Skip to main content

Observing Ecohydrological Processes: Challenges and Perspectives

  • Living reference work entry
  • First Online:
Observation and Measurement of Ecohydrological Processes

Part of the book series: Ecohydrology ((ECOH))

  • 303 Accesses

Abstract

The observation and measurement of ecohydrological processes have been witnessed a huge progress in terms of novel ideas, methodologies, and techniques. Many cutting-edge observing techniques, e.g., stable isotope, wireless sensor network, cosmic ray probe, multi-source remote sensing, are continuously introduced and widely applied. As the first chapter of this book, this chapter introduces the progresses, challenges, and perspectives of observing ecohydrological processes. We first introduced the key states and fluxes that control the ecohydrological processes and novel techniques that allow those controlling factors to be quantified. However, we found that knowledge gap remains, including: (1) improving the observation ability to understand and quantify the ecohydrological processes, (2) integrating multisource observations into a dynamics model to accurately estimate the state and flux variables of ecohydrological processes, (3) developing upscaling approaches through system observations to understand the scaling issue, and (4) estimating representativeness error to quantify the uncertainties. To this end, we pointed out the potential directions for filling these gaps, including: (1) to better translate remotely sensed data into information that helps us better understand ecohydrological processes and better inform land-surface models, (2) to better quantify the roles of subsurface processes in ecohydrological processes, (3) to develop observational systems that allow ecohydrological processes to be captured across different scales and across compartments, (4) to use well-instrumented watersheds as test beds of new concept for ecohydrological observations, (5) to combine monitoring and controllable and synthetic observation experiments, (6) to utilize technical advancements in new models, and (7) to integrate observation systems with integrated models, data services, and decision making. Overall, this chapter provides an insight into the-state-of-art of observing ecohydrological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • B.W. Abbott, V. Baranov, C. Mendoza-Lera, M. Nikolakopoulou, A. Harjung, T. Kolbe, M.N. Balasubramanian, T.N. Vaessen, F. Ciocca, A. Campeau, M.B. Wallin, P. Romeijn, M. Antonelli, J. Goncalves, T. Datry, A.M. Laverman, J.R. de Dreuzy, D.M. Hannah, S. Krause, C. Oldham, G. Pinay, Using multi-tracer inference to move beyond single-catchment ecohydrology. Earth Sci. Rev. 160, 19–42 (2016)

    Google Scholar 

  • S.H. Alemohammad, D.B. McLaughlin, D. Entekhabi, Quantifying precipitation uncertainty for land data assimilation applications. Mon. Weather Rev. 143, 3276–3299 (2015)

    Google Scholar 

  • S.P. Anderson, R.C. Bales, C.J. Duffy, Critical zone observatories: building a network to advance interdisciplinary study of Earth surface processes. Mineral. Mag. 72, 7–10 (2008)

    CAS  Google Scholar 

  • M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, M.C. Looms, Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16 (2017). https://doi.org/10.2136/vzj2017.04.0086

  • W.G.M. Bastiaanssen, M. Menenti, R.A. Feddes, A.A.M. Holtslag, A remote sensing surface energy balance algorithm for land (SEBAL) - 1. Formulation. J. Hydrol. 212, 198–212 (1998)

    Google Scholar 

  • K. Beven, Robert E. Horton’s perceptual model of infiltration processes. Hydrol. Process. 18, 3447–3460 (2004)

    Google Scholar 

  • G. Blöschl, Scaling in hydrology. Hydrol. Process. 15, 709–711 (2001)

    Google Scholar 

  • G. Blöschl, M. Sivapalan, Scale issues in hydrological modelling: A review. Hydrol. Process. 9, 251–290 (1995)

    Google Scholar 

  • H.R. Bogena, M. Herbst, J.A. Huisman, U. Rosenbaum, A. Weuthen, H. Vereecken, Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone J. 9, 1002–1013 (2010)

