Skip to main content

Thermophysikalische Stoffwerte sonstiger reiner Fluide bei Sättigung

  • Living reference work entry
  • First Online:
VDI-Wärmeatlas

Part of the book series: Springer Reference Technik ((VDISR))

  • 1174 Accesses

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  1. Ahrendts, J., Baehr, H.D.: Die thermodynamischen Eigenschaften von Ammoniak. VDI-Forschungsheft 596. VDI-Verlag, Düsseldorf (1979)

    Google Scholar 

  2. Angus, S., Armstrong, B., De Reuck, K.M.: Chlorine – Tentative Tables. IUPAC Chemical Data Series, No. 31. Pergamon Press, Oxford (1985)

    Google Scholar 

  3. Assael, M.J., Ramires, M.L.V., Nietro de Castro, C.A., Wakeham, W.A.: Benzene: a further liquid thermal conductivity standard. J. Phys. Chem. Ref. Data. 19, 113–117 (1990)

    Article  Google Scholar 

  4. Baidakov, V.G., Sulla, I.I.: Surface tension of propane and isobutane at near-critical temperatures. Russ. J. Phys. Chem. 59, 551–554 (1985)

    Google Scholar 

  5. Bondi, A.: Estimation of the heat capacity of liquids. Ind. Eng. Chem. Fundam. 5, 442–449 (1966)

    Article  Google Scholar 

  6. Borreson, R.W., Schorr, G.R., Yaws, C.L.: Correlation constants for chemical compounds – heat capacities of gases. Chem. Eng. 16, 79–81 (1976)

    Google Scholar 

  7. Brock, J.R., Bird, R.B.: Surface tension and the principle of corresponding states. AIChE J. 1, 174–177 (1955)

    Article  Google Scholar 

  8. Bücker, D., Wagner, W.: A reference equation of state for the thermodynamic properties of ethane for temperatures from the melting line to 675 K and pressures up to 900 MPa. J. Phys. Chem. Ref. Data 35, 205–266 (2006)

    Article  Google Scholar 

  9. Bücker, D., Wagner, W.: Reference equations of state for the thermodynamic properties of fluid phase n-butane and isobutane. J. Phys. Chem. Ref. Data 35, 929–1019 (2006)

    Article  Google Scholar 

  10. Calado, J.C.G., McLure, I.A., Soares, V.A.M.: Surface tension for octafluorocyclobutane, n-butane and their mixtures from 233 K to 254 K, and vapour pressure, excess gibbs function and excess volume for the mixture at 233 K. Fluid Phase Equilib. 2, 199–213 (1978)

    Article  Google Scholar 

  11. Carmichael, L.T., Jacobs, J., Sage, B.H.: Thermal conductivity of fluid n-pentane. J. Chem. Eng. Data 14, 31–37 (1969)

    Article  Google Scholar 

  12. Chase, J.D.: Persönliche Mitteilung (1979)

    Google Scholar 

  13. Chen, N.H.: Generalized correlation for latent heat of vaporization. J. Chem. Eng. Data 10, 207–210 (1965)

    Article  Google Scholar 

  14. Chung, T.H., Lee, L.L., Starling, K.E.: Ind. Eng. Chem. Fundam. 23, 8 (1984)

    Article  Google Scholar 

  15. Daubert, T.E., Danner, R.P.: Data Compilation Tables of Properties of Pure Components. American Institute of Chemical Engineers, New York (1985)

    Google Scholar 

  16. De Reuck, K.M.: International Thermodynamic Tables of the Fluid State-11 Fluorine. International Union of Pure and Applied Chemistry. Pergamon Press, Oxford (1990)

    Google Scholar 

  17. Dillon, H.E., Penoncello, S.G.: A fundamental equation for calculation of the thermodynamic properties of ethanol. Int. J. Thermophys. 25, 321–335 (2004)

    Article  Google Scholar 

  18. Dixon, J.A., Schiesser, R.W.: Viscosities of benzene-d6 and cyclohexane-d12. J. Phys. Chem. 58, 430–432 (1954)

    Article  Google Scholar 

  19. Edminster, W.C.: Applied Hydrocarbon Thermodynamics, Bd. 56. Gulf Publishing, Houston (1961)

    Google Scholar 

  20. Elverum, G.W., Doescher, R.N.: Physical properties of liquid fluorine. J. Chem. Phys. 20, 1834–1836 (1952)

    Article  Google Scholar 

  21. Fillipov, L.P., Nefedov, S.N., Kolykalova, E.A.: An experimental investigation into the complex of thermophysical properties of liquids. Inzh.-Fiz. Zh. 38, 644–650 (1980)

    Google Scholar 

  22. Friend, D.G., Ingham, H., Ely, J.F.: Thermophysical properties of ethane. J. Phys. Chem. Ref. Data 20, 275–347 (1991)

    Article  Google Scholar 

  23. Gallant, R.W.: Physical Properties of Hydrocarbons, vols. 1 and 2. Gulf Publishing, Houston (1970)

    Google Scholar 

  24. Geist, J.M., Cannon, M.R.: Viscosities of pure hydrocarbons. Ind. Eng. Chem. Anal. Ed. 18, 611–613 (1946)

    Article  Google Scholar 

  25. Golubev, I.F.: Viscosity of Gases and Gas Mixtures. Fizmat Press, Moscow (1959)

    Google Scholar 

  26. Golubev, I.F., Agaev, N.A.: Viscosity of Limiting Hydrocarbons. Azerbaydzhan State Press, Baku (1964)

    Google Scholar 

  27. Gomez-Nieto, M., Thodos, G.: Generalized treatment for the vapour pressure behaviour of polar and hydrogen-bonding compounds. Can. J. Chem. Eng. 55, 445–449 (1977)

    Article  Google Scholar 

  28. Gomez-Nieto, M., Thodos, G.: Generalized vapour pressure equation for nonpolar substances. Ind. Eng. Chem. Fundam. 17, 45–51 (1978)

    Article  Google Scholar 

  29. Goodwin, R.D.: Benzene thermophysical properties from 279 to 900 k at pressures to 1000 bar. J. Phys. Chem. Ref. Data 17, 1541–1635 (1988)

    Article  MathSciNet  Google Scholar 

  30. Gorin, C.E., Yaws, C.L.: correlation constants for chemical compounds – heat of vaporization. Chem. Eng. 83, 85–87 (1976)

    Google Scholar 

  31. GPSA Engineering Data Book: Gas Processors Suppliers Association. Tulsa (1977)

    Google Scholar 

  32. Gross, U., Song, Y.W., Hahne, E.: Thermal conductivity of the new refrigerants R134a, R152a and R123 measured by the transient hot-wire method. Int. J. Thermophys. 13, 957–983 (1992)

    Article  Google Scholar 

  33. Gunn, R.D., Yamada, T.A.: Corresponding states correlation of saturated liquid volumes. AIChE J. 17, 1341–1345 (1971)

    Article  Google Scholar 

  34. Haynes, W.M.: Measurements of the viscosity of compressed gaseous and liquid fluorine. Physica. 76, 1–20 (1974)

    Article  Google Scholar 

  35. Ho, C.Y.: Data Series on Material Properties, Vol. 5: Properties of Inorganic and Organic Fluids (1988)

    Google Scholar 

  36. Holland, P.M., Eaton, B.E., Hanley, H.J.M.: A correlation of the viscosity and thermal conductivity data of gaseous and liquid ethylene. J. Phys. Chem. Ref. Data 12, 917–932 (1983)

    Article  Google Scholar 

  37. Horvath, A.L.: Physical Properties of Inorganic Compounds SI Units. Crane, Russak & Company, New York (1975)

    Google Scholar 

  38. Hu, J.-H., Johnston, H.L., White, D.: The density and surface tension of liquid fluorine between 66 and 80 K. J. Am. Soc. 76, 2584–2586 (1954)

    Article  Google Scholar 

  39. Huber, M.L., Laesecke, A.: Correlation for the viscosity of pentafluoroethane (R125) from the triple point to 500 K at pressures up to 60 MPa. Ind. Eng. Chem. Res. 45, 4447–4453 (2006)

    Article  Google Scholar 

  40. Jasper, J.J.: The surface tension of pure liquid compounds. J. Phys. Chem. Ref. Data 1, 841–1009 (1972)

    Article  Google Scholar 

  41. Johnson, F.M.J., McIntosh, D.: Liquid chlorine. J. Am. Chem. Soc. 31, 1138–1144 (1909)

    Article  Google Scholar 

  42. Jossi, J.A., Stiel, L.I., Thodos, G.: The viscosity of pure substances in the dense gaseous and liquid phases. AIChE J. 8, 59–63 (1962)

    Article  Google Scholar 

  43. Kamei, A., Beyerlein, S.W., Jacobsen, R.T.: Application of nonlinear regression in the development of a wide range formulation for HCFC-22. Int. J. Thermophys. 16, 1155–1164 (1995)

    Article  Google Scholar 

  44. Katti, R.S., Jacobsen, R.T., Stewart, R.B., Jahangiri, M.: Thermodynamic properties for neon for temperatures from the triple point to 700 K at pressures to 700 MPa. Adv. Cryog. Eng. 31, 1189–1197 (1986)

    Article  Google Scholar 

  45. Klein, S.A., McLinden, M.O., Laesecke, A.: An improved extended corresponding states method for estimation of viscosity of pure refrigerants and mixtures. Int. J. Refrig. 20, 208–217 (1997)

    Article  Google Scholar 

  46. Knappstad, B., Skjolsvik, P.A., Oye, H.A.: Viscosity of pure hydrocarbons. J. Chem. Eng. Data. 34, 37–43 (1989)

    Article  Google Scholar 

  47. Kraus, R., Luettmer-Strahtmann, J., Sengers, J., Stephan, K.: Transport properties of 1,1,1,2-tetrafluorethane (R134a). Int. J. Thermophys. 14, 951–988 (1993)

    Article  Google Scholar 

  48. Kudchadker, A.P., Alani, G.H., Zwolinski, B.J.: Critical constants of organic substances. Chem. Rev. 68, 729–735 (1968)

    Article  Google Scholar 

  49. Kumagi, A., Takahashi, S.: Viscosity of saturated liquid fluorocarbon refrigerants from 273 to 353 K. Int. J. Thermophys. 12, 105–117 (1991)

    Article  Google Scholar 

  50. Latini, G., Laurenti, L., Marcotullio, F., Pierpaoli, P.: Liquid dynamic viscosity: a general method with application to refrigerant and refrigerant mixtures. Int. J. Refrig. 13, 248–255 (1990)

    Article  Google Scholar 

  51. Leachman, J.W., Jacobsen, R.T., Penoncello, S.G., Lemmon, E.W.: Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen. J. Phys. Chem. Ref. Data 38, 721 (2009)

    Article  Google Scholar 

  52. Lee, B.I., Kesler, M.G.: A generalized thermodynamic correlation based on three-parameter corresponding states. AIChE J. 21, 510–527 (1975)

    Article  Google Scholar 

  53. Lemmon, E.W.: The Surface Tension of Ethane. Private Communication, NIST, Boulder (2011) – see also Mulero, A., Cachadiña, I., Parra, M.I.: Recommended correlations for the surface tension of common fluids. J. Phys. Chem. Ref. Data 41, 043105 (2012)

    Google Scholar 

  54. Lemmon, E.W., Jacobsen, R.T.: Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int. J. Thermophys. 25, 21–69 (2004)

    Article  Google Scholar 

  55. Lemmon, E.W., Jacobsen, R.T.: A new functional form and new fitting techniques for equations of state with application to pentafluoroethane (HFC-125). J. Phys. Chem. Ref. Data 34, 69–108 (2005)

    Article  Google Scholar 

  56. Lemmon, E.W., Penoncello, S.G.: Adv. Cryog. Eng. 39, 1927–1934 (1994)

    Article  Google Scholar 

  57. Lemmon, E.W., Span, R.: Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51, 785–850 (200 The surface tension of air and air component mixtures 6)

    Article  Google Scholar 

  58. Lemmon, E.W., McLinden, M.O., Wagner, W.: Thermodynamic properties of propane. III. A reference equation of state for temperatures from the melting line to 650 K and pressures up to 1000 MPa. J. Chem. Eng. Data 54, 3141–3180 (2009)

    Article  Google Scholar 

  59. Letsou, A., Stiel, L.I.: Viscosities of saturated nonpolar liquids at elevated pressures. AIChE J. 19, 409–411 (1973)

    Article  Google Scholar 

  60. Liquide, L.: Gas Encyclopaedia. Elsevier, Amsterdam (1976)

    Google Scholar 

  61. Livingston, J., Morgan, R., Owen, F.T.: The weight of a falling drop and the laws of tate. J. Am. Chem. Soc. 33, 1713 (1911)

    Article  Google Scholar 

  62. Lydersen, A.L.: Estimation of Critical Properties of Organic Compounds. University of Wisconsin College of Engineering, Madison (1955). Eng. Exp. Stn. Rep. 3

    Google Scholar 

  63. Lyman, T.J., Danner, R.P.: Correlation of liquid heat capacities with a four-parameter corresponding states method. AIChE J. 22, 759–765 (1976)

    Article  Google Scholar 

  64. Mamedov, A.M.: Thermal-conductivity of six aromatic hydrocarbons. Inzh.-Fiz. Zh. 34, 465–470 (1978)

    Google Scholar 

  65. Marsh, K., Perkins, R., Ramires, M.L.V.: Measurement and correlation of the thermal conductivity of propane from 86 to 600 K at pressures to 70 MPa. J. Chem. Eng. Data 47, 932–940 (2002)

    Article  Google Scholar 

  66. McLinden, M.O., Klein, S.A., Perkins, R.: An extended corresponding states model for the thermal conductivity of refrigerants and refrigerant mixtures. Int. J. Refrig. 23, 43–63 (2000)

    Article  Google Scholar 

  67. Miller Jr., J.W., Yaws, C.L.: Correlation constants for liquids – surface tension. Chem. Eng. 83(22), 127–129 (1976)

    Google Scholar 

  68. Miller Jr., J.W., Gordon, R.S., Yaws, C.L.: Correlation constants for liquids – heat capacities. Chem. Eng. 83(25), 129–131 (1976)

    Google Scholar 

  69. Miller Jr., J.W., McGinley, J.J., Yaws, C.L.: Correlation constants for liquids – thermal conductivities. Chem. Eng. 83(25), 133–135 (1976)

    Google Scholar 

  70. Miller Jr., J.W., Gordon, R.S., Yaws, C.L.: Correlation constants for chemical compounds – thermal conductivity of gas. Chem. Eng. 153–155 (1976)

    Google Scholar 

  71. Miller Jr., J.W., Gordon, R.S., Yaws, C.L.: Correlation constants for chemical compounds – gas viscosity. Chem. Eng. 86(24), 155–157 (1976)

    Google Scholar 

  72. Miller Jr., J.W., Gordon, R.S., Yaws, C.L.: Physical and thermodynamic properties. Correlation constants for chemical compounds – liquid viscosity. Chem. Eng. 86(24), 157–159 (1976)

    Google Scholar 

  73. Miller, J.W., Yaws, C.L., Shah, P.N., Schorr, G.R., Patel, P.M.: Physical and thermodynamic properties. 24. Correlation constants for chemical compounds Chem. Eng. 83(25), 153 (1976)

    Google Scholar 

  74. Misic, D., Thodos, G.: The thermal conductivity of hydrocarbon gases at normal pressure. AIChE J. 7, 264–267 (1961)

    Article  Google Scholar 

  75. Nabizadeh, H., Mayinger, F.: Viscosity of gaseous R123. High Temp. High Press 24, 221–230 (1992)

    Google Scholar 

  76. Needham, D.P., Ziebland, H.: Ammonia and its anomalous behaviour in the vicinity of the critical point. Int. J. Heat Mass Transf. 8, 1387–1411 (1965)

    Article  Google Scholar 

  77. Okada, M., Higashi, Y.: Surface tension correlation of HFC-134a and HCFC-123. Progress Report to IEA Annex 18, Boulder (1994)

    Google Scholar 

  78. Okada, M., Higashi, Y.: Experimental surface tensions for HFC-32, HCFC-124, HFC-125, HCFC-141b, HCFC-142b, and HFC-152a. Int. J. Thermophys. 16, 791–800 (1995)

    Article  Google Scholar 

  79. Okada, M., Watanabe, K.: Surface tension correlations for several fluorocarbon refrigerants. Heat Transf. Jpn. Res. 17, 35–52 (1988)

    Google Scholar 

  80. Okubo, T., Nagashima, A.: Measurement of the viscosity of HCFC-123 in the temperature range 233–418 K and at pressures up to 20 MPa. Int. J. Thermophys. 13, 401–410 (1992)

    Article  Google Scholar 

  81. Overhoff, U.: Development of a new equation of state for the fluid region of propene for temperatures from the melting line to 575 K with pressures to 1000 MPa as well as software for the computation of thermodynamic properties of fluids. Ph.D. Dissertation, Ruhr-University, Bochum (2006)

    Google Scholar 

  82. Pennington, R.E., Kobe, K.A.: The thermodynamic properties of acetone. J. Am. Chem. Soc. 79, 300–305 (1957)

    Article  Google Scholar 

  83. Penoncello, S.G., Goodwin, A.R.H., Jacobsen, R.T.: A thermodynamic property formulation for cyclohexane. Int. J. Thermophys. 16, 519–531 (1995)

    Article  Google Scholar 

  84. Perkins, R.A.: Measurement and correlation of the thermal conductivity of isobutane from 114 K to 600 K at pressures to 70 MPa. J. Chem. Eng. Data 47, 1272–1279 (2002)

    Article  Google Scholar 

  85. Perkins, R.A., Huber, M.L.: Measurement and correlation of the thermal conductivity of pentafluoroethane (R125) from 190 K to 512 K at pressures to 70 MPa. J. Chem. Eng. Data 51, 898–904 (2006)

    Article  Google Scholar 

  86. Perkins, R.A., Ramires, M.L.V., Nieto de Castro, C.A., Cusco, L.: Measurement and correlation of the thermal conductivity of butane from 135 K to 600 K at pressures to 70 MPa. J. Chem. Eng. Data 47, 1263–1271 (2002)

    Article  Google Scholar 

  87. Perry, J.H.: Chemical Engineer’s Handbook, 3. Aufl.. McGraw-Hill, New York (1950)

    Google Scholar 

  88. Perry, R.H., Chilton, C.H.: Chemical Engineer’s Handbook, 5. Aufl.. McGraw-Hill, New York (1973)

    Google Scholar 

  89. Reid, R.C., Prausnitz, J.M., Sherwood, T.K.: The Properties of Gases and Liquids, 3. Aufl.. McGraw-Hill, New York (1977)

    Google Scholar 

  90. Reuck, K.M., De Craven, R.J.B.: International Tables of the Fluid State, Vol. 12: Methanol. Hemisphere, London (1993)

    Google Scholar 

  91. Rihani, D.N., Doraiswamy, L.K.: Estimation of heat capacity of organic compounds from group contributions. Ind. Eng. Chem. Fundam. 4, 17–21 (1965)

    Article  Google Scholar 

  92. Robbins, L.A., Kingrea, C.L.: Estimate thermal conductivity. Hydrocarb. Proc. Pet. Ref. 41(5), 133–136 (1962)

    Google Scholar 

  93. Sakiadis, B.C., Coates, J.: Studies in thermal conductivity of liquids. AIChE J. 1, 275–288 (1955)

    Article  Google Scholar 

  94. Sellschopp, W.: Z. Ver. Dt. Ing. 75, 69 (1935)

    Google Scholar 

  95. Setzmann, U., Wagner, W.: A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 20, 1061–1155 (1991)

    Article  Google Scholar 

  96. Shah, P.N., Yaws, C.L.: Densities of liquids. Chem. Eng. 25, 131–133 (1976)

    Google Scholar 

  97. Smukala, J., Span, R., Wagner, W.: A new equation of state for ethylene covering the fluid region for temperatures from the melting line to 450 K at pressures up to 300 MPa. J. Phys. Chem. Ref. Data 29, 1053–1122 (2000)

    Article  Google Scholar 

  98. Soares, V.A.M., Almeida, B.J.V.S., McLure, I.A., Higgins, R.A.: Surface tension of pure and mixed simple substances at low temperature. Fluid Phase Equilib. 32, 9–16 (1986)

    Article  Google Scholar 

  99. Somayajulu, G.R.: A generalized equation for surface tension from the triple point to the critical point. Int. J. Thermophys. 9, 559–566 (1988)

    Article  Google Scholar 

  100. Somayajulu, G.R.: A new equation for enthalpy of vaporization from the triple point to the critical point. Int. J. Thermophys. 9, 567–574 (1988)

    Article  Google Scholar 

  101. Span, R., Wagner, W.: Equations of state for technical applications. II. Results for nonpolar fluids. Int. J. Thermophys. 24, 41–109 (2003)

    Article  Google Scholar 

  102. Stairs, R.A., Sienko, M.J.: Surface tension of ammonia and of solutions of alkali halides in ammonia. J. Am. Chem. Soc. 78, 920–923 (1956)

    Article  Google Scholar 

  103. Stephan, K., Hildwein, H.: Recommended Data of Selected Compunds and Binary Mixtures. Chemistry Data Series, Bd. 4: Part 1 + 0032. DECHEMA (1987)

    Google Scholar 

  104. Stiel, L.I., Thodos, G.: The viscosities of nonpolar gases at normal pressures. AIChE J. 7, 611–615 (1961)

    Article  Google Scholar 

  105. Stiel, L.I., Thodos, G.: The viscosity of polar gases at normal pressures. AIChE J. 8, 229–232 (1962)

    Article  Google Scholar 

  106. Stiel, L.I., Thodos, G.: The viscosity of polar substances in the dense gaseous and liquid regions. AIChE J. 10, 275–277 (1964)

    Article  Google Scholar 

  107. Stiel, L.I., Thodos, G.: The thermal conductivities of nonpolar substances in the dense gaseous and liquid regions. AIChE J. 10, 26–29 (1964)

    Article  Google Scholar 

  108. Takahashi, M., Yokoyama, C., Takahshi, S.: Viscosities of gaseous R13B1, R142b, and R152a. J. Chem. Eng. Data 32, 98–103 (1987)

    Article  Google Scholar 

  109. Technical Data Book-Petroleum Refining. American Petroleum Institute Division of Refining, Washington, DC (1970)

    Google Scholar 

  110. Tegeler, Ch., Span, R., Wagner, W.: A new equation of state for argon covering the fluid region for temperatures from the melting line to 700 K at pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 28, 779–850 (1999)

    Article  Google Scholar 

  111. Thinh, T.P., Duran, J.L., Ramalho, R.S., Kaliaguine, S.: Equations improve Cp° predictions. Hydrocarb. Process. 50, 98–104 (1971)

    Google Scholar 

  112. Tillner-Roth, R.: A fundamental equation of state for 1,1-difluorethane (HFC-152a). Int. J. Thermophys. 16, 91–100 (1995)

    Article  Google Scholar 

  113. Tillner-Roth, R., Baehr, H.D.: An international standard formulation for the thermodynamic properties of 1,1,1,2-tetrafluorethane (HFC-134a) for temperatures from 170 K to 455 K and pressures up to 70 MPa. J. Phys. Chem. Ref. Data 23, 657–729 (1994)

    Article  Google Scholar 

  114. Tillner-Roth, R., Harms-Watzenberg, F., Baehr, H.D.: Eine neue Fundamentalgleichung für Ammoniak. DKV-Tagungsbericht 20, 167–181 (1993)

    Google Scholar 

  115. Timmermans, J.: Physico-Chemical Constants of Pure Organic Compounds, S. 303–325. Elsevier, New York (1950)

    Google Scholar 

  116. Touloukian, Y.S., Makitu, T.: Thermophysical Properties of Matter, Bd. 6. IFI/Plenum, New York (1970)

    Google Scholar 

  117. Touloukian, Y.S., Liley, P.E., Saxena, S.C.: Thermophysical Properties of Matter, Bd. 3. IFI/Plenum, New York (1970)

    Google Scholar 

  118. Touloukian, Y.S., Powell, R.W., Ho, C.Y., Klemens, P.G.: Thermophysical Properties of Matter, Bd. 1. IFI/Plenum, New York (1970)

    Google Scholar 

  119. Touloukian, Y.S., Liley, P.E., Saxena, S.C.: Thermophysical Properties of Matter, Bd. 6. IFI/Plenum, New York (1970)

    Google Scholar 

  120. Touloukian, Y.S., Liley, P.E., Hestermans, P.: Thermophysical Properties of Matter, Bd. 11. IFI/Plenum, New York (1975)

    Google Scholar 

  121. Touloukian, Y.S., Saxena, S.C., Hestermans, P.: Thermophysical Properties of Matter, Bd. 11. IFI/Plenum, NewYork (1975)

    Google Scholar 

  122. Tsvetkov, O.B., Laptev, Yu.A., Asambaev, A.G.: Thermal conductivity of refrigerants R123, R134a, and R125 at low temperatures. Int. J. Thermophys. 15, 203–214 (1994)

    Article  Google Scholar 

  123. Tufeu, R., Clifford, A.A.: Thermal conductivity of gaseous and liquid ammonia. J. Heat Transf. 110, 992–993 (1988)

    Article  Google Scholar 

  124. Van der Gulik, P.S.: The viscosity of the refrigerant 1,1-difluoroethane along the saturation line. Int. J. Thermophys. 12, 105–117 (1993)

    Google Scholar 

  125. Vargaftik, N.B.: Tables on the Thermophysical Properties of Liquids and Gases, 2. Aufl.. Hemisphere Publishing, Washington, DC (1975)

    Google Scholar 

  126. Velzen, D., Van Cardozo, R.L., Langenkamp, H.: A liquid viscosity temperature chemical constitution relation for organic compounds. Ind. Eng. Chem. Fundam. 11, 20–25 (1972)

    Article  Google Scholar 

  127. Vines, R.G., Bennett, L.A.: The thermal conductivity of organic vapors. The relationship between thermal conductivity and viscosity, and the significance of the euken faktor. J. Chem. Phys. 22, 360–366 (1954)

    Article  Google Scholar 

  128. Vogel, E., Kuechenmeister, C., Bich, E., Laesecke, A.: Reference correlation of the viscosity of propane. J. Phys. Chem. Ref. Data 27, 947–970 (1998)

    Article  Google Scholar 

  129. Vogel, E., Kuechenmeister, C., Bich, E.: Viscosity for n-butane in the fluid region. High Temp. High Press 31, 173–186 (1999)

    Google Scholar 

  130. Vogel, E., Kuechenmeister, C., Bich, E.: Viscosity correlation for isobutane over wide ranges of the fluid region. Int. J. Thermophys. 21, 343–356 (2000)

    Article  Google Scholar 

  131. Wakeham, W.A., Fenghour, A.: The viscosity of ammonia, persönliche Mitteilung. (Artikel im Druck bei J. Phys. Chem. Ref. Data.) (1995)

    Google Scholar 

  132. Watson, K.M.: Thermodynamics of the liquid state. Ind. Eng. Chem. 35, 398–400 (1943)

    Article  Google Scholar 

  133. Yamamoto, R., Matsuo, S., Tanaka, Y.: Thermal conductivity of halogenated ethanes HFC-134a, HFC-123 and HCFC-141b. Int. J. Thermophys. 14, 79–90 (1992)

    Article  Google Scholar 

  134. Yaws, C.L.: Calculate liquid heat capacity. Hydrocarb. Process. 73–77 (1991)

    Google Scholar 

  135. Yoor, P., Thodos, G.: Viscosity of nonpolar gaseous mixtures at normal pressures. AIChE J. 16, 300–304 (1970)

    Article  Google Scholar 

  136. Younglove, B.A., McLinden, M.O.: An international standard equation of state for the thermodynamic properties of refrigerant 123. J. Phys. Chem. Ref. Data 23, 731–779 (1994)

    Article  Google Scholar 

  137. Yuan, T.F., Stiel, L.I.: Heat capacity of saturated nonpolar and polar liquids. Ind. Eng. Chem. Fundam. 9, 393–400 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Span .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Span, R. (2018). Thermophysikalische Stoffwerte sonstiger reiner Fluide bei Sättigung. In: Stephan, P., Mewes, D., Kabelac, S., Kind, M., Schaber, K., Wetzel, T. (eds) VDI-Wärmeatlas . Springer Reference Technik (). Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52991-1_21-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52991-1_21-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52991-1

  • Online ISBN: 978-3-662-52991-1

  • eBook Packages: Springer Referenz Technik und Informatik

Publish with us

Policies and ethics