Skip to main content

From Newton’s Law of Gravitation to Multiscale Geoidal Determination and Ocean Circulation Modeling

  • Living reference work entry
  • First Online:
Handbuch der Geodäsie

Part of the book series: Springer Reference Naturwissenschaften ((SRN))

  • 182 Accesses

Abstract

The objective of this contribution is the documentation of the pioneer dimension of Newton’s work to demonstrate his mediating role between classical gravitational theory and today’s multiscale concepts of geoidal determination and ocean circulation modeling.

Zusammenfassung

Das Ziel dieses Beitrags ist die Dokumentation der bahnbrechenden Dimension der Arbeiten von Newton um seine Vermittlerrolle zwischen klassischer Gravitationstheorie und den heutigen Multiskalenkonzepten bei Geoidbestimmung und Modellierung der Ozeanzirkulation zu demonstrieren.

This chapter is part of the series Handbuch der Geodäsie, volume Mathematical Geodesy/ Mathematische Geodäsie, edited by Willi Freeden, Kaiserslautern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Grundlehren der Mathematischen Wissenschaften, vol. 314. Springer, Berlin (1996)

    Google Scholar 

  2. Albertella, A., Savcenko, R., Bosch, W., Rummel, R.: Dynamic Ocean Topography – The Geodetic Approach, vol. 27. Schr-r Inst für Astron Phys Geod Forsch-einricht Satell-geod, TU München, München (2008)

    Google Scholar 

  3. Ansorge, R., Sonar, T.: Mathematical Models of Fluid Dynamics. Wiley, Weinheim (2009)

    Book  Google Scholar 

  4. Augustin, M., Freeden, W.: A survey on classical boundary value problems in physical geodesy. In: Grafarend, E.W. (ed.) Encyclopedia of Geodesy, pp. 1–7. Springer International Publishing, Switzerland (2015)

    Google Scholar 

  5. Augustin, M., Freeden, W., Nutz, H.: About the importance of the Runge–Walsh concept for physical geodesy. In: Handbook of Mathematical Geodesy (in print)

    Google Scholar 

  6. Bjerhammar, A.: Gravity Reduction to an Internal Sphere. Division of Geodesy, Stockholm (1962)

    Google Scholar 

  7. Bruns, H.: Die Figur der Erde “Ein Beitrag zur europäischen Gradmessung”. P. Stankiewicz, Berlin (1878)

    Google Scholar 

  8. Cui J., Freeden W.: Equidistribution on the sphere. SIAM J. Sci. Stat. Comput. 18, 595–609 (1997)

    Article  Google Scholar 

  9. Fehlinger, T.: Multiscale formulations for the disturbing potential and the deflections of the vertical in locally reflected physical geodesy. Ph.D-Thesis, Geomathematics Group, University of Kaiserslautern (2009)

    Google Scholar 

  10. Fehlinger, T., Freeden, W., Gramsch, S., Mayer, C., Michel, D., Schreiner, M.: Local modelling of sea surface topography from (geostrophic) ocean flow. ZAMM 87, 775–791 (2007)

    Article  Google Scholar 

  11. Freeden, W.: Über eine Verallgemeinerung der Hardy–Landauschen Identität. Manuscr. Math. 24, 205–216 (1978)

    Article  Google Scholar 

  12. Freeden, W.: Über eine Klasse von Integralformeln der mathematischen Geodäsie. Verff Geod Inst RWTH Aachen, 27 (1979)

    Google Scholar 

  13. Freeden, W.: On the approximation of external gravitational potential with closed systems of (trial) functions. Bull. Géod. 54, 1–20 (1980)

    Article  Google Scholar 

  14. Freeden, W.: Geomathematics: its role, its aim, and its potential. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 2nd edn., pp. 3–79. Springer, New York/Berlin/Heidelberg (2015)

    Chapter  Google Scholar 

  15. Freeden, W., Gerhards, C.: Geomathematically Oriented Potential Theory. Chapman and Hall/CRC Press, Boca Raton/London/New York (2013)

    Google Scholar 

  16. Freeden, W., Gutting, M.: Integration and Cubature Methods. Chapman and Hall/CRC Press, Boca Raton/London/New York (2018)

    Google Scholar 

  17. Freeden, W., Kersten, H.: The Geodetic Boundary-Value Problem Using the Known Surface of the Earth, vol. 29. Veröff Geod Inst RWTH Aachen, Aachen (1980)

    Google Scholar 

  18. Freeden, W., Kersten, H.: A constructive approximation theorem for the oblique derivative problem in potential theory. Math. Methods Appl. Sci. 4, 104–114 (1981)

    Article  Google Scholar 

  19. Freeden, W., Maier, T.: On multiscale denoising of spherical functions: basic theory and numerical aspects. Electron. Trans. Numer. Anal. 14, 56–78 (2002)

    Google Scholar 

  20. Freeden, W, Maier, T.: Spectral and multiscale signal-to-noise thresholding of spherical vector fields. Comput. Geosci. 7, 215–250 (2003)

    Article  Google Scholar 

  21. Freeden, W., Mayer, C.: Multiscale Solution for the molodensky problem on regular telluroidal surfaces. Manuscr. Math. Acta Geod. Geophys. Hung. 41, 55–86 (2006)

    Article  Google Scholar 

  22. Freeden, W., Michel, V.: Multiscale Potential Theory (With Applications to Geoscience). Birkhäuser, Boston (2004)

    Book  Google Scholar 

  23. Freeden, W., Schreiner, M.: Local multiscale modelling of geoid undulations from deflections of the vertical. J. Geod. 79, 641–651 (2006)

    Article  Google Scholar 

  24. Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences – A Scalar, Vecterial, and Tensorial Setup. Springer, Heidelberg (2009)

    Google Scholar 

  25. Freeden, W., Wolf, K.: Klassische Erdschwerefeldbestimmung aus der Sicht moderner Geomathematik. Math. Semesterb. 56, 53–77 (2009)

    Article  Google Scholar 

  26. Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere (With Applications to Geomathematics). Oxford Science Publications/Clarendon, Oxford (1998)

    Google Scholar 

  27. Freeden, W., Michel, D., Michel, V.: Local multiscale approximation of geostrophic oceanic flow: theoretical backgroundhe and aspects of scientific computing. Mar. Geod. 28, 313–329 (2005)

    Article  Google Scholar 

  28. Fehlinger, T., Freeden, W., Klug, M., Mathar, D., Wolf, K.: Classical globally reflected gravity field determination in modern locally oriented multiscale framework. J. Geodesy 83, 1171–1191 (2009)

    Article  Google Scholar 

  29. Gauss, C.F.: Allgemeine Theorie des Erdmagnetismus. Resultate aus den Beobachtungen des magnetischen Vereins, Göttingen (1838)

    Google Scholar 

  30. Gerhards, C.: Spherical multiscale methods in terms of locally supported wavelets: Theory and application to geomagnetic modeling. Ph.D-Thesis, Geomathematics Group, University of Kaiserslautern (2011)

    Google Scholar 

  31. Grafarend, C.F., Klapp, M., Martinec, M.: Spacetime modeling of the earths gravity field by ellipsoidal harmonics. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 2nd ed., pp. 381–496. Springer, New York/Berlin/Heidelberg (2015)

    Chapter  Google Scholar 

  32. Green, G.: An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism. T. Wheelhouse, Nottingham (1838)

    Google Scholar 

  33. Groten, E.: Geodesy and the Earth’s Gravity Field I + II. Dümmler, Bonn (1979)

    Google Scholar 

  34. Heiskanen, W.A., Moritz, H.: Physical Geodesy. Freeman, San Francisco (1967)

    Google Scholar 

  35. Hofmann–Wellenhof, B., Moritz, H.: Physical Geodesy, 2nd edn. Springer, Wien/New York (2006)

    Google Scholar 

  36. Hörmander, L.: The Boundary Problems of Physical Geodesy. The Royal Institute of Technology, Division of Geodesy, Report 9, Stockholm (1975)

