Skip to main content

Soft Impact

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abrate S (2016) Soft impacts on aerospace structures. Prog Aerosp Sci 81:1–17. https://doi.org/10.1016/j.paerosci.2015.11.005. Dynamic loading aspects of composite materials

    Article  Google Scholar 

  • Airoldi A, Cacchione B (2006) Modelling of impact forces and pressures in lagrangian bird strike analyses. Int J Impact Eng 32:1651–1677

    Article  Google Scholar 

  • Allaeys F, Luyckx G, Paepegem WV, Degrieck J (2017) Characterization of real and substitute birds through experimental and numerical analysis of momentum, average impact force and residual energy in bird strike on three rigid targets: a flat plate, a wedge and a splitter. Int J Impact Eng 99(Supplement C):1–13. https://doi.org/10.1016/j.ijimpeng.2016.08.009

    Article  Google Scholar 

  • Anghileri M, Castelletti L, Invernizzi F, Mascheroni M (2005a) Birdstrike onto the composite intake of a turbofan engine. In: 5th European LS-DYNA user’s conference, Birmingham

    Google Scholar 

  • Anghileri M, Castelletti L, Tirelli M (2005b) Fluid-structure interaction of water filled tanks during the impact with the ground. Int J Impact Eng 31(3): 235–254

    Article  Google Scholar 

  • Anghileri M, Invernizzi F, Mascheroni M (2005c) A survey of numerical models for hail impact analysis using explicit finite element codes. Int J Impact Eng 31:929–944

    Article  Google Scholar 

  • Appleby-Thomas GJ, Hazell PJ, Dahini G (2011) On the response of two commercially-important CFRP structures to multiple ice impacts. Compos Struct 93(10):2619–2627

    Article  Google Scholar 

  • Artero-Guerrero J, Pernas-Sánchez J, Varas D, López-Puente J (2013) Numerical analysis of CFRP fluid-filled tubes subjected to high-velocity impact. Compos Struct 96:286–297

    Article  Google Scholar 

  • Artero-Guerrero J, Pernas-Sánchez J, López-Puente J, Varas D (2014) On the influence of filling level in CFRP aircraft fuel tank subjected to high velocity impacts. Compos Struct 107:570–577

    Article  Google Scholar 

  • Artero-Guerrero J, Pernas-Sánchez J, López-Puente J, Varas D (2015) Experimental study of the impactor mass effect on the low velocity impact of carbon/epoxy woven laminates. Compos Struct 133(Supplement C):774–781. https://doi.org/10.1016/j.compstruct.2015.08.027

    Article  Google Scholar 

  • Authors V (2000) Accident on 25 July 2000 at la patte d’oie in gonesse to the concorde registered f-btsc by air France. Ministere de l’Équipement des transports et du logement Buereau d’enquetes et d’analyses pour la secourite de l’aviation civile

    Google Scholar 

  • Banks R, Chandrasekhara D (1963) Experimental investigation of the penetration of a high-velocity gas jet through a liquid surface. J Fluid Mech 15:13–34

    Article  Google Scholar 

  • Baughn T, Graham L (1988) Simulation of a birdstrike impact on aircraft canopy material. J Aircr 25:659–664

    Article  Google Scholar 

  • Budgey R (2000) The development of a substitute artificial bird by the international birdstrike research group for use in aircraft component testing. In: International bird strike committee ISBC25/WP-IE3, Amsterdam

    Google Scholar 

  • Carney K, Melis M, Fasanella E, Lyle K, Gabrys J (2004) Material modeling of space shuttle leading edge and external tank materials for use in the Columbia accident investigation. NASA Report 20040070935

    Google Scholar 

  • Carney K, Benson D, Dubois P, Lee R (2006) A phenomenological high strain rate model with failure for ice. Int J Solids Struct 43:7820–7839

    Article  Google Scholar 

  • Chuzel Y (2009) Caractérisation expérimentale et simulation numérique d’impacts de glace a haute vitesse. PhD thesis, INSA, Lyon

    Google Scholar 

  • Combescure A, Chuzel-Marmot Y, Fabis J (2011) Experimental study of high-velocity impact and fracture of ice. Int J Solids Struct 48(20):2779–2790

    Article  Google Scholar 

  • Eschenfedler P (2001) Wildlife hazards to aviation. In: ICAO/ACI airports conference, Miami

    Google Scholar 

  • Fasanella E, Boitnott R (2006) Dynamic crush characterization of ice. Technical report, NASA

    Google Scholar 

  • Fasanella E, Lyle K, Gabrys J, Melis M, Carney K (2004) Test and analysis correlation of form impact onto space shuttle wing leading edge RCC panel 8. NASA Report 20040075041

    Google Scholar 

  • Georgiadis S, Gunnion A, Thomson R, Cartwright B (2008) Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge. Compos Struct 86:258–268

    Article  Google Scholar 

  • González E, Maimí P, Camanho P, Lopes C, Blanco N (2011) Effects of ply clustering in laminated composite plates under low-velocity impact loading. Compos Sci Technol 71(6):805–817. https://doi.org/10.1016/j.compscitech.2010.12.018

    Article  Google Scholar 

  • Guégan P, Othman R, LeBreton D, Pasco F, Swiergiel N, Thevenet P (2010) Experimental investigation of rubber ball impacts on aluminium plates. Int J Crashworthiness 15:391–399

    Article  Google Scholar 

  • Hancox N (1973) The erosion of carbon fibre reinforced plastic by repeated liquid impact. Wear 23(1):71–81. https://doi.org/10.1016/0043-1648(73)90042-2

    Article  Google Scholar 

  • Hu D, Song B, Wang D, Chen Z (2016) Experiment and numerical simulation of a full-scale helicopter composite cockpit structure subject to a bird strike. Compos Struct 149(Supplement C):385–397. https://doi.org/10.1016/j.compstruct.2016.04.035

    Article  Google Scholar 

  • Hughes K, Vignjevic R, Campbell J, Vuyst TD, Djordjevic N, Papagiannis L (2013) From aerospace to offshore: bridging the numerical simulation gaps-simulation advancements for fluid structure interaction problems. Int J Impact Eng 61:48–63

    Article  Google Scholar 

  • Johnson A, Holzapfel M, Kraft H, Reiter A (2006) Measurement of ice mechanical properties. Technical report IB 435 2006/55, DLR

    Google Scholar 

  • Johnson A, Toso-Pentecôte N, Schwinn D (2009) Modelling damage in composite aircraft panels under tyre rubber impact. In: Proceeding of 17th international conference on composite materials

    Google Scholar 

  • Jones S (1997) High strain-rate compression tests on ice. J Phys Chem B 101:6099–6101

    Article  Google Scholar 

  • Karagiozova D, Mines R (2007) Impact of aircraft rubber tyre fragments on aluminium alloy plates: II – numerical simulation using LS-DYNA. Int J Impact Eng 34:647–667

    Article  Google Scholar 

  • Kim H, Kedward K (1999) Experimental and numerical analysis correlation of hail ice impacting composite structures. Compos Struct 68:1–11

    Article  Google Scholar 

  • Kim H, Welch D, Kedward K (2003) Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels. Compos Part A Appl Sci Manuf 34:25–41

    Article  Google Scholar 

  • Lacome J (2004) Smoothed particle hydrodynamics method in LS-DYNA. In: 3rd German LS-DYNA forum, Bamberg

    Google Scholar 

  • Lewis C (1995) Engine bird ingestion. Airliner 1:17–19

    Google Scholar 

  • Liu J, Li Y, Xu F (2008) The numerical simulation of a bird-impact on an aircraft windshield by using the SPH method. Adv Mater Res 33–37:851–856

    Article  Google Scholar 

  • Liu J, Li Y, Gao X (2014) Bird strike on a flat plate: experiments and numerical simulations. Int J Impact Eng 70(Supplement C):21–37. https://doi.org/10.1016/j.ijimpeng.2014.03.006

    Article  Google Scholar 

  • Liu J, Li Y, Yu X, Tang Z, Gao X, Lv J, Zhang Z (2017) A novel design for reinforcing the aircraft tail leading edge structure against bird strike. Int J Impact Eng 105(Supplement C):89–101. https://doi.org/10.1016/j.ijimpeng.2016.12.017. Design and analysis of protective structures 2015

    Article  Google Scholar 

  • López-Puente J, Zaera R, Navarro C (2002) The effect of low temperatures on the intermediate and high velocity impact response of CFRPs. Compos Part B Eng 33:559–566

    Article  Google Scholar 

  • López-Puente J, Zaera R, Navarro C (2008) Experimental and numerical analysis of normal and oblique ballistic impacts on thin carbon/epoxy woven laminates. Compos Part A Appl Sci Manuf 39:374–387

    Article  Google Scholar 

  • MacKinnon B (2004) Sharing the skies: an aviation industry guide to the management of wildlife hazards. Civil Aviation, Transport Canada

    Google Scholar 

  • Mata-Díaz A, López-Puente J, Varas D, Pernas-Sánchez J, Artero-Guerrero J (2017) Experimental analysis of high velocity impacts of composite fragments. Int J Impact Eng 103(Supplement C):231–240. https://doi.org/10.1016/j.ijimpeng.2017.01.013

    Article  Google Scholar 

  • Matthewson MJ, Gorham DA (1981) An investigation of the liquid impact properties of a gfrp radome material. J Mater Sci 16(6):1616–1626. https://doi.org/10.1007/BF02396880

    Article  Google Scholar 

  • McCallum S, Constantinou C (2005) The influence of bird-shape in bird-strike analysis. In: 5th European LS-DYNA users conference, Birmingham

    Google Scholar 

  • Meguid S, Mao R, Ng T (2008) FE analysis of geometry effects of an artificial bird striking an aeroengine fan blade. Int J Impact Eng 35:487–498

    Article  Google Scholar 

  • Melis M, Carney K, Gabrys J, Fasanella E, Lyle K (2004) A summary of the space shuttle Columbia tragedy and the use of ls dyna in the accident investigation and return to flight efforts. NASA Report 20040075041

    Google Scholar 

  • Mines R, McKown S, Birch R (2007) Impact of aircraft rubber tyre fragments on aluminium alloy plates: I-experimental. Int J Impact Eng 34:627–646

    Article  Google Scholar 

  • Neves R, Micheli G, Alves M (2010) An experimental and numerical investigation on tyre impact. Int J Impact Eng 37:685–693

    Article  Google Scholar 

  • Nizampatnam L (2007) Models and methods for bird strike load predictions. PhD thesis, Wichita State University

    Google Scholar 

  • Ogden R (1998) Nonlinear elastic deformations. Dover Publication Inc. Mineola, New York, USA

    MATH  Google Scholar 

  • Park H, Kim H (2010) Damage resistance of single lap adhesive composite joints by transverse ice impact. Int J Impact Eng 37:177–184

    Article  Google Scholar 

  • Pereira J, Padula S, Revilock D, Melis M (2006) Forces generated by high velocity impact of ice on a rigid structure. Technical report TM-2066-214263, NASA

    Google Scholar 

  • Pernas-Sánchez J, Pedroche D, Varas D, López-Puente J, Zaera R (2012) Numerical modeling of ice behavior under high velocity impacts. Int J Solids Struct 49(14):1919–1927

    Article  Google Scholar 

  • Pernas-Sánchez J, Artero-Guerrero JA, Varas D, López-Puente J (2014) Experimental analysis of normal and oblique high velocity impacts on carbon/epoxy tape laminates. Compos Part A Appl Sci Manuf 60(Supplement C):24–31. https://doi.org/10.1016/j.compositesa.2014.01.006

