Skip to main content

Parameter Estimation, Variance Components and Statistical Analysis in Errors-in-Variables Models

  • Living reference work entry
  • First Online:
Handbuch der Geodäsie

Part of the book series: Springer Reference Naturwissenschaften ((SRN))

  • 185 Accesses

Abstract

This chapter discusses statistical and numerical aspects of constrained and unconstrained errors-in-variables (EIV) models. The parameters in an EIV model can often be estimated by using three categories of methods: the conventional weighted least squares (LS) method, normed orthogonal regression, and the weighted total least squares (TLS) method. The conventional weighted LS method is of significantly computational advantage but not rigorous statistically. We systematically investigate the effects of random errors in the design matrix on the weighted LS estimates of parameters and variance components, construct the N-calibrated almost unbiased weighted LS estimator of parameters and derive almost unbiased estimates for the variance of unit weight. Although orthogonal regression can be used to estimate the parameters in an EIV model, it is not statistically optimal either. The weighted TLS method is most rigorous and optimal to statistically estimate the parameters in an EIV model at the cost of substantially increasing computation. We reformulate an EIV model as a nonlinear adjustment model without constraints and investigate the statistical effects of nonlinearity on the nonlinear TLS estimate, including the first order approximation of accuracy, nonlinear confidence region and bias of the nonlinear TLS estimate. Closed form solutions to coordinate transformation have been presented as well. Finally, we prove that variance components in an EIV model with the simplest stochastic structure are not estimable.

Zusammenfassung

Der Beitrag diskutiert statistische und numerische Aspekte von (,,errors-in-variable“) EIV-Modellen mit oder ohne Nebenbedingungen. Die Parameter in einem EIV-Modell lassen sich oftmals unter Benutzung dreier methodischer Kategorien bewerten: konventionelle gewichtete LS-Methode, normierte orthogonale Regression und gewichtete TLS-Methode. Die vorliegende Arbeit beschftigt sich mit der Reformulierung eines EIV-Models als nichtlineares Ausgleichungsmodell ohne Nebenbedingungen.

This chapter is part of the series Handbuch der Geodäsie, volume “Mathematical Geodesy/Mathematische Geodäsie”, edited by Willi Freeden, Kaiserslautern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Adcock, R.J.: Note on the method of least squares. Analyst 4, 183–184 (1877)

    Article  Google Scholar 

  2. Adcock, R.J.: A problem in least squares. Analyst 5, 53–54 (1878)

    Article  Google Scholar 

  3. Akyilmaz, O.: Total least squares solution of coordinate transformation. Surv. Rev. 39, 68–80 (2007)

    Article  Google Scholar 

  4. Altmann, S.L.: Rotations, Quaternions, and Double Groups. Clarendon Press, Oxford (1982)

    Google Scholar 

  5. Amiri-Simkooei, A., Jazaeri, S.: Data-snooping procedure applied to errors-in-variables models. Stud. Geophys. Geod. 57, 426–441 (2013)

    Article  Google Scholar 

  6. Amiri-Simkooei, A.R., Zangeneh-Nejad, F., Asgari, J.: On the covariance matrix of weighted total least-squares estimates. J. Surv. Eng. 142, 04015014 (2016)

    Article  Google Scholar 

  7. Aoki, M., Yue, P.C.: On a priori error estimates of some identification methods. IEEE Trans. Auto. Contr. AC-15, 541–548 (1970)

    Article  Google Scholar 

  8. Arun, K.S., Huang, T.S., BLOSTEIN, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-9, 698–700 (1987)

    Article  Google Scholar 

  9. Bab-Hadiashar, A., Suter, D.: Robust total least squares based optic flow computation. Int. J. Comput. Vis. 29, 566–573 (1998)

    Article  Google Scholar 

  10. Beale, E.M.L.: Confidence regions in non-linear estimation (with discussions). J. R. Stat. Soc. B22, 41–88 (1960)

    Google Scholar 

  11. Ben-Israel, A., Greville, T.: Generalized Inverses: Theory and Applications. Springer, Berlin (2000)

    Google Scholar 

  12. Boor, B.D.: Structured total least squares and L2 approximation problems. Lin. Algebra. Appl. 188, 163–205 (1993)

    Google Scholar 

  13. Bormann, P., Wylegalla, K.: Untersuchung der Korrelationsbeziehungen zwischen verschiedenen Arten der Magnitudenbestimmung der Station Moxa in Abhangigkeit vom Gerraetetyp und vom Herdgebiet. Publications of Institute of Geophysics, Pol. Acad. Sci. 93, 159–175 (1975)

    Google Scholar 

  14. Box, M.J.: Bias in nonlinear estimation (with discussions). J. R. Stat. Soc. B33, 171–201 (1971)

    Google Scholar 

  15. Branham R.L. Jr.: Astronomical data reduction with total least squares. New Astron. Rev. 45, 649–661 (2001)

    Article  Google Scholar 

  16. Cai, J.Q., Grafarend, E.: Systematical analysis of the transformation between Gauss-Krueger-coordinate/DHDN and UTM-coordinate/ETRS89 in Baden-Württemberg with different estimation methods. In: Drewes, H. (ed.) Geodetic Reference Frames, International Association of Geodesy Symposia 134, pp. 205–211. Springer, Berlin (2009)

    Google Scholar 

  17. Carroll, R.J., Ruppert, D., Stefanski, L.A., Crainiceanu, C.M.: Measurement Error in Nonlinear Models – a Modern Perspective, 2nd edn. Chapman and Hall, London (2006)

    Book  Google Scholar 

  18. Castellaro, S., Mulargia, F., Kagan, Y.Y.: Seismology regression problems for magnitudes. Geophys. J. Int. 165, 913–930 (2006)

    Article  Google Scholar 

  19. Chang, G.B., Xu, T.H., Wang, Q.X.: M-estimator for the 3D symmetric Helmert coordinate transformation. J. Geod. 92, 47–58 (2018)

    Article  Google Scholar 

  20. Cheng, C., van Ness, J.W.: Generalized M-estimators for errors-in-variables regression. Ann. Stat. 20, 385–397 (1992)

    Article  Google Scholar 

  21. Coolidge, J.L.: Two geometrical applications of the method of least squares. Am. Math. Mon. 20, 187–190 (1913)

    Article  Google Scholar 

  22. Davies, R.B., Hutton, B.: The effect of errors in the independent variables in linear regression. Biometrika 62, 383–391 (1975)

    Article  Google Scholar 

  23. Deming, W.E.: The application of least squares. Philos. Mag. 11, 146–158 (1931)

    Article  Google Scholar 

  24. Deming, W.E.: On the application of least squares — II. Philos. Mag. 17, 804–829 (1934)

    Article  Google Scholar 

  25. Deming, W.E.: Statistical Adjustment of Data. Dover Publications, New York (1964)

    Google Scholar 

  26. Dennis, Jr., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM Classics in Applied Mathematics. SIAM, Philadelphia (1996)

    Google Scholar 

  27. Dermanis, A.: The photogrammetric inner constraints. ISPRS J. Photogramm. Remote Sens. 49, 25–39 (1994)

    Article  Google Scholar 

  28. Dermanis, A.: Generalized inverses of nonlinear mappings and the nonlinear geodetic datum problem. J. Geod. 72, 71–100 (1998)

    Article  Google Scholar 

  29. Fang, X.: Weighted total least squares solutions for applications in geodesy. Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik, PhD Dissertation Nr.294, Leibniz University Hannover (2011)

    Google Scholar 

  30. Felus, Y.A.: Application of total least squares for spatial point process analysis. J. Surv. Eng. 130, 126–133 (2004)

    Article  Google Scholar 

  31. Felus, Y.A., Burtch, R.C.: On symmetrical three-dimensional datum conversion. GPS Solut. 13, 65–74 (2009)

    Article  Google Scholar 

  32. Fuller, W.A.: Measurement Error Models. Wiley Interscience, New York (1987)

    Book  Google Scholar 

  33. Fuller, W.A.: Introduction to Statistical Time Series, 2nd edn. Wiley, New York (1996)

    Google Scholar 

  34. Gerhold, G.A.: Least-squares adjustment of weighted data to a general linear equation. Am. J. Phys. 37, 156–161 (1969)

    Article  Google Scholar 

  35. Gleser, L.: Estimation in a multivariate “errors in variables” regression model: large sample results. Ann. Stat. 9, 24–44 (1981)

    Article  Google Scholar 

  36. Golub, G.H., van Loan, C.F.: An analysis of the total least squares problem. SIAM J. Numer. Anal. 17, 883–893 (1980)

    Article  Google Scholar 

  37. Grafarend, E., Schaffrin, B.: Unbiased free net adjustment. Surv. Rev. 22, 200–218 (1974)

    Article  Google Scholar 

  38. Grafarend, E., Schaffrin, B.: Equivalence of estimable quantities and invariants in geodetic networks. ZfV 101, 485–491 (1976)

    Google Scholar 

  39. Hodges, S.D., Moore, P.G.: Data uncertainties and least squares regression. Appl. Stat. 21, 185–195 (1972)

    Article  Google Scholar 

  40. Horn, B.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. 4, 629–642 (1987)

    Article  Google Scholar 

  41. Horn, B., Hilden, H.M., Negahdripour, S.: Closed-form solution of absolute orientation using orthonormal matrices. J. Opt. Soc. Am. 5, 1127–1135 (1988)

    Article  Google Scholar 

  42. Horn, S.D., Horn, R.A., Duncan, D.B.: Estimating heteroscedastic variances in linear models. J. Am. Stat. Ass. 70, 380–385 (1975)

    Article  Google Scholar 

  43. Kanatani, K., Niitsuma, H.: Optimal computation of 3-D similarity: Gauss-Newton vs. Gauss-Helmert. Comput. Stat. Data Anal. 56, 4470–4483 (2012)

    Article  Google Scholar 

  44. Keat, J.E.: Analysis of least-squares attitude determination routine DOAOP. Technical Report CSC/TM-77/6034, Computer Sciences Corp. (1977)

    Google Scholar 

  45. Koch, K.R.: S-transformations and projections for obtaining estimable parameters. In: 40 Years of Thought, Anniversary Volume on the Occasion of Prof. Baarda’s 65th Birthday, Delft, Vol. 1, pp. 136–144 (1982)

    Google Scholar 

  46. Koch, K.R.: Parameter estimation and hypothesis testing in linear models, 2nd edn. Springer, Berlin (1999)

    Book  Google Scholar 

  47. Kotsakis, C.: Reference frame stability and nonlinear distortion in minimum-constrained network adjustment. J. Geod. 86, 755–774 (2012)

    Article  Google Scholar 

  48. Kotsakis, C.: Generalized inner constraints for geodetic network densification problems. J. Geod. 87, 661–673 (2013)

    Article  Google Scholar 

  49. Krakiwsky, E.D., Thomson, D.B.: Mathematical models for the combination of terrestrial and satellite networks. Can. Surv. 28, 606–615 (1974)

    Google Scholar 

  50. Kummell, C.H.: Reduction of observation equations which contain more than one observed quantity. Analyst 6, 97–105 (1879)

    Article  Google Scholar 

  51. Lemmerling, P., van Huffel, S.: Structured total least squares. In: van Huffel, S., Lemmerling, P. (eds.) Total Least Squares and Errors-in-Variables Modelling, pp. 79–91. Kluwer Academic Publishers, Dordrecht (2002)

    Chapter  Google Scholar 

  52. Li, Y., Tang, H., Lin, X.: Spatial linear mixed models with covariate measurement errors. Stat. Sin. 19, 1077–1093 (2009)

    Google Scholar 

  53. Liu, J.N.: The equivalence of coordinate transformation models for the combination of satellite and terrestrial networks. J. Wuhan Tech. Univ. Surv. Mapp. 8, 37–50 (1983). (in Chinese with English abstract)

    Google Scholar 

  54. Liu, J.N., Liu, D.J.: The influence of the accuracy in geodetic and geocentric coordinates on combined adjustment. Acta Geod. Cartogr. Sinica. 14, 133–144 (1985). (in Chinese with English abstract)

    Google Scholar 

  55. Liu, J.N., Liu, D.J., Cui, X.Z.: Theory and applications of combined adjustment of satellite and terrestrial networks. J. Wuhan Tech. Univ. Surv. Mapp. 12(4), 1–9 (1987). (in Chinese with English abstract)

    Google Scholar 

  56. Lu, G.: Development of a GPS multi-antenna system for attitude determination. PhD Thesis, UCGE Reports No. 20073. Department of Geomatics Engineering, The University of Calgary (1995)

    Google Scholar 

  57. Magnus, J.R., Neudecker, H.: Matrix differential calculus with applications in statistics and econometrics. Wiley, New York (1988)

    Book  Google Scholar 

  58. Markovsky, I., van Huffel, S.: High-performance numerical algorithms and software for structured total least squares. J. Comput. Appl. Math. 180, 311–331 (2005)

    Article  Google Scholar 

  59. Markovsky, I., van Huffel, S.: On weighted structured total least squares. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2005, LNCS 3743, pp. 695–702 (2006)

    Google Scholar 

  60. Markovsky, I., van Huffel, S.: Overview of total least squares methods. Sig. Proc. 87, 2283–2302 (2007)

    Article  Google Scholar 

  61. Mastronardi, N., Lemmerling, M., van Huffel, S.: Fast structured total least squares algorithm for solving the basic deconvolution problem. SIAM J. Matrix Anal. Appl. 22, 533–553 (2000)

    Article  Google Scholar 

  62. Meissl, P.: Die innere Genauigkeit eines Punkthaufens. Öster. ZfV 50, 159–165, 186–194 (1962)

    Google Scholar 

  63. Meissl, P.: Über die innere Genauigkeit dreidimensionaler Punkthaufen. ZfV 90, 109–118 (1965)

    Google Scholar 

  64. Neitzel, F.: Generalization of total least-squares on example of unweighted and weighted 2D similarity transformation. J. Geod. 84, 751–762 (2010)

    Article  Google Scholar 

  65. Nievergelt, Y.: Total least squares: state-of-the-art regression in numerical analysis. SIAM Rev. 36, 258–264 (1994)

    Article  Google Scholar 

  66. Papo, H., Perelmuter, A.: Datum definition by free net adjustment. Bull. Geod. 55, 218–226 (1981)

    Article  Google Scholar 

  67. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. 2, 559–572 (1901)

    Article  Google Scholar 

  68. Rao, C.R., Kleffe, J.: Estimation of Variance Components and Applications. North-Holland, Amsterdam (1988)

    Google Scholar 

  69. Rao, C.R., Mitra, S.K.: Generalized Inverse of Matrices and Its Applications. Wiley, New York (1971)

    Google Scholar 

  70. Ratkowsky, D.A.: Nonlinear Regression Modeling – A Practical Unified Approach. Marcel Dekker, New York (1983)

    Google Scholar 

  71. Rinner, K.: Systematic investigations of geodetic networks in space. European Res Office, Contract No. 91–591-EUC 3584 (1966)

    Google Scholar 

  72. Rosen, J.B., Park, H., Glick, J.: Total least squares formulation and solution for structured problems. SIAM J. Matrix Anal. Appl. 17, 110–126 (1996)

    Article  Google Scholar 

  73. Ross, G.J.S.: Nonlinear Estimation. Springer, New York (1990)

    Book  Google Scholar 

  74. Sanso, F.: An exact solution of the roto-translation problem. Photogrammetria 29, 203–216 (1973)

    Article  Google Scholar 

  75. Schaffrin, B.: Aspects of network design. In: Grafarend, E., Sanso, F. (eds.) Optimization and Design of Geodetic Networks, pp. 548–597. Springer, Berlin (1985)

    Chapter  Google Scholar 

  76. Schaffrin, B.: A note on constrained total least-squares estimation. Linear Algebra Appl. 417, 245–258 (2006)

    Article  Google Scholar 

  77. Schaffrin, B., Wieser, A.: On weighted total least-squares adjustment for linear regression. J. Geod. 82, 415–421 (2008)

    Article  Google Scholar 

  78. Schaffrin, B., Felus, Y.A.: An algorithmic approach to the total least-squares problem with linear and quadratic constraints. Stud. Geophys. Geod. 53, 1–16 (2009)

    Article  Google Scholar 

  79. Schaffrin, B., Lee, I., Choi, Y., Felus, Y.A.: Total least-squares (TLS) for geodetic straight-line and plane adjustment. Boll. Geod. Sci. Aff. LXV, 141–168 (2006)

    Google Scholar 

  80. Schönemann, P.H.: A generalized solution of the orthogonal procrustes problem. Psychometrika 31, 1–10 (1966)

    Article  Google Scholar 

  81. Searle, S.R.: Linear Models. Wiley, New York (1971)

    Google Scholar 

  82. Seber, G., Wild, C.: Nonlinear Regression. Wiley, New York (1989)

    Book  Google Scholar 

  83. Shen, Y.Z., Li, B.F., Chen, Y.: An iterative solution of weighted total least squares adjustment. J. Geod. 85, 229–238 (2011)

    Article  Google Scholar 

  84. Shi, Y., Xu, P.L.: Unidentifiability of errors-in-variables models with rank deficiency from measurements (2018, submitted)

    Google Scholar 

  85. Shi, Y., Xu, P.L., Liu, J.N., Shi, C.: Alternative formulae for parameter estimation in partial errors-in-variables models. J. Geod. 89, 13–16 (2015)

    Article  Google Scholar 

  86. Teunissen, P.: Zero order design: generalized inverse, adjustment, the datum problem and S-transformations. In: Grafarend, E., Sanso, F. (eds.) Optimization and Design of Geodetic Networks, pp. 11–55. Springer, Berlin (1985)

    Chapter  Google Scholar 

  87. Thompson, E.H.: An exact linear solution of the problem of absolute orientation. Photogrammetria 15, 163–179 (1959)

    Article  Google Scholar 

  88. Tong, X.H., Jin, Y.M., Zhang, S.L., Li, L.Y., Liu, S.J.: Bias-corrected weighted total least-squares adjustment of condition equations. J. Surv. Eng. 141, 04014013 (2015)

    Article  Google Scholar 

  89. Umeyama, S.: Least squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13, 376–380 (1991)

    Article  Google Scholar 

  90. Ursin, B.: Methods for estimating the seismic reflection response. Geophysics 62, 1990–1995 (1997)

    Article  Google Scholar 

  91. van Huffel, S., Vandewalle, J.: The Total Least Squares Problem: Computational Aspects and Analysis. SIAM, Philadelphia (1991)

    Book  Google Scholar 

  92. Wang, N., Davidian, M.: A note on covariate measurement error in nonlinear mixed effects models. Biometrika 83, 801–812 (1996)

    Article  Google Scholar 

  93. Wang, N., Lin, X., Gutierrez, R., Carroll, R.J.: Bias analysis and SIMEX approach in generalized linear mixed measurement error models. J. Am. Stat. Ass. 93, 249–261 (1998)

    Article  Google Scholar 

  94. Wolf, H.: Helmerts Lösung zum Problem der freien Netze mit singulärer Normalgleichungsmatrix. ZfV 97, 189–192 (1972)

    Google Scholar 

  95. Wolf, H.: Die Helmert-Inverse bei freien geodätischen Netzen. ZfV 98, 396–398 (1973)

    Google Scholar 

  96. Wolf, H.: Scale and orientation in combined doppler and triangulation nets. Bull Géod 54, 45–53 (1980)

    Article  Google Scholar 

  97. Xu, P.L.: Testing the hypotheses of non-estimable functions in free net adjustment models. Manuscr. Geodaet. 20, 73–81 (1995)

    Google Scholar 

  98. Xu, P.L.: A general solution in nonlinear rank-defect geodetic models. Boll. Geod. Sci. Aff. 56, 1–25 (1997)

    Google Scholar 

  99. Xu, P.L.: Biases and accuracy of, and an alternative to, discrete nonlinear filters. J. Geod. 73, 35–46 (1999)

    Article  Google Scholar 

  100. Xu, P.L.: Nonlinear filtering of continuous systems: foundational problems and new results. J. Geod. 77, 247–256 (2003)

    Article  Google Scholar 

  101. Xu, P.L.: Determination of regional stress tensors from fault-slip data. Geophys. J. Int. 157, 1316–1330 (2004)

    Article  Google Scholar 

  102. Xu, P.L.: The effect of errors-in-variables on variance component estimation. J. Geod. 90, 681–701 (2016)

    Article  Google Scholar 

  103. Xu, P.L., Grafarend, E.: Statistics and geometry of the eigenspectra of 3-D second-rank symmetric random tensors. Geophys. J. Int. 127, 744-756 (1996)

    Article  Google Scholar 

  104. Xu, P.L., Liu, J.N.: Variance components in errors-in-variables models: estimability, stability and bias analysis. Invited talk, VIII Hotine-Marussi Symposium on Mathematical Geodesy, Rome, 17–21 June (2013)

    Google Scholar 

  105. Xu, P.L., Liu, J.N.: Variance components in errors-in-variables models: estimability, stability and bias analysis. J. Geod. 88, 719–734 (2014)

    Article  Google Scholar 

  106. Xu, P.L., Shimada, S.: Least squares parameter estimation in multiplicative noise models. Commun. Stat. B29, 83–96 (2000)

    Article  Google Scholar 

  107. Xu, P.L., Liu, J.N., Shi, C.: Total least squares adjustment in partial errors-in-variables models: algorithm and statistical analysis. J. Geod. 86, 661–675 (2012)

    Article  Google Scholar 

  108. Xu, P.L., Liu, J.N., Zeng, W., Shen, Y.Z.: Effects of errors-in-variables on weighted least squares estimation. J. Geod. 88, 705–716 (2014)

    Article  Google Scholar 

  109. Zeng, H.: Analytical algorithm of weighted 3D datum transformation using the constraint of orthonormal matrix. EPS 67, art.105 (2015)

    Google Scholar 

  110. Zhou, J.W.: Quasi-stable adjustment of monitoring networks. Wuhan Inst. Geod. Geophys. Spec. Publ. No. 2 (1980). (in Chinese)

    Google Scholar 

  111. Zumar, R.H.: Robust estimation in the errors-in-variables model. Biometrika 76, 149–160 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiliang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xu, P. (2018). Parameter Estimation, Variance Components and Statistical Analysis in Errors-in-Variables Models. In: Freeden, W., Rummel, R. (eds) Handbuch der Geodäsie. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46900-2_99-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46900-2_99-1

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46900-2

  • Online ISBN: 978-3-662-46900-2

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics