Skip to main content

Ensemble Methods for Meteorological Predictions

  • Reference work entry
  • First Online:

Abstract

Since the atmospheric system is a nonlinear chaotic system, its numerical prediction is bound by a predictability limit due to imperfect initial conditions and models. Ensemble forecasting is a dynamical approach to quantify the predictability of weather, climate, and water forecasts. This chapter introduces various methods to create an ensemble of forecasts based on three aspects: perturbing initial conditions (IC), perturbing a model, and building a virtual ensemble. For generating IC perturbations, methods include (1) random, (2) time-lagged, (3) bred vector, (4) ensemble transform (ET), (5) singular vector (SV), (6) conditional nonlinear optimal perturbation (CNOP), (7) ensemble transform Kalman filter (ETKF), (8) ensemble Kalman filter (EnKF), and (9) perturbations in boundaries including land surface and topography. For generating model perturbations, methods include (1) multi-model and multi-physics, (2) stochastically perturbed parametrization tendency (SPPT), (3) stochastically kinetic energy backscatter (SKEB), (4) convection triggering, (5) stochastic boundary-layer humidity (SHUM), (6) stochastic total tendency perturbation (STTP), and (7) vorticity confinement. A method to create a spatially correlated random pattern (mask) needed by SPPT, SKEB, etc. is introduced based on the Markov process; a factor separation method is introduced to estimate the relative impact of various physics schemes and their interactions. A method of perturbing a dynamic core to create an ensemble is also mentioned. Quantitative forecast uncertainty information and ensemble products can also be generated from “virtual ensembles” based on existing deterministic forecasts through at least five different approaches including (1) time-lagged, (2) poor-man’s, (3) hybrid, (4) neighborhood, and (5) analog ensembles. Generally speaking, the selection of perturbation methods in constructing an EPS is more important for smaller-scale and shorter-range forecasts and less critical for larger-scale and longer-range forecasts. Finally, the frequently asked question about the trade-off between ensemble size and model resolution is discussed. By introducing these methods, we hope to help readers who are interested in ensemble forecasting but not familiar with these approaches to build their own EPS or produce ensemble products as well as for students to learn the subject of ensemble forecasting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • E.A. Aligo, W.A. Gallus, M. Segal, Summer rainfall forecast spread in an ensemble initialized with different soil moisture analyses. Weather Forecast. 22, 299–314 (2007)

    Article  Google Scholar 

  • E.A. Aligo, W.A. Gallus Jr., M. Segal, On the impact of WRF model vertical grid resolution on Midwest summer rainfall forecasts. Weather Forecast. 24, 575–594 (2009)

    Article  Google Scholar 

  • J.L. Anderson, An ensemble adjustment Kalman filter for data assimilation. Mon. Weather Rev. 129, 2884–2903 (2001)

    Article  Google Scholar 

  • J. Berner, F. Doblas-Reyes, T.N. Palmer, G.J. Shutts, A. Weisheimer, Impact of a quasi-stochastic cellular automaton backscatter scheme on the systematic error and seasonal prediction skill of a global climate model. Phil. Trans. R. Soc. A 366, 2561–2579 (2008). https://doi.org/10.1098/rsta.2008.0033

    Article  Google Scholar 

  • J. Berner, G.J. Shutts, M. Leutbecher, T.N. Palmer, A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci. 66, 603–626 (2009)

    Article  Google Scholar 

  • J. Berner, S.-Y. Ha, J.P. Hacker, A. Fournier, C. Snyder, Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multi-physics representations. Mon. Weather Rev. 139, 1972–1995 (2011)

    Article  Google Scholar 

  • J. Berner, T. Jung, T.N. Palmer, Systematic model error: The impact of increased horizontal resolution versus improved stochastic and deterministic parameterizations. J. Clim. 25, 4946–4962 (2012)

    Article  Google Scholar 

  • E.G. Birgin, J.M. Martınez, M. Raydan, Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10, 1196–1211 (2000)

    Article  Google Scholar 

  • C.H. Bishop, Z. Toth, Ensemble transformation and adaptive observation. J. Atmos. Sci. 56, 1748–1765 (1999)

    Article  Google Scholar 

  • C.H. Bishop, B.J. Etherton, S. Majumdar, Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects. Mon. Weather Rev. 129, 420–436 (2001)

    Article  Google Scholar 

  • B.T. Blake, J.R. Carley, T.I. Alcott, I. Jankov, M. Pyle, S. Perfater, B. Albright, An adaptive approach for the calculation of ensemble grid-point probabilities. Weather Forecast., submitted 33, (2018)

    Article  Google Scholar 

  • M. Borges, D.L. Hartmann, Barotropic instability and optimal perturbations of observed non-zonal flows. J. Atmos. Sci. 49, 335–354 (1992)

    Article  Google Scholar 

  • N.E. Bowler, A. Arribas, K.R. Mylne, K.B. Robertson, S.E. Beare, The MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc. 134, 703–722 (2008)

    Article  Google Scholar 

  • N.E. Bowler, A. Arribas, S.E. Beare, K.R. Mylne, G.J. Shutts, The local ETKF and SKEB: Upgrade to the MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc. 135, 767–776 (2009)

    Article  Google Scholar 

  • C. Brankovic, T.N. Palmer, F. Molteni, S. Tibaldi, U. Cubasch, Extended-range predictions with ECMWF models: time-lagged ensemble forecasting. Q. J. R. Meteorol. Soc. 116, 867–912 (2006)

    Article  Google Scholar 

  • R. Buizza, T.N. Palmer, The singular vector structure of the atmospheric general circulation. J. Atmos. Sci. 52, 1434–1456 (1995)

    Article  Google Scholar 

  • R. Buizza, J. Tribbia, F. Molteni, T.N. Palmer, Computation of optimal unstable structures for a numerical weather prediction model. Tellus 45A, 388–407 (1993)

    Article  Google Scholar 

  • R. Buizza, M. Miller, T.N. Palmer, Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc. 125, 2887–2908 (1999)

    Article  Google Scholar 

  • M. Charron, G. Pellerin, L. Spacek, P.L. Houtekamer, N. Gagnon, H.L. Mitchell, L. Michelin, Toward random sampling of model error in the Canadian ensemble prediction system. Mon. Weather Rev. 138, 1877–1901 (2010)

    Article  Google Scholar 

  • J. Chen, J.-S. Xue, H. Yan, A new initial perturbation method of ensemble mesoscale heavy rain prediction. Chin. J. Atmos. Sci. 29(5), 717–726 (2005). https://doi.org/10.3878/j.issn.1006-9895.2005.05.05

    Article  Google Scholar 

  • K.W.C. Cheung, J.C.L. Chan, Ensemble forecasting of tropical cyclone motion using a barotropic model. Part I: perturbations of the environment. Mon. Weather Rev. 127, 1229–1243 (1999a)

    Article  Google Scholar 

  • K.W.C. Cheung, J.C.L. Chan, Ensemble forecasting of tropical cyclone motion using a barotropic model. Part II: perturbations of the vortex. Mon. Weather Rev. 127, 2617–2640 (1999b)

    Article  Google Scholar 

  • A.J. Clark, W.A. Gallus, M. Xue, F. Kong, A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Weather Forecast. 24, 1121–1140 (2009)

    Article  Google Scholar 

  • A.J. Clark, W.A. Gallus Jr., M. Xue, F. Kong, Convection-allowing and convection-parameterizing ensemble forecasts of a mesoscale convective vortex and associated severe weather environment. Weather Forecast. 25, 1052–1081 (2010). https://doi.org/10.1175/2010WAF2222390.1

    Article  Google Scholar 

  • A.J. Clark, J.S. Kain, D.J. Stensrud, M. Xue, F. Kong, M.C. Coniglio, K.W. Thomas, Y. Wang, K. Brewster, J. Gao, X. Wang, S.J. Weiss, J. Du, Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble. Mon. Weather Rev. 139, 1410–1418 (2011). https://doi.org/10.1175/2010MWR3624.1

    Article  Google Scholar 

  • G.K. Dai, M. Mu, Z.N. Jiang, Relationships between optimal precursors triggering NAO onset and optimally growing initial errors during NAO prediction. J. Atmos. Sci. 73, 293–317 (2016)

    Article  Google Scholar 

  • D. Dee, On-line estimation of error covariance parameters for atmospheric data assimilation. Mon. Weather Rev. 123, 1128–1145 (1995)

    Article  Google Scholar 

  • L. Delle Monache, F.A. Eckel, D. Rife, B. Nagarajan, K. Searight, Probabilistic weather predictions with an analog ensemble. Mon. Weather Rev. 141, 3498–3516 (2013)

    Article  Google Scholar 

  • M. Delle, L.T. Nipen, Y. Liu, G. Roux, R. Stull, Kalman filter and analog schemes to postprocess numerical weather predictions. Mon. Weather Rev. 141, 3498–3516 (2011)

    Article  Google Scholar 

  • S.R. Dey, A.G. Leoncini, N.M. Roberts, R.S. Plant, S. Migliorini, A spatial view of ensemble spread in convection permitting ensembles. Mon. Weather Rev. 142, 4091–4107 (2014)

    Article  Google Scholar 

  • S.R. Dey, N.M. Roberts, R.S. Plant, S. Migliorini, A new method for characterization and verification of local spatial predictability for convective-scale ensembles. Q. J. R. Meteorol Soc. 142, 1982–1996 (2016)

    Article  Google Scholar 

  • F. Doblas-Reyes, A. Weisheimer, M. Déqué, N. Keenlyside, M. McVean, J.M. Murphy, P. Rogel, D. Smith, T.N. Palmer, Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts. Q. J. R. Meteorol. Soc. 135, 1538–1559 (2009)

    Article  Google Scholar 

  • J. Du, Hybrid ensemble prediction system: a new ensembling approach. Preprints, in Symposium on the 50th Anniversary of Operational Numerical Weather Prediction (University of Maryland, College Park, 2004), June 14–17 2004, Am. Meteorol. Soc., CD-ROM (paper p4.2, 5pp). Available online http://www.emc.ncep.noaa.gov/mmb/SREF/reference.html

  • J. Du, G. Deng, The utility of the transition from deterministic to probabilistic weather forecasts: verification and application of probabilistic forecasts. Meteorol. Mon. 36(12), 10–18 (2010)

    Google Scholar 

  • J. Du, G. DiMego, A regime-dependent bias correction approach. in 19th Conference on Probability and Statistics (New Orleans, 2008), Jan 20–24 2008, paper 3.2

    Google Scholar 

  • J. Du, J. Li, Application of ensemble methodology to heavy rain research and prediction. Adv. Meteorol. Sci. Technol. 4(5), 6–20 (2014)

    Google Scholar 

  • Du, J., M. S. Tracton, Impact of lateral boundary conditions on regional-model ensemble predicion. in Research Activities in Atmospheric and Oceanic Modelling, ed. by H. Ritchie. Report 28, CAS/JSC Working Group Numerical Experimentation (WGNE), WMO/TD-No. 942, (1999), pp. 6.7–6.8

    Google Scholar 

  • J. Du, M.S. Tracton, Implementation of a real-time short-range ensemble forecasting system at NCEP: an update. Preprints, in 9th Conference on Mesoscale Processes (Ft. Lauderdale, 2001), Am. Meteorol. Soc., pp. 355–356

    Google Scholar 

  • J. Du, B. Zhou, Ensemble fog prediction, in Marine Fog: Challenges and Advancements in Observations, Modeling, and Forecasting, ed. by D. Koracin, C.E. Dorman (Springer, Cham, 2017), pp. 477–509

    Google Scholar 

  • J. Du, S.L. Mullen, F. Sanders, Short-range ensemble forecasting of quantitative precipitation. Mon. Weather Rev. 125, 2427–2459 (1997)

    Article  Google Scholar 

  • J. Du, G. DiMego, M.S. Tracton, B. Zhou, NCEP short-range ensemble forecasting (SREF) system: multi-IC, multi-model and multi-physics approach. in Research Activities in Atmospheric and Oceanic Modelling, ed. by J. Cote, Report 33, CAS/JSC Working Group Numerical Experimentation (WGNE), WMO/TD-No. 1161, (2003), pp. 5.09–5.10

    Google Scholar 

  • J. Du, J. McQueen, G. DiMego, T. Black, H Juang, E. Rogers, B. Ferrier, B. Zhou, Z. Toth, M.S Tracton, The NOAA/NWS/NCEP short-range ensemble forecast (SREF) system: evaluation of an initial condition vs. multi-model physics ensemble approach. Preprints (CD), in 16th Conference on Numerical Weather Prediction (Seattle, 2004), Am. Meteorol. Soc

    Google Scholar 

  • J. Du, G. Gayno, K. Mitchell, Z. Toth, G. DiMego, Sensitivity study of T2m and precipitation forecasts to initial soil moisture conditions by using NCEP WRF ensemble. 22nd WAF/18th NWP conference (AMS, Park City, 2007)

    Google Scholar 

  • J. Du, R. Yu, C. Cui, J. Li, Using a mesoscale ensemble to predict forecast error and perform targeted observation. Acta Oceanol. Sin. 33(1), 83–91 (2014)

    Article  Google Scholar 

  • W.S. Duan, Z.H. Huo, An approach to generating mutually independent initial perturbations for ensemble forecasts: orthogonal conditional nonlinear optimal perturbations. J. Atmos. Sci. 73, 997–1014 (2016)

    Article  Google Scholar 

  • W.S. Duan, M. Mu, Conditional nonlinear optimal perturbation: applications to stability, sensitivity, and predictability. Sci. China Ser. D 52(7), 883–906 (2009)

    Article  Google Scholar 

  • Y. Duan, J. Gong, J. Du, et al., An overview of Beijing 2008 Olympics Research and Development Project (B08RDP). BMAS 93, 1–24 (2012)

    Google Scholar 

  • J. Dudhia, A nonhydrostatic version of the Penn State/NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cold front. Mon. Weather Rev. 121(5), 1493–1513 (1993)

    Article  Google Scholar 

  • E.E. Ebert, Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Weather Rev. 129, 2461–2480 (2001)

    Article  Google Scholar 

  • W. Ebisuzaki, E. Kalnay, Ensemble experiments with a new lagged average forecasting scheme. WMO, Research activities in atmospheric and oceanic modeling. Report 15, (1991), pp. 6.31–6.32

    Google Scholar 

  • F.A. Eckel, L. Delle Monache, A hybrid NWP–analog ensemble. Mon. Weather Rev. 144, 897–911 (2016). https://doi.org/10.1175/MWR-D-15-0096.1

    Article  Google Scholar 

  • M. Ehrendorfer, J. Tribbia, Optimal prediction of forecast error covariances through singular vectors. J. Atmos. Sci. 54, 286–313 (1997)

    Article  Google Scholar 

  • E.S. Epstein, Stochastic-dynamic prediction. Tellus 21, 739–759 (1969)

    Article  Google Scholar 

  • R. Errico, D. Baumhefner, Predictability experiments using a high-resolution limited area model. Mon. Weather Rev. 115, 488–504 (1987)

    Article  Google Scholar 

  • G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. J. Geophys. Res. Oceans 99(C5), 10143–10162 (1994)

    Article  Google Scholar 

  • B.F. Farrell, The initial growth of disturbances in a baroclinic flow. J. Atmos. Sci. 39(8), 1663–1686 (1982)

    Article  Google Scholar 

  • B.F. Farrell, Optimal excitation of neutral rossby waves. J. Atmos. Sci. 45(2), 163–172 (1988)

    Article  Google Scholar 

  • B.F. Farrell, Optimal excitation of baroclinic waves. J. Atmos. Sci. 46(9), 1193–1206 (1989)

    Article  Google Scholar 

  • J.S. Frederiksen, A.G. Davies, Eddy viscosity and stochastic backscatter parameterizations on the sphere for atmospheric circulation models. J. Atmos. Sci. 54, 2475–2492 (1997)

    Article  Google Scholar 

  • G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edn. (John Hopkins, 1996). ISBN:9780008018-5414-9

    Google Scholar 

  • E.P. Grimit, C.F. Mass, Initial results of a mesoscale short-range ensemble forecasting system over the Pacific Northwest. Weather Forecast. 17, 192–205 (2002)

    Article  Google Scholar 

  • J.P. Hacker, S.-Y. Ha, C. Snyder, J. Berner, F.A. Eckel, E. Kuchera, M. Pocernich, S. Rugg, J. Schramm, X. Wang, The U.S. Air Force weather Agencys mesoscale ensemble: scientific description and performance results. Tellus A 63, 625–641 (2011)

    Article  Google Scholar 

  • S. Hahn, G. Iaccarino, Towards adaptive vorticity confinement. 47th AIAA Aerospace sciences meeting including the new horizons forum and aerospace exposition, Aerospace Sciences Meetings. AIAA (2009)

    Google Scholar 

  • T.M. Hamill, J.S. Whitaker, Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Mon. Weather Rev. 134, 3209–3229 (2006). https://doi.org/10.1175/MWR3237.1

    Article  Google Scholar 

  • T.M. Hamill, J.S. Whitaker, C. Snyder, Distance dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Weather Rev. 129, 2776–2790 (2001)

    Article  Google Scholar 

  • T.M. Hamill, R. Hagedorn, J.S. Whitaker, Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II: Precipitation. Mon. Weather Rev. 136, 2620–2632 (2008). https://doi.org/10.1175/2007MWR2411.1

    Article  Google Scholar 

  • T.M. Hamill, J.S. Whitaker, D.T. Kleist, P. Pegion, M. Fiorino, S.G. Benjamin, Predictions of 2010’s tropical cyclones using the GFS and ensemble-based data assimilation methods. Mon. Weather Rev. 139, 3243–3247 (2011). https://doi.org/10.1175/MWR-D-11-00079.1

    Article  Google Scholar 

  • T.M. Hamill, M. Scheuerer, G. Bates, Analog probabilistic precipitation forecasts using GEFS reforecasts and climatology-calibrated precipitation analyses. Mon. Weather Rev. 143, 3300–3309 (2015). https://doi.org/10.1175/MWR-D-15-0004.1

    Article  Google Scholar 

  • R.N. Hoffman, E. Kalnay, Lagged average forecasting, an alternative to Monte Carlo forecasting. Tellus 35A, 100–118 (1983)

    Article  Google Scholar 

  • D. Hou, E. Kalnay, K.K. Droegemeier, Objective verification of the SAMEX‘98 ensemble forecasts. Mon. Weather Rev. 129, 73–91 (2001)

    Article  Google Scholar 

  • D. Hou, Z. Toth, Y. Zhu, A stochastic parameterization scheme within NCEP global ensemble forecast system. in 18th AMS Conference on Probability and Statistics (Atlanta, 2006), Jan. 29-Feb. 2 2006. Available on line at http://www.emc.ncep.noaa.gov/gmb/ens/ens_info.html.pdf

  • D. Hou, Z. Toth, Y. Zhu, W. Yang, Impact of a stochastic perturbation scheme on NCEP global ensemble forecast system. in 19th AMS Conference on Probability and Statistics (New Orleans, 2008). 20–24 Jan 2008. Available on line at http://www.emc.ncep.noaa.gov/gmb/ens/ens_info.html.pdf

  • P.L. Houtekamer, H.L. Mitchell, Data assimilation using an ensemble Kalman filter technique. Mon. Weather Rev. 126, 196–811 (1998)

    Article  Google Scholar 

  • P.L. Houtekamer, L. Lefaivre, J. Derome, H. Ritchie, H.L. Mitchell, A system simulation approach to ensemble prediction. Mon. Weather Rev. 124, 1225–1242 (1996)

    Article  Google Scholar 

  • P.L. Houtekamer, X. Deng, H.L. Mitchell, S.-J. Baek, N. Gagnon, Higher resolution in an operational ensemble Kalman filter. Mon. Weather Rev. 142, 1143–1162 (2014)

    Article  Google Scholar 

  • Z.H. Huo, The application of nonlinear optimal perturbation methods in ensemble forecasting. Ph.D. Dissertation, University of Chinese Academy of Sciences (Beijing, 2016), p. 108

    Google Scholar 

  • I. Jankov, W.A. Gallus, M. Segal, B. Shaw, S.E. Koch, The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall. Weather Forecast. 20, 1048–1060 (2005)

    Article  Google Scholar 

  • I. Jankov, W.A. Gallus, M. Segal, S.E. Koch, Influence of initial conditions on the WRF–ARW model QPF response to physical parameterization changes. Weather Forecast. 22, 501–519 (2007)

    Article  Google Scholar 

  • Z.N. Jiang, M. Mu, A comparisons study of the methods of conditional nonlinear optimal perturbations and singular vectors in ensemble prediction. Adv. Atmos. Sci. 26, 465–470 (2009)

    Article  Google Scholar 

  • A. Johnson, X. Wang, M. Xue, F. Kong, Hierarchical cluster analysis of a convection allowing ensemble during the hazardous weather testbed 2009 spring experiment. Part II: ensemble clustering over the whole experiment period. Mon. Weather Rev. 139, 3694–3710 (2011). https://doi.org/10.1175/MWR-D-11-00016.1

    Article  Google Scholar 

  • R. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME Ser. D J. Basic Eng. 82, 35–45 (1960)

    Article  Google Scholar 

  • E. Kalnay, Atmospheric modeling, data assimilation and predictability (Cambridge University Press, 2003). 368pp

    Google Scholar 

  • E. Kalnay, A talk at Arakawa Symposium of 2007 American Meteorological Society annual meeting (San Antonio, 2007)

    Google Scholar 

  • D.T. Kleist, K. Ide, An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS, part I: system description and 3D-hybrid results. Mon. Weather Rev. 143, 433–451 (2015a). https://doi.org/10.1175/MWR-D-13-00351.1

    Article  Google Scholar 

  • D.T. Kleist, K. Ide, An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS, part II: 4D EnVar and hybrid variants. Mon. Weather Rev. 143, 452–470 (2015b). https://doi.org/10.1175/MWR-D-13-00350.1

    Article  Google Scholar 

  • M.-S. Koo, S.-Y. Hong, Stochastic representation of dynamic model tendency: formulation and preliminary results. Asia Pac. J. Atmos. Sci. 50(4), 497–506 (2014). https://doi.org/10.1007/s13143-014-0039-0

    Article  Google Scholar 

  • T.N. Krishnamurti, C.M. Kishtawal, T. LaRow, D. Bachiochi, Z. Zhang, C.E. Williford, S. Gadhil, S. Surendran, Improved weather and seasonal climate forecasts from multimodel superensemble. Science 285, 1548–1550 (1999)

    Article  Google Scholar 

  • C.E. Leith, Theoretical skill of Monte Carlo forecasts. Mon. Weather Rev. 102, 409–418 (1974)

    Article  Google Scholar 

  • J.M. Lewis, Roots of ensemble forecasting. Mon. Weather Rev. 133, 1865–1885 (2005)

    Article  Google Scholar 

  • X. Li, M. Charron, L. Spacek, G. Candille, A regional ensemble prediction system based on moist targeted singular vectors and stochastic parameter perturbations. Mon. Weather Rev. 136, 443–462 (2008)

    Article  Google Scholar 

  • J. Li, J. Du, Y. Liu, A comparison of initial condition-, multi-physics- and stochastic physics-based ensembles in predicting Beijing “7.21” excessive storm rain event. Acta. Meteor. Sin. 73(1), 50–71 (2015). https://doi.org/10.11676/qxxb2015.008. (in both Chinese and English)

    Article  Google Scholar 

  • J. Li, J. Du, Y. Liu, J. Xu, Similarities and differences in the evolution of ensemble spread using various ensemble perturbation methods including terrain perturbation. Acta. Meteor. Sin. 75(1), 123–146 (2017). https://doi.org/10.11676/qxxb2017.011. (in both Chinese and English)

    Article  Google Scholar 

  • D.C. Liu, J. Nocedal, On the limited memory method for large scale optimization. Math. Program. 45, 503–528 (1989)

    Article  Google Scholar 

  • E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  • E.N. Lorenz, A study of the predictability of a 28-variable atmospheric model. Tellus 17, 321–333 (1965)

    Article  Google Scholar 

  • E.N. Lorenz, The Essence of Chaos (University of Washington Press, Seattle, 1993), 240pp

    Book  Google Scholar 

  • E.N. Lorenz, Predictability: a problem partly solved. in Proceedings of Workshop on Predictability (ECMWF, Reading, 1996), 18pp

    Google Scholar 

  • C. Lu, H. Yuan, B.E. Schwartz, S.G. Benjamin, Short-range numerical weather prediction using time-lagged ensembles. Weather Forecast. 22, 580–595 (2007)

    Article  Google Scholar 

  • J. Ma, Y. Zhu, R. Wobus, P. Wang, An effective configuration of ensemble size and horizontal resolution for the NCEP GEFS. Adv. Atmos. Sci. 29(4), 782–794 (2012)

    Article  Google Scholar 

  • S.J. Majumdar, C.H. Bishop, B.J. Etherton, Adaptive sampling with ensemble transform Kalman filter. Part II: filed program implementation. Mon. Weather Rev 130, 1356 (2002)

    Article  Google Scholar 

  • A. Martin, V. Homar, L. Fita, J.M. Gutierrez, M.A Rodriguez, C. Primo, Geometrid vs. classical breeding of vectors: application to hazardous weather in the Western Mediterranean. Geophys. Res. Abstr. 9, European Geosciences Union (2007)

    Google Scholar 

  • P.J. Mason, D.J. Thomson, Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech. 242, 51–78 (1992)

    Article  Google Scholar 

  • J.M. Mclay, C.H. Bishop, C.A. Reynolds, The ensemble-transform scheme adapted for the generation of stochastic forecast perturbations. Q. J. R. Meteorol. Soc. 133, 1257–1266 (2007)

    Article  Google Scholar 

  • J. McLay, C.H. Bishop, C.A. Reynolds, A local formulation of the ensemble transform (ET) analysis perturbation scheme. Weather and Forecast. 25, 985–993 (2010). https://doi.org/10.1175/2010WAF2222359.1

    Article  Google Scholar 

  • M.P. Mittermaier, Improving short-range high-resolution model precipitation forecast skill using time-lagged ensembles. Q. J. R. Meteorol. Soc. 133, 1487–1500 (2007). https://doi.org/10.1002/qj.135

    Article  Google Scholar 

  • F. Molteni, T.N. Parmer, Predictability and finite-time instability of the northern winter circulation. Q. J. R. Meteorol. Soc. 119, 269–298 (1993)

    Article  Google Scholar 

  • F. Molteni, R. Buizza, T.N. Palmer, T. Petroliagis, The ECMWF ensemble prediction system: methodology and validation. Q. J. R. Meteorol. Soc. 122, 73–119 (1996)

    Article  Google Scholar 

  • M. Mu, Z.N. Jiang, A new approach to the generation of initial perturbations for ensemble prediction: conditional nonlinear optimal perturbation. Chin. Sci. Bull. 53(13), 2062–2068 (2008)

    Google Scholar 

  • M. Mu, W.S. Duan, B. Wang, Conditional nonlinear optimal perturbation and its applications. Nonlin. Process. Geophys. 10, 493–501 (2003)

    Article  Google Scholar 

  • M. Mu, W.S. Duan, D.K. Chen, W.D. Yu, Target observations for improving initialization of high-impact ocean-atmospheric environmental events forecasting. Natl. Sci. Rev. 2, 226–236 (2015)

    Article  Google Scholar 

  • S.L. Mullen, D.P. Baumhefner, Monte Carlo simulation of explosive cyclogenesis. Mon. Weather Rev. 122, 1548–1567 (1994)

    Article  Google Scholar 

  • S.L. Mullen, R. Buizza, The impact of horizontal resolution and ensemble size on probabilistic forecasts of precipitation by the ECMWF ensemble prediction system. Weather Forecast. 17, 173–191 (2002)

    Article  Google Scholar 

  • S.L. Mullen, J. Du, Monte Carlo forecasts of explosive cyclogenesis with a limited-area, mesoscale model. Preprints, 10th Conference on Numerical Weather Prediction (Portland, 1994), July 18–22 1994, Am. Meteorol. Soc., pp. 638–640

    Google Scholar 

  • S.L. Mullen, J. Du, F. Sanders, The dependence of ensemble dispersion on analysis forecast system: implications to short-range ensemble forecasting of precipitation. Mon. Weather Rev. 127, 1674–1686 (1999)

    Article  Google Scholar 

  • National Research Council, Completing the Forecasts: Characterizing and Communicating Uncertainty for Better Decisions Using Weather and Climate Forecasts (National Academies Press, Washington, DC, 2006), 124pp. https://doi.org/10.17226/11699

    Book  Google Scholar 

  • P. Nutter, D. Stensrud, M. Xue, Effects of coarsely resolved and temporally interpolated lateral boundary conditions on the dispersion of limited-area ensemble forecasts. Mon. Weather Rev. 132, 2358–2377 (2004a)

    Article  Google Scholar 

  • P. Nutter, M. Xue, D. Stensrud, Application of lateral boundary condition perturbations to help restore dispersion in limited-area ensemble forecasts. Mon. Weather Rev. 132, 2378–2390 (2004b)

    Article  Google Scholar 

  • T. Palmer, R. Hagedorn (eds.), Predictability of weather and climate (Cambridge University Press, New York, 2006), 718pp

    Google Scholar 

  • T.N. Palmer, R. Buizza, M. Leutbecher, R. Hagedorn, T. Jung, M. Rodwell, F. Virat, J. Berner, E. Hagel, A. Lawrence, F. Pappenberger, Y-Y. Park, L. van Bremen, I. Gilmour, L. Smith, The ECMWF Ensemble Prediction System: recent and on-going developments. A paper presented at the 36th Session of the ECMWF Scientific Advisory Committee. ECMWF Research Department Technical Memorandum Note, vol. 540. (2007). Available from ECMWF, Shinfield Park, Reading RG2-9AX, UK

    Google Scholar 

  • T.N. Palmer, R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G.J. Shutts, M. Steinheimer, A Weisheimer, Stochastic Parameterization and Model Uncertainty. ECMWF Research Department Technical Memorandum, vol. 598, (2009), p. 42. Available from ECMWF, Shinfield Park, Reading RG2-9AX, UK. http://www.ecmwf.int/publications/

  • M.J.D. Powell, VMCWD: A FORTRAN subroutine for constrained optimization. DAMTP Report 1982/NA4 (University of Cambridge, UK, 1982)

    Google Scholar 

  • X. Qiao, S. Wang, J. Min, A stochastic perturbed parameterization tendency scheme for diffusion (SPPTD) and its application to an idealized supercell simulation. Mon. Weather Rev. 145(6), 2119–2139 (2017). https://doi.org/10.1175/MWR-D-16-0307

    Article  Google Scholar 

  • D.S. Richardson, Skill and relative economic value of the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc. 126, 649–668 (2000)

    Article  Google Scholar 

  • D.S. Richardson, Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size. Q. J. R. Meteorol Soc. 127, 2473–2489 (2001)

    Article  Google Scholar 

  • N.M. Roberts, H.W. Lean, Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Weather Rev. 136, 78–97 (2008). https://doi.org/10.1175/2007MWR2123.1

    Article  Google Scholar 

  • S. Roquelaure, T. Bergot, A local ensemble prediction system (L-EPS) for fog and low clouds: construction, Bayesian model averaging calibration and validation. J. Appl. Meteorol. Clim. 47, 3072–3088 (2008)

    Article  Google Scholar 

  • S. Saha, S. Nadiga, C. Thiaw, J. Wang, W. Wang, Q. Zhang, H.M. Van den Dool, H.L. Pan, S. Moorthi, D. Behringer, D. Stokes, M. Peña, S. Lord, G. White, W. Ebisuzaki, P. Peng, P. Xie, The NCEP climate forecast system. J. Clim. 19, 3483–3517 (2006)

    Article  Google Scholar 

  • C. Sanchez, K.D. Williams, G.J. Shutts, R.E. McDonald, T.J. Hinton, C.A. Senior, N. Wood, Toward the development of a robust model hierarchy: investigation of dynamical limitations at low resolution and possible solutions. Q. J. R. Meteorol. Soc. 139, 75–84 (2013). https://doi.org/10.1002/qj.1971

    Article  Google Scholar 

  • C.S. Schwartz et al., Toward improved convection-allowing ensembles: model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Weather Forecast. 25, 263–280 (2010). https://doi.org/10.1175/2009WAF2222267.1

    Article  Google Scholar 

  • C. Schwartz, R. Sobash, Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: a review and recommendations. Mon. Weather Rev. 145, 3397–3418 (2017). https://doi.org/10.1175/MWR-D-16-0400.1

    Article  Google Scholar 

  • G. Shutts, A Stochastic Kinetic Energy Backscatter Algorithm for Use in Ensemble Prediction Systems, Technical Memorandum, vol 449 (ECMWF, Reading, 2004)

    Google Scholar 

  • G. Shutts, A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q. J. R. Meteorol. Soc. 131, 3079–3102 (2005)

    Article  Google Scholar 

  • G. Shutts, T. Allen, Sub-gridscale parameterization from the perspective of a computer games animator. Atmos. Sci. Lett. 8(4), 85–92 (2007). https://doi.org/10.1002/asl.157

    Article  Google Scholar 

  • G. Shutts, M. Leutecher, A. Weisheimer, T. Stockdale, L. Isaksen, M. Bonavita, Representing model uncertainty: stochastic parameterizations at ECMWF. ECMWF Newsl. 129, 19–24 (2011)

    Google Scholar 

  • W.C. Skamarock et al., A Description of the Advanced Research WRF Version 3, NCAR Technical Note, vol NCAR/TN-475+STR (National Center for Atmospheric Research, Boulder, 2008). https://doi.org/10.5065/D68S4MVH

    Book  Google Scholar 

  • U. Stein, P. Alpert, Factor separation in numerical simulations. J. Atmos. Sci. 50, 2107–2115 (1993)

    Article  Google Scholar 

  • J. Steinhoff, D. Underhill, Modification of the Euler equations for “vorticity confinement”: Application to the computation of interacting vortex rings. Phys Fluid 6, 2738 (1994). https://doi.org/10.1063/1.868164

    Article  Google Scholar 

  • D.J. Stensrud, H.E. Brooks, J. Du, M.S. Tracton, E. Rogers, Using ensembles for short-range forecasting. Mon. Weather Rev. 127, 433–446 (1999)

    Article  Google Scholar 

  • C. Sutton, T.M. Hamill, T.T. Warner, Will perturbing soil moisture improve warm-season ensemble forecasts? A proof of concept. Mon. Weather Rev. 134, 3174–3189 (2006)

    Article  Google Scholar 

  • O. Talagrand, R. Vautard, B. Strauss, Evaluation of probabilistic prediction systems. in Proceedings, ECMWF Workshop on Predictability (ECMWF, 1997). Available from ECMWF, Shinfield Park, Reading, Berkshire RG2 9AX, United Kingdom, pp. 1–25

    Google Scholar 

  • S. Tang, D. Wang, J. Du, J. Zhou, The experiment of hybrid ensemble forecast approach in short-range forecast for South China rainstorm. J. Appl. Meteorol. Sci. 26(6), 669–679 (2015)

    Google Scholar 

  • W.J. Tennant, G.J. Shutts, A. Arribas, S.A. Thompson, Using a stochastic kinetic energy backscatter scheme to improve MOGREPS probabilistic forecast skill. Mon. Weather Rev. 139, 1190–1206 (2011). https://doi.org/10.1175/2010MWR3430.1

    Article  Google Scholar 

  • S.E. Theis, A. Hense, U. Damrath, Probabilistic precipitation forecasts from a deterministic model: a pragmatic approach. Meteorol. Appl. 12, 257–268 (2005). https://doi.org/10.1017/S1350482705001763

    Article  Google Scholar 

  • P.D. Thompson, Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus 9, 275–295 (1957)

    Article  Google Scholar 

  • Z. Toth, E. Kalnay, Ensemble forecasting at NCEP: the generation of perturbations. Bull. Am. Meteorol. Soc. 74, 2317–2330 (1993)

    Article  Google Scholar 

  • Z. Toth, E. Kalnay, Ensemble forecasting at NCEP: the breeding method. Mon. Weather Rev. 125, 3297–3318 (1997)

    Article  Google Scholar 

  • M.S. Tracton, E. Kalnay, Ensemble forecasting at NMC: practical aspects. Weather Forecast. 8, 379–398 (1993)

    Article  Google Scholar 

  • M.S. Tracton, J. Du, Z. Toth, H. Juang, Short-range ensemble forecasting (SREF) at NCEP/EMC. Preprints, in 12th Conference on Numerical Weather Prediction (Phoenix, 1998), Am. Meteorol. Soc. pp. 269–272

    Google Scholar 

  • X. Wang, C.H. Bishop, A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci. 60, 1140–1158 (2003)

    Article  Google Scholar 

  • X. Wang, C.H. Bishop, S.J. Julier, Which is better, an ensemble of positive/negative pairs or a centered spherical simplex ensemble? Mon. Weather Rev. 132, 1590–1605 (2004)

    Article  Google Scholar 

  • X. Wang, T.M. Hamill, J.S. Whitaker, C.H. Bishop, A comparison of hybrid ensemble transform Kalman filter-optimal interpolation and ensemble square-root filter analysis schemes. Mon. Weather Rev. 135, 1055–1076 (2007)

    Article  Google Scholar 

  • X. Wang, D. Barker, C. Snyder, T.M. Hamill, A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part I: observing system simulation experiment. Mon. Wea. Rev. 136, 5116–5131 (2008a). https://doi.org/10.1175/2008MWR2444.1

    Article  Google Scholar 

  • X. Wang, D. Barker, C. Snyder, T.M. Hamill, A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part II: real observation experiments. Mon. Wea. Rev. 136, 5132–5147 (2008b). https://doi.org/10.1175/2008MWR2445.1

    Article  Google Scholar 

  • X. Wang, T.M. Hamill, J.S. Whitaker, C.H. Bishop, A comparison of the hybrid and EnSRF analysis schemes in the presence of model error due to unresolved scales. Mon. Wea. Rev. 137, 3219–3232 (2009). https://doi.org/10.1175/2009MWR2923.1

    Article  Google Scholar 

  • D. Wang, J. Du, C. Liu, Recongnizing and dealing with uncertainty in weather-related forecasts. Meteorol. Mon. 37(4), 385–392 (2011)

    Google Scholar 

  • X. Wang, D. Parrish, D. Kleist, J.S. Whitaker, GSI 3DVar-based ensemble-variational hybrid data assimilation for NCEP global forecast system: single resolution experiments. Mon. Weather Rev. 141, 4098–4117 (2013). https://doi.org/10.1175/MWR-D-12-00141.1

    Article  Google Scholar 

  • J. Wang, J. Chen, J. Du, Y. Zhang, G. Deng, Sensitivity of ensemble forecast verification to model bias. Mon. Weather Rev., in press 146, 781–796 (2018). https://doi.org/10.1175/MWR-D-17-0223.1

    Article  Google Scholar 

  • T.T. Warner, R.A. Perterson, R.E. Treadon, A tutorial on lateral boundary conditions as a basis and potential serious limitation to regional numerical weather prediction. Bull. Am. Meteorol. Soc. 78, 2599–2617 (1997)

    Article  Google Scholar 

  • A. Weaver, P. Courtier, Correlation modeling on the sphere using a generalized diffusion equation. Q. J. R. Meteorol. Soc. 127, 1815–1846 (2001). https://doi.org/10.1002/qj.49712757518

    Article  Google Scholar 

  • M. Wei, Z. Toth, R. Wobus, Y. Zhu, C. Bishop, X. Wang, Ensemble transform Kalman filter-based ensemble perturbations in an operational global prediction system at NCEP. Tellus A 58, 28–44 (2006)

    Article  Google Scholar 

  • M. Wei, Z. Toth, R. Wobus, Y. Zhu, Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus A 60, 62–79 (2008)

    Article  Google Scholar 

  • M. Wei, C. Rowley, P. Martin, C.N. Barron, G. Jacobs, The US Navy’s RELO ensemble prediction system and its performance in the Gulf of Mexico. Q. J. R. Meteorol. Soc. 140, 1129–1149 (2014). https://doi.org/10.1002/qj.2199

    Article  Google Scholar 

  • A. Weisheimer, T.N. Palmer, F.J. Doblas-Reyes, Assessment of representations of model uncertainty in monthly and seasonal forecast ensembles. Geophys. Res. Lett. (Climate) 38, L16703 (2011). https://doi.org/10.1029/2011GL048123

    Article  Google Scholar 

  • J. Whitaker, P. Pegion, T. Hamill, Representaing model uncertainty in data assimilation (using ensembles), EMC/NCEP/NOAA seminar (2013). Available at http://www.emc.ncep.noaa.gov/seminars/index.html

  • R. Wobus, E. Kalnay, Three years of operational prediction of forecast skill. Mon. Weather Rev. 123, 2132–2148 (1995)

    Article  Google Scholar 

  • Z. Zhang, T.N. Krishnamurti, A perturbation method for hurricane ensemble prediction. Mon. Weather Rev. 127, 447–469 (1999)

    Article  Google Scholar 

  • B. Zhou, J. Du, Fog prediction from a multimodel mesoscale ensemble prediction system. Weather Forecast. 25, 303–322 (2010)

    Article  Google Scholar 

  • B. Zhou, J. Du, G. DiMego, Introduction to the NCEP very short range ensemble forecast system (VSREF). in 14th Conference on Aviation, Range, and Aerospace, 90th AMS Annual Meetings (Atlanta, 2010), 17–21 2010. Available at http://www.emc.ncep.noaa.gov/mmb/SREF/VSREF-2010-AMS-J12.3.pdf

Download references

Acknowledgments

Ms. Mary Hart is appreciated for her help to improve the readability of the manuscript. We thank Jack Kain and Binbin Zhou for their reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Du .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Du, J. et al. (2019). Ensemble Methods for Meteorological Predictions. In: Duan, Q., Pappenberger, F., Wood, A., Cloke, H., Schaake, J. (eds) Handbook of Hydrometeorological Ensemble Forecasting. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39925-1_13

Download citation

Publish with us

Policies and ethics