    Google Scholar 

  • H. Bogena, R. Kunkel, T. Puetz, H. Vereecken, E. Kruger, S. Zacharias, P. Dietrich, U. Wollschlager, H. Kunstmann, H. Papen, H.P. Schmid, J.C. Munch, E. Priesack, M. Schwank, O. Bens, A. Brauer, E. Borg, I. Hajnsek, TERENO – long-term monitoring network for terrestrial environmental research. Hydrol. Wasserbewirtsch. 56, 138–143 (2012)

    Google Scholar 

  • O. Bonacci, T. Pipan, D.C. Culver, A framework for karst ecohydrology. Environ. Geol. 56, 891–900 (2009)

    Google Scholar 

  • J.G. Canadell, H.A. Mooney, D.D. Baldocchi, J.A. Berry, J.R. Ehleringer, C.B. Field, S.T. Gower, D.Y. Hollinger, J.E. Hunt, R.B. Jackson, S.W. Running, G.R. Shaver, W. Steffen, S.E. Trumbore, R. Valentini, B.Y. Bond, Carbon metabolism of the terrestrial biosphere: A multitechnique approach for improved understanding. Ecosystems 3, 115–130 (2000)

    CAS  Google Scholar 

  • J.M. Chen, T.A. Black, Measuring leaf area index of plant canopies with branch architecture. Agric. For. Meteorol. 57, 1–12 (1991)

    Google Scholar 

  • L. Chen, O.W. Frauenfeld, A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections. J. Geophys. Res.-Atmos. 119, 5767–5786 (2014)

    Google Scholar 

  • D. Cline, S. Yueh, B. Chapman, B. Stankov, A. Gasiewski, D. Masters, K. Elder, R. Kelly, T.H. Painter, S. Miller, NASA cold land processes experiment (CLPX 2002/03): airborne remote sensing. J. Hydrometeorol. 9, 1427–1433 (2009)

    Google Scholar 

  • C.M. Debeer, H.S. Wheater, W.L. Quinton, S.K. Carey, R.E. Stewart, M.D. Mackay, P. Marsh, The changing cold regions network: observation, diagnosis and prediction of environmental change in the Saskatchewan and Mackenzie River Basins, Canada. Sci. China Earth Sci. 58, 46–60 (2015)

    Google Scholar 

  • H.A.R. DeBruin, Time to think: reflections of a pre-pensioned scintillometer researcher. Bull. Am. Meteorol. Soc. 90, Es17–Es26 (2009)

    Google Scholar 

  • K.A. Delin, S.P. Jackson, D.W. Johnson, S.C. Burleigh, R.R. Woodrow, J. Michael Mcauley, J.M. Dohm, F. Ip, T.P.A. Ferré, D.F. Rucker, Environmental studies with the sensor web: principles and practice. Sensors 5, 103–117 (2005)

    Google Scholar 

  • Dong, X., H. Liu, Z. Wang, J. Shi, and T. Zhao, COM: the mission concept and payloads of a global water cycle observation mission, in 2014 IEEE Geoscience and Remote Sensing Symposium (2014), pp. 3338–3341

    Google Scholar 

  • M. Drusch, J. Moreno, U. Del Bello, R. Franco, Y. Goulas, A. Huth, S. Kraft, E.M. Middleton, F. Miglietta, G. Mohammed, L. Nedbal, U. Rascher, D. Schttemeyer, W. Verhoef, The FLuorescence EXplorer mission concept-ESA’s Earth Explorer 8. IEEE Trans. Geosci. Remote Sens. 55, 1273–1284 (2017)

    Google Scholar 

  • M. Durand, L.L. Fu, D.P. Lettenmaier, D.E. Alsdorf, E. Rodriguez, D. Esteban-Fernandez, The surface water and ocean topography mission: observing terrestrial surface water and oceanic submesoscale eddies. Proc. IEEE 98, 766–779 (2010)

    Google Scholar 

  • P.S. Eagleson, Ecohydrology: Darwinian expression of vegetation form and function (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  • D. Entekhabi, E.G. Njoku, P.E. O’Neill, K.H. Kellogg, W.T. Crow, W.N. Edelstein, J.K. Entin, S.D. Goodman, T.J. Jackson, J. Johnson, J. Kimball, J.R. Piepmeier, R.D. Koster, N. Martin, K.C. McDonald, M. Moghaddam, S. Moran, R. Reichle, J.C. Shi, M.W. Spencer, S.W. Thurman, L. Tsang, J. Van Zyl, The soil moisture active passive (SMAP) mission. Proc. IEEE 98, 704–716 (2010)

    Google Scholar 

  • T. Foken, The energy balance closure problem: an overview. Ecol. Appl. 18, 1351–1367 (2008)

    Google Scholar 

  • P. Gong, Progress in recent environmental applications of wireless sensor networks. J. Remote Sens. 14, 153–157 (2010)

    Google Scholar 

  • F. Gottardi, C. Obled, J. Gailhard, E. Paquet, Statistical reanalysis of precipitation fields based on ground network data and weather patterns: application over French mountains. J. Hydrol. 432, 154–167 (2012)

    Google Scholar 

  • L. Guo, H. Lin, Critical zone research and observatories: current status and future perspectives. Vadose Zone J. 15(9) (2016). https://doi.org/10.2136/vzj2016.06.0050

  • X.J. Han, H.J.H. Franssen, X. Li, Y.L. Zhang, C. Montzka, H. Vereecken, Joint assimilation of surface temperature and L-band microwave brightness temperature in land data assimilation. Vadose Zone J. 12(3), 155–175 (2013)

    Google Scholar 

  • X.J. Han, R. Jin, X. Li, S.G. Wang, Soil moisture estimation using cosmic-ray soil moisture sensing at heterogeneous farmland. IEEE Geosci. Remote Sens. Lett. 11, 1659–1663 (2014)

    Google Scholar 

  • X.J. Han, H.J.H. Franssen, M.Á.J. Bello, R. Rosolem, H. Bogena, F.M. Alzamora, Simultaneous soil moisture and properties estimation for a drip irrigated field by assimilating cosmic-ray neutron intensity. J. Hydrol. 539, 611–624 (2016)

    CAS  Google Scholar 

  • J.K. Hart, K. Martinez, Environmental sensor networks: a revolution in the earth system science? Earth Sci. Rev. 78, 177–191 (2006)

    Google Scholar 

  • A.Y. Hou, R.K. Kakar, S. Neeck, A.A. Azarbarzin, C.D. Kummerow, M. Kojima, R. Oki, K. Nakamura, T. Iguchi, The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 95, 701–722 (2014)

    Google Scholar 

  • C.L. Huang, W.J. Chen, Y. Li, H.F. Shen, X. Li, Assimilating multi-source data into land surface model to simultaneously improve estimations of soil moisture, soil temperature, and surface turbulent fluxes in irrigated fields. Agric. For. Meteorol. 230–231, 142–156 (2016)

    Google Scholar 

  • S. Hunt, Measurements of photosynthesis and respiration in plants. Physiol. Plant. 117, 314–325 (2003)

    CAS  Google Scholar 

  • K. Imaoka, M. Kachi, H. Fujii, H. Murakami, M. Hori, A. Ono, T. Igarashi, K. Nakagawa, T. Oki, Y. Honda, H. Shimoda, Global change observation mission (GCOM) for monitoring carbon, water cycles, and climate change. Proc. IEEE 98, 717–734 (2010)

    CAS  Google Scholar 

  • T. Jackson, Soil Moisture Experiments in 2002 and 2003. American Geophysical Union Meeting. May 28–31, 2002. Washington, DC, EOS Trans. of AGU,83:S191

    Google Scholar 

  • K.H. Jensen, T.H. Illangasekare, HOBE: a hydrological observatory. Vadose Zone J. 10, 1–7 (2011)

    Google Scholar 

  • R. Jin, X. Li, B.P. Yan, X.H. Li, W.M. Luo, M.G. Ma, J.W. Guo, J. Kang, Z.L. Zhu, S.J. Zhao, A nested ecohydrological wireless sensor network for capturing the surface heterogeneity in the midstream areas of the Heihe River Basin, China. IEEE Geosci. Remote Sens. Lett. 11, 2015–2019 (2014)

    Google Scholar 

  • R. Jin, X. Li, S.M. Liu, Understanding the heterogeneity of soil moisture and evapotranspiration using multiscale observations from satellites, airborne sensors, and a ground-based observation matrix. IEEE Geosci. Remote Sens. Lett. 14, 2132–2135 (2017)

    Google Scholar 

  • I. Jonckheere, S. Fleck, K. Nackaerts, B. Muys, P. Coppin, M. Weiss, F. Baret, Review of methods for in situ leaf area index determination – part I. theories, sensors and hemispherical photography. Agric. For. Meteorol. 121, 19–35 (2004)

    Google Scholar 

  • J. Kang, X. Li, R. Jin, Y. Ge, J.F. Wang, J.H. Wang, Hybrid optimal design of the eco-hydrological wireless sensor metwork in the middle reach of the Heihe River Basin, China. Sensors 14, 19095–19114 (2014)

    Google Scholar 

  • J. Kang, R. Jin, X. Li, Regression Kriging-based upscaling of soil moisture measurements from a wireless sensor network and multiresource remote sensing information over heterogeneous cropland. IEEE Geosci. Remote Sens. Lett. 12, 92–96 (2015)

    Google Scholar 

  • Y.H. Kerr, P. Waldteufel, J.P. Wigneron, J. Martinuzzi, J. Font, M. Berger, Soil moisture retrieval from space: the soil moisture and ocean salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 39, 1729–1735 (2001)

    Google Scholar 

  • Y.H. Kerr, P. Waldteufel, J.P. Wigneron, S. Delwart, F. Cabot, J. Boutin, M.J. Escorihuela, J. Font, N. Reul, C. Gruhier, S.E. Juglea, M.R. Drinkwater, A. Hahne, M. Martin-Neira, S. Mecklenburg, M. Martı, The SMOS mission: new tool for monitoring key elements of the global water cycle. Proc. IEEE 98, 666–687 (2010)

    Google Scholar 

  • J. Kleissl, J. Gomez, S.H. Hong, J.M.H. Hendrickx, T. Rahn, W.L. Defoor, Large aperture scintillometer intercomparison study. Bound.-Layer Meteorol. 128, 133–150 (2008)

    Google Scholar 

  • X. Li, Characterization, controlling, and reduction of uncertainties in the modeling and observation of land-surface systems. Sci. China Earth Sci. 57, 80–87 (2014)

    Google Scholar 

  • X. Li, X.W. Li, Z.Y. Li, M.G. Ma, J. Wang, Q. Xiao, Q. Liu, T. Che, E.X. Chen, G.J. Yan, Z.Y. Hu, L.X. Zhang, R.Z. Chu, P.X. Su, Q.H. Liu, S.M. Liu, J.D. Wang, Z. Niu, Y. Chen, R. Jin, W.Z. Wang, Y.H. Ran, X.Z. Xin, H.Z. Ren, Watershed allied telemetry experimental research. J. Geophys. Res.-Atmos. 114 (2009). https://doi.org/10.1029/2008JD011590

  • X. Li, G.D. Cheng, S.M. Liu, Q. Xiao, M.G. Ma, R. Jin, T. Che, Q.H. Liu, W.Z. Wang, Y. Qi, J.G. Wen, H.Y. Li, G.F. Zhu, J.W. Guo, Y.H. Ran, S.G. Wang, Z.L. Zhu, J. Zhou, X.L. Hu, Z.W. Xu, Heihe Watershed Allied Telemetry Experimental Research (HiWATER): scientific objectives and experimental design. Bull. Am. Meteorol. Soc. 94, 1145–1160 (2013)

    Google Scholar 

  • X. Li, S.M. Liu, Q. Xiao, M.G. Ma, R. Jin, T. Che, W.Z. Wang, X.L. Hu, Z.W. Xu, J.G. Wen, L.X. Wang, A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system. Sci Data 4, 170083 (2017). https://doi.org/10.1038/sdata.2017.83

    Article  Google Scholar 

  • H.S. Lin, D. Wheeler, J. Bell, L. Wilding, Assessment of soil spatial variability at multiple scales. Ecol. Model. 182, 271–290 (2005)

    Google Scholar 

  • H. Lin, H.J. Vogel, J. Seibert, Towards holistic studies of the Earth’s critical zone: hydropedology perspectives’ preface. Hydrol. Earth Syst. Sci. 14, 479–480 (2010)

    Google Scholar 

  • C.M. Liu, Y.N. Chen, Z.X. Xu, Eco-hydrology and sustainable development in the arid regions of China preface. Hydrol. Process. 24, 127–128 (2010)

    Google Scholar 

  • S.M. Liu, Z.W. Xu, W.Z. Wang, Z.Z. Jia, M.J. Zhu, J. Bai, J.M. Wang, A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol. Earth Syst. Sci. 15, 1291–1306 (2011)

    Google Scholar 

  • S.M. Liu, Z.W. Xu, Z.L. Zhu, Z.Z. Jia, M.J. Zhu, Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. J. Hydrol. 487, 24–38 (2013)

    Google Scholar 

  • S.M. Liu, Z.W. Xu, Q.Y. Zhao, T.R. Xu, Y. Ge, Y.F. Ma, L.S. Song, Z.L. Zhu, Z.Z. Jia, F. Zhang, Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agric. For. Meteorol. 230, 97–113 (2016)

    Google Scholar 

  • S.M. Li, X. Li, Z.W. Xu, The Heihe integrated observatory network: a basin-scale land surface processes observatory in China. Vadose Zone J., under review (2018)

    Google Scholar 

  • D. Liverman, J. Rockström, M. Visbek, R. Leemans, T. Abrahamse, B. Becker, R. D’Sousa, K. Jones, H. Mooney, I. Niang, Future Earth initial design (International Council for Science, Future Earth, Interim Secretariat, Paris, 2013)

    Google Scholar 

  • A. Ludi, F. Beyrich, C. Matzler, Determination of the turbulent temperature-humidity correlation from scintillometric measurements. Bound.-Layer Meteorol. 117, 525–550 (2005)

    Google Scholar 

  • H. McNairn, T.J. Jackson, G. Wiseman, S. Belair, A. Berg, P. Bullock, A. Colliander, M.H. Cosh, S.B. Kim, R. Magagi, M. Moghaddam, E.G. Njoku, J.R. Adams, S. Homayouni, E.R. Ojo, T.L. Rowlandson, J.L. Shang, K. Goita, M. Hosseini, The soil moisture active passive validation experiment 2012 (SMAPVEX12): prelaunch calibration and validation of the SMAP soil moisture algorithms. IEEE Trans. Geosci. Remote Sens. 53, 2784–2801 (2015)

    Google Scholar 

  • M. Meroni, M. Rossini, L. Guanter, L. Alonso, U. Rascher, R. Colombo, J. Moreno, Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications. Remote Sens. Environ. 113, 2037–2051 (2009)

    Google Scholar 

  • NRC, Earth science and applications from space: national imperatives for the next decade and beyond (National Academy Press, Washington, DC, 2007)

    Google Scholar 

  • X.D. Pan, X.J. Tian, X. Li, Z.H. Xie, A.M. Shao, C.Y. Lu, Assimilating Doppler radar radial velocity and reflectivity observations in the weather research and forecasting model by a proper orthogonal-decomposition-based ensemble, three-dimensional variational assimilation method. J. Geophys. Res.-Atmos. 117 (2012). https://doi.org/10.1029/2012jd017684

  • X.D. Pan, X. Li, G.D. Cheng, Y. Hong, Effects of 4D-Var data assimilation using remote sensing precipitation products in a WRF model over the complex terrain of an arid region river basin. Remote Sens. 9, 963 (2017). https://doi.org/10.3390/rs9090963

    Article  Google Scholar 

  • R. Panciera, J.P. Walker, T.J. Jackson, D.A. Gray, M.A. Tanase, D. Ryu, A. Monerris, H. Yardley, C. Rudiger, X.L. Wu, Y. Gao, J.M. Hacker, The soil moisture active passive experiments (SMAPEx): toward soil moisture retrieval from the SMAP mission. IEEE Trans. Geosci. Remote Sens. 52, 490–507 (2014)

    Google Scholar 

  • C. Prigent, Precipitation retrieval from space: an overview. Compt. Rendus Geosci. 342, 380–389 (2010)

    Google Scholar 

  • Y.H. Qu, Y.Z. Zhang, J.D. Wang, A dynamic Bayesian network data fusion algorithm for estimating leaf area index using time-series data from in situ measurement to remote sensing observations. Int. J. Remote Sens. 33, 1106–1125 (2012)

    Google Scholar 

  • Y.H. Qu, Y.Q. Zhu, W.C. Han, J.D. Wang, M.G. Ma, Crop leaf area index observations with a wireless sensor network and its potential for validating remote sensing products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sen. 7, 431–444 (2014)

    Google Scholar 

  • M.R. Raupach, J.J. Finnigan, Scale issues in boundary-layer meteorology: surface energy balances in heterogeneous terrain. Hydrol. Process. 9, 589–612 (1995)

    Google Scholar 

  • D.D. Richter, M.L. Mobley, Monitoring Earth’s critical zone. Science 326, 1067–1068 (2009)

    CAS  Google Scholar 

  • S.W. Running, S.T. Gower, A general model of forest ecosystem processes for regional applications.2. Dynamic carbon allocation and nitrogen budgets. Tree Physiol. 9, 147–160 (1991)

    CAS  Google Scholar 

  • K. Scipal, M. Arcioni, J. Chave, J. Dall, F. Fois, T. Le Toan, C.C. Lin, K. Papathanassiou, S. Quegan, F. Rocca, S. Saatchi, H. Shugart, L. Ulander, M. Williams, The BIOMASS mission 2014; an ESA Earth explorer candidate to measure the BIOMASS of the earth’s forests, in 2010 IEEE International Geoscience and Remote Sensing Symposium (2010), pp. 52–55

    Google Scholar 

  • P.J. Sellers, Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275, 502–509 (1997)

    CAS  Google Scholar 

  • P.J. Sellers, F.G. Hall, G. Asrar, D.E. Strebel, R.E. Murphy, The First ISLSCP field experiment (FIFE). Bull. Am. Meteorol. Soc. 69, 22–27 (1987)

    Google Scholar 

  • J.C. Shi, X.L. Dong, T.J. Zhao, J. Y. Du, L. M. Jiang, Y. Du, H. Liu, Z. Wang, D. B. Ji, C. Xiong, WCOM: the science scenario and objectives of a global water cycle observation mission, in 2014 IEEE Geoscience and Remote Sensing Symposium (2014), pp. 3646–3649

    Google Scholar 

  • G. Skofronick-Jackson, W.A. Petersen, W. Berg, C. Kidd, E.F. Stocker, D.B. Kirschbaum, R. Kakar, S.A. Braun, G.J. Huffman, T. Iguchi, P.E. Kirstetter, C. Kummerow, R. Meneghini, R. Oki, W.S. Olson, Y.N. Takayabu, K. Furukawa, T. Wilheit, The global precipitation measurement (GPM) mission for science and society. Bull. Am. Meteorol. Soc. 98, 1679–1695 (2017)

    Google Scholar 

  • Z. Su, The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 6, 85–99 (2002)

    Google Scholar 

  • T. Le Toan, S. Quegan, M.W.J. Davidson, H. Balzter, P. Paillou, K. Papathanassiou, S. Plummer, F. Rocca, S. Saatchi, H. Shugart, L. Ulander, The BIOMASS mission: mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens. Environ. 115, 2850–2860 (2011)

    Google Scholar 

  • T.L. van Zyl, I. Simonis, G. McFerren, The sensor web: systems of sensor systems. Int. J. Digital Earth 2, 16–30 (2009)

    Google Scholar 

  • H. Vereecken, T. Kamai, T. Harter, R. Kasteel, J. Hopmans, J. Vanderborght, Explaining soil moisture variability as a function of mean soil moisture: a stochastic unsaturated flow perspective. Geophys. Res. Lett. 34, 315–324 (2007)

    Google Scholar 

  • H. Vereecken, J.A. Huisman, H. Bogena, J. Vanderborght, J.A. Vrugt, J.W. Hopmans, On the value of soil moisture measurements in vadose zone hydrology: a review. Water Resour. Res. 44, 253–270 (2008)

    Google Scholar 

  • K. Wang, R.E. Dickinson, A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability. Rev. Geophys. 50(2), RG2005 (2012). https://doi.org/10.1029/2011RG000373

    Article  Google Scholar 

  • E. Ward, W. Buytaert, L. Peaver, H. Wheater, Evaluation of precipitation products over complex mountainous terrain: a water resources perspective. Adv. Water Resour. 34, 1222–1231 (2011)

    Google Scholar 

  • J.A. Wiens, Spatial scaling in ecology. Funct. Ecol. 3, 385–397 (1989)

    Google Scholar 

  • Z.W. Xu, S.M. Liu, X. Li, S.J. Shi, J.M. Wang, Z.L. Zhu, T.R. Xu, W.Z. Wang, M.G. Ma, Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE. J. Geophys. Res. Atmos. 118, 13,140–13,157 (2013)

    Google Scholar 

  • K. Yang, J. Qin, L. Zhao, Y.Y. Chen, W.J. Tang, M.L. Han, Z. Lazhu, Q. Chen, N. Lv, B.H. Ding, H. Wu, C.G. Lin, A multi-scale soil moisture and freeze-thaw monitoring network on the Third Pole. Bull. Am. Meteorol. Soc. 94, 1907–1916 (2013)

    Google Scholar 

  • S. Zacharias, P. Dietrich, H.J. Vogel, R. Seppelt, D. Borchardt, S. Klotz, F. Messner, G. Teutsch, TERENO – methodical approach for the implementation of a terrestrial observatory for Environmental Research in Central Germany, Consoil 2008: Theme B – Functions and Values of Soil-Water Systems; Understanding of Processes (2008), pp. 85–89

    Google Scholar 

  • G.F. Zhu, X. Li, K. Zhang, Z.Y. Ding, T. Han, J.Z. Ma, C.L. Huang, J.H. He, T. Ma, Multi-model ensemble prediction of terrestrial evapotranspiration across North China using Bayesian model averaging. Hydrol. Process. 30, 2861–2879 (2016)

    Google Scholar 

  • M. Zreda, W.J. Shuttleworth, X. Zeng, C. Zweck, D. Desilets, T.E. Franz, R. Rosolem, COSMOS: the COsmic-ray soil moisture observing system. Hydrol. Earth Syst. Sci. 16, 4079–4099 (2012)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 91425303), and the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDA20100104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Li, X., Vereecken, H., Ma, C. (2019). Observing Ecohydrological Processes: Challenges and Perspectives. In: Li, X., Vereecken, H. (eds) Observation and Measurement of Ecohydrological Processes. Ecohydrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47871-4_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47871-4_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47871-4

  • Online ISBN: 978-3-662-47871-4

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics