Mellander, M. Hedelind, Robot concept for scalable, flexible assembly automation: a technology study on a harmless dual-armed robot, in Proceedings of the IEEE International Symposium on Assembly and Manufacturing, Tampere, 2011. https://doi.org/10.1109/ISAM.2011.5942358

  44. K. Kosuge, M. Sato, N. Kazamura, Mobile robot helper, in Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, 2000, pp. 583–588. https://doi.org/10.1109/ROBOT.2000.844116

  45. K. Lay, E. Prassler, R. Dillmann, G. Grunwald, M. Hägele, G. Lawitzky, A. Stopp, W. von Seelen, MORPHA: communication and interaction with intelligent, anthropomorphic robot assistants, in Tagungsband Statustage Leitprojekte Mensch-Technik-Interaktion in der Wissensgesellschaft, Saarbrücken, 2001

    Google Scholar 

  46. S. Loth, K. Huth, J.P. de Ruiter, Automatic detection of service initiation signals used in bars. Front. Psychol. 4(557) (2013). https://doi.org/10.3389/fpsyg.2013.00557

  47. S. Loth, K. Jettka, M. Giuliani, J.P. de Ruiter, Ghost-in-the-machine reveals human social signals for human-robot interaction. Front. Psychol. 6(1641) (2015). https://doi.org/10.3389/fpsyg.2015.01641

  48. W.C. Mann, S.A Thompson, Rhetorical structure theory: toward a functional theory of text organization. Text 8(3), 243–281 (1988). https://doi.org/10.1515/text.1.1988.8.3.243

  49. N. Mansard, O. Stasse, P. Evrard, A. Kheddar, A versatile generalized inverted kinematics implementation for collaborative working humanoid robots: the stack of tasks, in Proceedings of the International Conference on Advanced Robotics, Munich, 2009, pp. 1–6

    Google Scholar 

  50. D. McNeill, Hand and Mind: What Gestures Reveal about Thought (University of Chicago Press, Chicago, 1992)

    Google Scholar 

  51. R.G.J. Meulenbroek, J. Bosga, M. Hulstijn, S. Miedl, Joint-action coordination in transferring objects. Exp. Brain Res. 180(2), 333–343 (2007). https://doi.org/10.1007/s00221-007-0861-z

    Article  Google Scholar 

  52. T. Müller, P. Ziaie, A. Knoll, A wait-free realtime system for optimal distribution of vision tasks on multicore architectures, in Proceedings of the International Conference on Informatics in Control, Automation and Robotics, Funchal, 2008, pp. 301–306

    Google Scholar 

  53. G. Panin, A. Ladikos, A. Knoll, An efficient and robust real-time contour tracking system, in Proceedings of the IEEE International Conference on Computer Vision Systems, New York, 2006, pp. 44–51. https://doi.org/10.1109/ICVS.2006.13

  54. R. Petrick, M.E. Foster, Planning for social interaction in a robot bartender domain, in Proceedings of the International Conference on Automated Planning and Scheduling, Rome, 2013, pp. 389–397

    Google Scholar 

  55. R.P.A. Petrick, F. Bacchus, Extending the knowledge-based approach to planning with incomplete information and sensing, in Proceedings of the International Conference on Automated Planning and Scheduling, Whistler, 2004, pp. 2–11

    Google Scholar 

  56. G.A. Pratt, M.M. Williamson, Series elastic actuators, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburgh, 1995, pp. 399–406. https://doi.org/10.1109/IROS.1995.525827

  57. M. Rickert, Efficient motion planning for intuitive task execution in modular manipulation systems. Dissertation, Technical University of Munich, Munich, 2011

    Google Scholar 

  58. M. Rickert, M.E. Foster, M. Giuliani, T. By, G. Panin, A. Knoll, Integrating language, vision and action for human robot dialog systems, in Proceedings of the International Conference on Universal Access in Human-Computer Interaction (HCI), Beijing. Lecture Notes in Computer Science, vol. 4555 (Springer, 2007), pp. 987–995. https://doi.org/10.1007/978-3-540-73281-5_108

  59. J.P. de Ruiter, The production of gesture and speech, in Language and Gesture, ed. by D. McNeill (Cambridge University Press, Cambridge, 2000), pp. 284–311. https://doi.org/10.1017/CBO9780511620850

    Google Scholar 

  60. J.P. de Ruiter, A. Bangerter, P. Dings, The interplay between gesture and speech in the production of referring expressions: Investigating the tradeoff hypothesis. Top. Cogn. Sci. 4(2), 232–248 (2012). https://doi.org/10.1111/j.1756-8765.2012.01183.x

    Article  Google Scholar 

  61. S. Russell, P. Norvig, Classical planning, chap. 10, in Artificial Intelligence: A Modern Approach, 3rd edn. (Pearson, Upper Saddle River, 2010)

    Google Scholar 

  62. R.D. Schraft, C. Meyer, C. Parlitz, E. Helms, PowerMate – a safe and intuitive robot assistant for handling and assembly tasks, in Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, 2005, pp. 4074–4079. https://doi.org/10.1109/ROBOT.2005.1570745

  63. W.C. So, S. Kita, S. Goldin-Meadowa, Using the hands to identify who does what to whom: Gesture and speech go hand-in-hand. Cogn. Sci. 33(1), 115–125 (2009). https://doi.org/10.1111/j.1551-6709.2008.01006.x

    Article  Google Scholar 

  64. W.T. Townsend, J.K. Salisbury, Mechanical design for whole-arm manipulation, in Robots and Biological Systems: Towards a New Bionics?, vol. 102 NATO ASI Series (Springer, Berlin/Heidelberg, 1993). https://doi.org/10.1007/978-3-642-58069-7_9

    Chapter  Google Scholar 

  65. D.R. Traum, S. Larsson, The information state approach to dialogue management, in Current and New Directions in Discourse and Dialogue, vol. 22 ed. by J. van Kuppevelt, R.W. Smith, Text, Speech and Language Technology (Springer, Dordrecht, 2003), pp. 325–353. https://doi.org/10.1007/978-94-010-0019-2_15

    Google Scholar 

  66. A.L.P. Ureche, K. Umezawa, Y. Nakamura, A. Billard, Task parameterization using continuous constraints extracted from human demonstrations. IEEE Trans. Robot. 31(6), 1458–1471 (2015). https://doi.org/10.1109/TRO.2015.2495003

    Article  Google Scholar 

  67. J. Versace, A review of the severity index. Technical Report 710881, SAE International (1971). https://doi.org/10.4271/710881

  68. K. Yokoyama, H. Handa, T. Isozumi, Y. Fukase, K. Kaneko, F. Kanehiro, Y. Kawai, F. Tomita, H. Hirukawa, Cooperative works by a human and a humanoid robot, in Proceedings of the IEEE International Conference on Robotics and Automation, Taipei, 2003, pp. 2985–2991. https://doi.org/10.1109/ROBOT.2003.1242049

  69. Ziaie P., Müller T., Foster M.E., Knoll A. (2008) A Naïve Bayes Classifier with Distance Weighting for Hand-Gesture Recognition. In: Sarbazi-Azad H., Parhami B., Miremadi SG., Hessabi S. (eds) Advances in Computer Science and Engineering. Communications in Computer and Information Science, vol 6. pp. 308-315, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89985-3_38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Rickert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rickert, M., Gaschler, A., Knoll, A. (2019). Applications in HHI: Physical Cooperation. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6046-2_129

Download citation

Publish with us

Policies and ethics