    Article  Google Scholar 

  • Pernas-Sánchez J, Artero-Guerrero JA, Varas D, López-Puente J (2015) Analysis of ice impact process at high velocity. Exp Mech 55(9):1669–1679

    Article  Google Scholar 

  • Pernas-Sánchez J, Artero-Guerrero J, Varas D, López-Puente J (2016a) Experimental analysis of ice sphere impacts on unidirectional carbon/epoxy laminates. Int J Impact Eng 96(Supplement C):1–10. https://doi.org/10.1016/j.ijimpeng.2016.05.010

    Article  Google Scholar 

  • Reese S, Raible T, Wriggers P (2001) Finite element modelling of orthotropic material behaviour in pneumatic members. Int J Solids Struct 38:9525–9544

    Article  Google Scholar 

  • Salehi H, Ziaei-Rad S, Vaziri-Zanjani M (2010) Bird impact effects on different types of aircraft bubble windows using numerical and experimental methods. Int J Crashworthiness 15:93–106

    Article  Google Scholar 

  • Schulson E (2001) Brittle failure of ice. Eng Fract Mech 68:1839–1887

    Article  Google Scholar 

  • Seddon CM, Moodie K, Thyer AM, Moatamedi M (2004) Preliminary analysis of fuel tank impact. Int J Crashworthiness 9(3):237–244. https://doi.org/10.1533/ijcr.2004.0277

    Article  Google Scholar 

  • Shazly M, Prakash V, Lerch B (2009) High strain-rate behavior of ice under uniaxial compression. Int J Solids Struct 46:1499–1515

    Article  Google Scholar 

  • Short J, Kelley M, Speelman R, McCarty R (2000) Birdstrike prevention: applying aeroscience and bio-science. In: International bird strike committee, IBSC25/WP-RS4, Amsterdam

    Google Scholar 

  • Stoll F, Brockman R (1997) Finite element simulation of high-speed soft-body impacts. In: Proceedings of the 38th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics & materials conference, Kissimmee, pp 334–344

    Google Scholar 

  • Tippmann J, Kim H, Rhymer J (2013) Experimentally validated strain rate dependent material model for spherical ice impact simulation. Int J Impact Eng 57:43–54

    Article  Google Scholar 

  • Toso N, Johnson A (2011) LIBCOS-load upon impact behaviour of composite structure research project EASA.2009/3. Technical report, European Aviation Safety Agency

    Google Scholar 

  • Treloar L (1975) The physics of rubber elasticity. Oxford Clarendon Press, Oxford, UK

    Google Scholar 

  • Varas D, Zaera R, López-Puente J (2009) Numerical modelling of the hydrodynamic ram phenomenon. Int J Impact Eng 36(3):363–374

    Article  Google Scholar 

  • Varas D, Zaera R, López-Puente J (2012) Numerical modelling of partially filled aircraft fuel tanks submitted to Hydrodynamic Ram. Aerosp Sci Technol 16(1):19–28

    Article  Google Scholar 

  • Watanabe Y, Kaldjian M (1985) Modelling and analysis of bias-ply motorcycle tires. Math Model 6:80

    Article  Google Scholar 

  • Wilbeck J (1978) Impact behavior of low strength projectiles. Technical report AFML-TR-77-134, Air Force Materials Laboratory

    Google Scholar 

  • Wu L, Guo Y, Li Y (2009) Bird strike simulation on sandwich composite structure of aircraft radome. Explosion Shock Waves 29:642–647

    Google Scholar 

  • Zammit A, Kim M, Bayandor J (2010) Bird-strike damage tolerance analysis of composite turbofan engines. In: ICAS 2010, 27th international congress of the aeronautical sciences, Nice

    Google Scholar 

  • Zhu S, Tong M (2008) Study on bird shape sensitivity to dynamic response of bird strike on aircraft windshield. J Nanjing Univ Aeron Astronaut 40:551–555

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Artero-Guerrero .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Artero-Guerrero, J.A., Pernas-Sánchez, J., Varas, D., López-Puente, J. (2019). Soft Impact. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_209-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_209-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics