Skip to main content

Vacuolar-Type ATPases in Animal and Plant Cells

  • Living reference work entry
  • First Online:

Synonyms

ATPase complex that forms a proton gradient across vacuolar membrane; Molecular motors; Proton-pumping ATPase; Rotary motor; V-ATPase

Definition

The F-type ATP synthase and V-type ATPase are rotating enzymes in which proton transport across membranes is coupled with ATP synthesis and ATP hydrolysis, respectively. Rotation of the stalk domain is required for continuous catalysis of the both enzymes coupling to transport.

Introduction

Protons (H+) play vital roles in bioenergetics and ion homeostasis, as evidenced by the presence of unique acidic compartments both inside and outside of cells. The acidification of compartments results in an electrochemical proton gradient being generated across the membranes. The initial step in forming acidic compartments is the transport of protons by ATPases. Three classes of ATPases are known, the P-ATPase (P-type ATPase), the F-ATPase (F-type ATPase), and the V-ATPase (vacuolar-type ATPase), their nomenclature being derived from a phosphoryl...

This is a preview of subscription content, log in via an institution.

References

  • Binzel M, Ratajczak R (2005) Function of membrane transport systems under salinity: tonoplast. In: Lauchli A, Ruttge U (eds) Salinity: environment – plants – molecules. Kluwer, Dordrecht, pp 423–450

    Google Scholar 

  • Futai M, Nakanishi-Matsui M, Okamoto H, Sekiya M, Nakamoto RK (2012) Rotational catalysis in proton pumping ATPases: from E. coli F-ATPase to mammalian V-ATPase. Biochim Biophys Acta Bioenerg 1817(10):1711–1721

    Article  CAS  Google Scholar 

  • Gaxiola RA, Palmgren MG et al (2007) Plant proton pumps. FEBS Lett 581:2204–2214

    Article  CAS  PubMed  Google Scholar 

  • Grüber G, Manimekalai MSS, Mayer F, Müller V (2014) ATP synthases from archaea: the beauty of a molecular motor. Biochim Biophys Acta Bioenerg 1837(6):940–952

    Article  CAS  Google Scholar 

  • Hirata T, Iwamoto-Kihara A, Sun-Wada G-H, Okajima T, Wada Y, Futai M (2003) Subunit rotation of vacuolar-type proton pumping ATPase. J Biol Chem 278:23714–23719

    Article  CAS  PubMed  Google Scholar 

  • Holliday S (2014) Vacuolar H+-ATPase: an essential multitasking enzyme in physiology and pathophysiology. New J Sci 2014:2–21

    Article  CAS  Google Scholar 

  • Marshansky V, Futai M Grüber G (2015) Eukaryotic V-ATPase and its super-complexes: from structure and function to disease and drug targeting. In: Advances in biochemistry in health and disease book series (ABHD), vol 14. Springer, New York City, pp 301–335

    Google Scholar 

  • Martínez-Muñoz GA, Kane P (2008) Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem 283:2309–20319

    Article  CAS  Google Scholar 

  • Matsumoto N, Daido S, Sun-Wada GH, Wada Y, Futai M, Nakanishi-Matsui M (2014) Diversity of proton pumps in osteoclasts: V-ATPase with a3 and d2 isoforms is a major form in osteoclasts. Biochim Biophys Acta Bioenerg 1837(6):744–749

    Article  CAS  Google Scholar 

  • Oka T, Yamamoto R, Futai M (1998) Multiple genes for vacuolar-type ATPase proteolipids in Caenorhabditis elegans a new gene, vha-3, has a distinct cell-specific distribution. J Biol Chem 273:22570–22576

    Article  CAS  PubMed  Google Scholar 

  • Okamoto-Terry H, Umeki K, Nakanishi-Matsui M, Futai M (2013) Glu-44 in the amino-terminal α-helix of yeast vacuolar ATPase E subunit (Vma4p) has a role for VoV1 assembly. J Biol Chem 288:36236–36243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parra KJ, Chan C-Y, Chen J (2014) Saccharomyces cerevisiae vacuolar H+-ATPase regulation by disassembly and reassembly: one structure and multiple signals. Eukaryot Cell 13:706–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AN, Rovering RC et al (2003) Revised nomenclature for mammalian vacuolar-type H+-ATPase subunit genes. Mol Cell 12:801–803

    Article  CAS  PubMed  Google Scholar 

  • Stransky L, Cotter K, Forgac M (2016) The function of V-ATPases in cancer. Physiol Rev 96:1071–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun-Wada G-H, Wada Y (2015) Role of vacuolar-type proton ATPase in signal transduction. BBA 1847:1166–1172

    PubMed  CAS  Google Scholar 

  • Sun-Wada G-H, Murata Y, Yamamoto A, Kanazawa H, Wada Y, Futai M (2000) Acidic endomembrane organelles are required for mouse postimplantation development. Dev Biol 228:315–325

    Article  CAS  PubMed  Google Scholar 

  • Sun-Wada G-H, Futai M, Wada Y (2004) Vacuolar-type proton ATPases: subunit isoforms and tissue-specific functions. In: Handbook of ATPases. Wiley, Weinheim, pp 379–394

    Google Scholar 

  • Sze H, Schumacher K et al (2002) A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H +-ATPase. Trends Plant Sci 7:157–161

    Article  CAS  PubMed  Google Scholar 

  • Toei M, Saum R, Forgac M (2010) Regulation and isoform function of the V-ATPases. Biochemistry 49:4715–4723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zheng Y et al (2008) Structure of the yeast vacuolar ATPase. J Biol Chem 283:35983–35995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruko Okamoto .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 European Biophysical Societies' Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Okamoto, H., Futai, M. (2018). Vacuolar-Type ATPases in Animal and Plant Cells. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_203-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_203-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics