Skip to main content

Macromolecular Hydration: NMR Studies

  • Living reference work entry
  • Latest version View entry history
  • First Online:

Introduction

Water is crucial to many biological, physical, and chemical processes and is most important component of natural environment (Kuntz et al. 1969; Kuntz 1971; Rodin et al. 1986; Callaghan and Lelievre 1986; Gisser and Ediger 1993; Rodin et al. 1994; Krishman 1996; Wüthrich et al. 1996). The significance of water in all aspects of environmental interactions has resulted in the development of structural models of water to describe the functionality of biological macromolecules and complexes (Kuntz et al. 1969; Kuntz 1971; Wüthrich et al. 1996; Otting 1997; Wider 1998; Szuminska et al. 2001; Van-Quynh et al. 2003; Halle 2004). The dynamic states of water at the interactions of water molecules with polymers and biopolymers were in the focus of nuclear magnetic resonance (NMR) studies for long period of time (Kuntz 1971; Rodin et al. 1986; Callaghan and Lelievre 1986; Rodin et al. 1994; Krishman 1996; Wüthrich et al. 1996; Otting 1997; Wider 1998; Szuminska et al. 2001;...

This is a preview of subscription content, log in via an institution.

References

  • Ahn S, Kim EH, Lee C (2005) Diffusion-ordered NMR spectroscopy of poly([ethylene-co-vinyl acetate]-graft -vinyl chloride) in solution. Bull Kor Chem Soc 26(2):331–333

    Google Scholar 

  • Baldwin AJ, Kay LE (2009) NMR spectroscopy brings invisible protein states into focus. Nat Chem Biol 5(11):808–814

    Article  CAS  PubMed  Google Scholar 

  • Belton P (2011) NMR studies of hydration in low water content biopolymer systems. Magn Reson Chem 49:S127–S132

    Article  CAS  PubMed  Google Scholar 

  • Bernini A, Spiga O, Consonni R et al (2011) Hydration studies on the archaeal protein Sso7d using NMR measurements and MD simulations. BMC Struct Biol 11:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callaghan PT, Furó I (2004) Diffusion–diffusion correlation and exchange as a signature for local order and dynamics. J Chem Phys 120(8):4032–4038

    Article  CAS  PubMed  Google Scholar 

  • Callaghan PT, Lelievre J (1986) The influence of polymer size and shape on the self-diffusion of polysaccharides and solvents. Anal Chim Acta 189:145–166

    Article  CAS  Google Scholar 

  • Chi Y, Xu S et al (2017) Studies of relationship between polymer structure and hydration environment in amphiphilic polytartaramides. J Polym Sci B Polym Phys 55:138–145

    Article  CAS  Google Scholar 

  • Cosgrove T, Rodin VV, Murray M et al (2007a) Self-diffusion in solutions of carboxylated acrylic polymers as studied by pulsed field gradient NMR. 1. Solvent diffusion studies. J Polym Res 14(3):167–174 https://doi.org/10.1007/s10965-006-9087-1

    Article  CAS  Google Scholar 

  • Cosgrove T, Rodin VV, Murray M et al (2007b) Self-diffusion in solutions of carboxylated acrylic polymers as studied by pulsed field gradient NMR. 2. Diffusion of macromolecules. J Polym Res 14(3):175–180 https://doi.org/10.1007/s10965-006-9088-0

    Article  CAS  Google Scholar 

  • Cotts RM, Hoch M, Sun T et al (1989) Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems. J Magn Reson 83(2):252–266

    Article  CAS  Google Scholar 

  • Denisov PV, Halle B (1995) Hydrogen exchange and protein hydration:the deuteron spin relaxation dispersions of bovine pancreatic trypsin inhibitor and ubiquitin. J Mol Biol 245:698–709

    Article  CAS  PubMed  Google Scholar 

  • Fogarty AC, Laage D (2014) Water dynamics in protein hydration shells: The molecular origins of the dynamical perturbation. J Phys Chem B 118(28):7715–7729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster MP, McElroy CA, Amero CD (2007) Solution NMR of large molecules and assemblies. Biochemistry 46(2):331–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster RJ, Damion RA, Baboolal TG et al (2016) A nuclear magnetic resonance study of water in aggrecan solutions. Royal Soc Open Sci 3:150705 https://doi.org/10.1098/rsos.150705

    Article  CAS  Google Scholar 

  • Galvosas P, Ying Qiao Y, Schonhoff M (2007) On the use of 2D correlation and exchange NMR spectroscopy in organic porous materials. Magn Reson Imaging 25:497–500

    Article  CAS  PubMed  Google Scholar 

  • Gisser DJ, Ediger MD (1993) Modification of solvent rotational dynamics by the addition of small molecules or polymers. J Phys Chem 97:10818–10823. https://doi.org/10.1021/j100143a048

    Article  CAS  Google Scholar 

  • Gupta S, D’Mello R, Chance MR (2012) Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry. PNAS 109(37):14882–14887

    Article  PubMed  Google Scholar 

  • Halle B (2004) Protein hydration dynamics in solution: a critical survey. Phil Trans R Soc Lond B 359:1207–1224

    Article  CAS  Google Scholar 

  • Huang H, Melacini G (2006) High-resolution protein hydration NMR experiments: probing how protein surfaces interact with water and other non-covalent ligands. Anal Chim Acta 564(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Irmukhametova GS, Mun GA, Khutoryanskiy VV (2011) Thiolated mucoadhesive and PEGylated nonmucoadhesive organosilica nanoparticles from 3-Mercaptopropyltrimethoxysilane. Langmuir 27:9551–9556

    Article  CAS  PubMed  Google Scholar 

  • Krishman VV (1996) Determination of oligomeric state of proteins in solution from pulsed-field-gredient self-diffusion coefficient measurements. A comparison of experimental, theoretical and hard-sphere approximated values. J Magn Reson 124:468–473

    Article  Google Scholar 

  • Kuntz ID Jr (1971) Hydration of macromolecules. III. Hydration of polypeptides. J Am Chem Soc 93(2):514–516. https://doi.org/10.1021/ja00731a036

    Article  CAS  Google Scholar 

  • Kuntz ID Jr, Brassfield TS, Law GD et al (1969) Hydration of macromolecules. Science 163(3873):1329–1331

    Article  CAS  PubMed  Google Scholar 

  • Martini S, Bonechi C, Foletti A et al (2013) Water-protein interactions: the secret of protein dynamics. Sci World J 2013:138916 https://doi.org/10.1155/2013/138916

    Article  CAS  Google Scholar 

  • Otting G (1997) NMR studies of water bound to biological molecules. Prog NMR Spectrosc 31:259–285

    Article  CAS  Google Scholar 

  • Rodin VV (2004) Magnetic resonance methods. Press MIPhT, Moscow, p 95. ISBN: 5-7417-0228-7

    Google Scholar 

  • Rodin VV (2017) Methods of magnetic resonance in studying natural biomaterials. In: Wang Z (ed) Encyclopedia of physical organic chemistry, 1st edn. Part 4 (Tools and experimental techniques). Wiley, N.Y. pp 2861–2908. ISBN 978–1–118-47045-9. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118470451.html

  • Rodin VV (2018) Magnetic resonance in studying cells, biotechnology dispersions, fibers and collagen based tissues for biomedical engineering. In: Artmann GM (ed) Biological, physical and technical basics of cell engineering, 1st edn. Springer, Springer Nature Singapore Pte Ltd, ISBN 978-981-10-7903-0, pp.339–363. https://link.springer.com/chapter/10.1007/978-981-10-7904-7_15

    Chapter  Google Scholar 

  • Rodin VV, Cosgrove T (2016) Nuclear magnetic resonance study of water-polymer interactions and self-diffusion of water in polymer films. OALJ Chem Mater Sci 3(10):1–17

    Article  Google Scholar 

  • Rodin VV, Knight DP (2003) Self-diffusion of water into silk fibers from magnetic field pulse gradient data. Biophysics 48(3):429–435

    CAS  Google Scholar 

  • Rodin VV, Nikerov VA (2014) NMR-Relaxation and PFG NMR studies of water dynamics in oriented collagen fibres with different degree of cross-linking. Curr Tissue Eng 3(1):47–61 https://doi.org/10.2174/2211542003666140626211652

    Article  CAS  Google Scholar 

  • Rodin VV, Isangalin FS, Volkov VY (1986) Structure of water protein solutions in a presence of xenon clathrates. Cryobiol CryoMed 14:3–7

    Google Scholar 

  • Rodin VV, Kharenko AV, Sakharov BV et al (1994) Molecular dynamics of polyelectrolytes and their complexes by NMR-data. Colloid J 56(1):84–90

    CAS  Google Scholar 

  • Rodin VV, Kharenko AV, Aksenova NI et al (1999) Properties of IPC in polymer systems with diphilic compounds. Plastich Massy 5:22–24

    Google Scholar 

  • Rodin VV, Izmailova VN, Gorbacheva NV (2000) Sparsely cross linked polyacrylic acid: dynamic properties in water mixtures. Int Polym Sci Technol 27(8):T63–T69

    Google Scholar 

  • Rodin VV, McDonald PJ, Jones M (2014) Two-dimensional distribution function of diffusion in wood obtained using 2D Laplace inversion. Appl Phys Math 6:03–07

    Google Scholar 

  • Schirò G, Fichou Y, Gallat F-X et al (2015) Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins. Nat Commun 6:6490. https://doi.org/10.1038/ncomms7490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stchedroff MJ, Kenwright AM, Morris GA et al (2004) 2D and 3D DOSY methods for studying mixtures of oligomeric dimethylsiloxanes. PhysChemChemPhys 6:3221–3227

    CAS  Google Scholar 

  • Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echos in the presence of a time-dependent field gradient. J Chem Phys 42(1):288–292

    Article  CAS  Google Scholar 

  • Szuminska K, Gutsze A, Kowalczyk A (2001) Relaxation of water protons in highly concentrated aqueous protein systems studied by nmr spectroscopy. Z Naturforsch 56c:1075–1081

    Article  Google Scholar 

  • Tanner JE (1970) Use of the stimulated echo in NMR diffusion studies. J Chem Phys 52(5):2523–2526

    Article  CAS  Google Scholar 

  • Tanner JE (1978) Transient diffusion in system partitioned by permeable barriers. Application to NMR measurements with a pulsed field gradient. J Chem Phys 69(4):1748–1754

    Article  CAS  Google Scholar 

  • Van-Quynh A, Willson S, Bryant R (2003) Protein reorientation and bound water molecules measured by 1H magnetic spin-lattice relaxation. Biophys J 84:558–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wider G (1998) Technical aspects of NMR spectroscopy with biological macromolecules. Progr NMR Spectrosc 32:193–275

    Article  CAS  Google Scholar 

  • Wider G (1999) Transverse relaxation-optimized NMR spectroscopy (TROSY). European Patent EP 0 91 6963 B1

    Google Scholar 

  • Wüthrich K, Billeter M, Güntert P et al (1996) NMR studies of the hydration of biological macromolecules. Faraday Discuss 103:245–253

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor V. Rodin .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 European Biophysical Societies’ Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rodin, V.V. (2018). Macromolecular Hydration: NMR Studies. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_10075-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_10075-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Macromolecular Hydration: NMR Studies
    Published:
    04 July 2018

    DOI: https://doi.org/10.1007/978-3-642-35943-9_10075-2

  2. Original

    Macromolecular Hydration: NMR Studies
    Published:
    31 May 2018

    DOI: https://doi.org/10.1007/978-3-642-35943-9_10075-1