    Google Scholar 

  37. Hotine, M.: Mathematical Geodesy. ESSA Monography, vol. 2. U.S. Department of Commerce, Washington (1969); Reprint 1992 by Springer

    Google Scholar 

  38. Jekeli, C.: An analysis of deflections of the vertical derived from high-degree spherical harmonic models. J. Geod. 73, 10–22 (1999)

    Article  Google Scholar 

  39. Kellogg, O.D.: Foundations of Potential Theory. Frederick Ungar Publishing Company, New York (1929)

    Book  Google Scholar 

  40. Koch, K.R., Pope, A.J.: Uniqueness and existence for the geodetic boundary value problem using the known surface of the earth. Bulletin Géodeséque 106, 467–476 (1972)

    Article  Google Scholar 

  41. Krarup, T.: A Contribution to the Mathematical Foundation of Physical Geodesy. Danish Geodetic Institute, Report No. 44, Copenhagen (1969)

    Google Scholar 

  42. Krarup, T.: Letters on Molodensky’s Problem I-IV. Communication to the members of the IAG Special Study Group 4.31 (1973)

    Google Scholar 

  43. Laplace, P.S.: Traité de mécanique céleste. Tome 2, Paris (1799)

    Google Scholar 

  44. Listing, J.B.: Über unsere jetzige Kenntnis der Gestalt und Größe der Erde. Dietrichsche Verlagsbuchhandlung, Göttingen (1873)

    Google Scholar 

  45. Listing, J.B.: Neue geometrische und dynamische Constanten des Erdkörpers. Nachr Königl Ges Wiss & Georg-August-Univ Göttingen, Dietrichsche Verlagsbuchhandlung, pp. 749–815 (1878)

    Google Scholar 

  46. Maire, Ch., Boscović, R.J.: De Litteraria Expeditione per Pontificiam Ditionem ad Dimentiendos duos Meridiani Gradus. In typographio Palladis, excudebant Nicolaus, et Marcus Palearini, Romae, pp. 409–503 (1755)

    Google Scholar 

  47. Markina, I., Vodopyanov, S.K.: Fundamentals of the nonlinear potential theory for subelliptic equations. I, II. Siberian Adv. Math. 7, 32–62 (1997)

    Google Scholar 

  48. Maximenko, N., Niiler, P., Rio, M.-H., Melnichenko, O., Centurioni, L., Chambers, D., Zlotnicki, V., Galperin, B.: Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J. Atmos. Ocean Tech. 26, 1910–1919 (2009)

    Article  Google Scholar 

  49. Molodensky, M.S., Eremeev, V.F., Yurkina, M.I.: Methods for study of the external gravitational field and figure of the earth, p. 131. Trudy TSNIIGAiK, Geodezizdat, Moscow (1960) (English trans: Israel Program for Scientific Translation, Jerusalem (1962))

    Google Scholar 

  50. Moritz, H.: Der Begriff der mathematischen Erdgestalt seit Gauss. Allgemeine Vermessungs-Nachrichten, 133–138 (1977)

    Google Scholar 

  51. Moritz, H.: Advanced Physical Geodesy. Wichmann Verlag, Karlsruhe (1980)

    Google Scholar 

  52. Moritz, H.: Advanced Physical Geodesy, 2nd edn. Wichmann, Karlsruhe (1989)

    Google Scholar 

  53. Moritz, H.: Classical Physical Geodesy. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 1st edn., pp. 127–158. Springer, New York/Berlin/Heidelberg (2010)

    Google Scholar 

  54. Moritz, H.: Classical physical geodesy. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 2nd edn., pp. 253–290. Springer, New York/Berlin/Heidelberg (2015)

    Chapter  Google Scholar 

  55. Nerem, R.S., Koblinski, C.J.: The Geoid and Ocean Circulation. In: Vancek, P., Christou, N.T. (eds.) Geoid and Its Geophysical Interpretations. CRC Press, Boca Raton (1994)

    Google Scholar 

  56. Neumann, F.: Vorlesungen über die Theorie des Potentials und der Kugelfunktionen, pp. 135–154. Teubner, Leipzig (1887)

    Google Scholar 

  57. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1979)

    Book  Google Scholar 

  58. Petrini, H.: Sur l’existence des derivees secondes du potentiel. C. R. Acad. Sci. Paris 130, 233–235 (1900)

    Google Scholar 

  59. Pick, M., Pícha, J., Vyskočil, V.: Theory of the Earth’s Gravity Field. Elsevier Scientific Publishing Company, Amsterdam (1973)

    Google Scholar 

  60. Pizzetti, P.: Sopra il Calcoba Tesrico delle Deviazioni del Geoide dall’ Ellissoide. Att. R Accad. Sci. Torino 46, 331–350 (1910)

    Google Scholar 

  61. Rummel, R.: Geodesy. In: Nierenberg, W.A. (ed.) Encyclopedia of Earth System Science, vol. 2, pp. 253–262. Academic Press, San Diego (1992)

    Google Scholar 

  62. Runge, C.: Zur Theorie der eindeutigen analytischen Funktionen. Acta Math. 6, 229–234 (1885)

    Article  Google Scholar 

  63. Sanso, F.: A note on density problems and the Runge Krarup’s Theorem. Bolletino di Geodesia e Science Affini 41, 422–477 (1982)

    Google Scholar 

  64. Stokes, G.G.: On the variation of gravity on the surface of the earth. Trans. Camb. Phil. Soc. 8, 672–695 (1849)

    Google Scholar 

  65. Todhunter, I.: A history of the mathematical theories of attraction and of the figure on the Earth from the time of Newton to that of Laplace. Macmillan, London (1878); Reprint 1962 by Dover Publications, New York

    Google Scholar 

  66. Torge, W.: Geodesy, 2nd edn. de Gruyter, Berlin (1991)

    Book  Google Scholar 

  67. Vening Meinesz, F.A.: A formula expressing the deflection of the plumb-line in the gravity anomalies and some formulae for the gravity field and the gravity potential outside the geoid. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, 31(3):315–331 (1928)

    Google Scholar 

  68. Vekua, I.N.: Über die Vollständigkeit des Systems harmonischer Polynome im Raum. Dokl. Akad. Nauk 90, 495–498 (1953)

    Google Scholar 

  69. Walsh, J.L.: The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions. Bull. Am. Math. Soc. 35, 499–544 (1929)

    Article  Google Scholar 

  70. Wangerin, A.: Theorie des Potentials und der Kugelfunktionen. Walter de Gruyter & Co, Berlin/Leipzig (1921)

    Google Scholar 

  71. Wermer, J.: Potential Theory. Lecture Notes in Mathematics, vol. 408. Springer, Berlin (1974)

    Google Scholar 

  72. Weyl, H.: Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann. 77, 313–352 (1916)

    Article  Google Scholar 

  73. Wolf, K.: Multiscale modeling of classical boundary value problems in physical geodesy by locally supported wavelets. Ph.D-Thesis, Geomathematics Group, University of Kaiserslautern (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willi Freeden .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Freeden, W., Nutz, H. (2018). From Newton’s Law of Gravitation to Multiscale Geoidal Determination and Ocean Circulation Modeling. In: Freeden, W., Rummel, R. (eds) Handbuch der Geodäsie. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46900-2_97-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46900-2_97-1

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46900-2

  • Online ISBN: 978-3-662-46900-2

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics