Skip to main content

Complex Dynamics of Traffic Management: Introduction

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Complexity and Systems Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Ashton WD (1966) The theory of traffic flow. Wiley/Methuen & Co, London/New York

    MATH  Google Scholar 

  • Barceló J (ed) (2010) Fundamentals of traffic simulation. International series in operations research and management science, vol 145. Springer, Berlin

    Google Scholar 

  • Bell MGH, Iida Y (1997) Transportation network analysis. Wiley, Hoboken Incorporated

    Book  Google Scholar 

  • Bellomo N, Coscia V, Delitala M (2002) On the mathematical theory of vehicular traffic flow I. Fluid dynamic and kinetic modelling. Math Models Methods Appl Sci 12:1801–1843

    Article  MathSciNet  MATH  Google Scholar 

  • Boltes M, Zhang J, Tordeux A, Schadschneider A, Seyfried A (2018) Pedestrian and evacuation dynamics: empirical results. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin

    Google Scholar 

  • Brackstone M, McDonald M (1999) Car-following: a historical review. Transp Res F 2:181–196

    Article  Google Scholar 

  • Brockfeld E, Kühne RD, Skabardonis A, Wagner P (2003) Toward benchmarking of microscopic traffic flow models. Trans Res Rec 1852:124–129

    Article  Google Scholar 

  • Buslaev AP, Tatashev AG, Yashina MV (2013) Mathematical physics of traffic. Technical Center Publisher, Moscow (in Russian)

    MATH  Google Scholar 

  • Castiglione J, Bradley M, Gliebe J (2015) Activity-based travel demand models: a primer. SHRP 2 Report S2-C46-RR-1. Transportation Research Board, Washington, DC

    Google Scholar 

  • Chandler RE, Herman R, Montroll EW (1958) Traffic dynamics: studies in car following. Oper Res 6:165–184

    Article  MathSciNet  Google Scholar 

  • Chiu Y-C, Bottom J, Mahut M, Paz A, Balakrishna R, Waller T, Hicks J (2011) Dynamic traffic assignment, A primer. Trans Res Circular E-C153 http://onlinepubs.trb.org/onlinepubs/circulars/ec153.pdf

  • Chowdhury D, Santen L, Schadschneider A (2000) Statistical physics of vehicular traffic and some related systems. Phys Rep 329:199

    Article  MathSciNet  ADS  Google Scholar 

  • Chraibi M, Tordeux A, Schadschneider A, Seyfried A (2018) Pedestrian and evacuation dynamics – modelling. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin

    MATH  Google Scholar 

  • Daganzo CF (1997) Fundamentals of transportation and traffic operations. Elsevier Science, New York

    Book  Google Scholar 

  • Drew DR (1968) Traffic flow theory and control. McGraw-Hill Book, New York

    Google Scholar 

  • Edie LC (1954) Traffic delays at toll booths. Oper Res 2:107–138

    Google Scholar 

  • Elefteriadou L (2014) An introduction to traffic flow theory. Springer optimization and its applications, vol 84. Springer, Berlin

    Book  MATH  Google Scholar 

  • Ferrara A, Sacone S, Siri S (2018) Freeway traffic modelling and control. Springer, Berlin

    Book  MATH  Google Scholar 

  • Friesz TL, Bernstein D (2016) Foundations of network optimization and games, Complex networks and dynamic systems, vol 3. Springer, New York/Berlin

    Book  MATH  Google Scholar 

  • Gartner NH, Stamatiadis C (2009) Traffic networks, optimization and control of urban. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin, pp 9470–9500

    Chapter  Google Scholar 

  • Gartner NH, Messer CJ, Rathi A (eds) (1997) Special report 165: revised monograph on traffic flow theory. Transportation Research Board, Washington, DC

    Google Scholar 

  • Gartner NH, Messer CJ, Rathi A (eds) (2001) Traffic flow theory: a state-of-the-art report. Transportation Research Board, Washington, DC

    Google Scholar 

  • Gasnikov AV, Klenov SL, Nurminski EA, Kholodov YA, Shamray NB (2013) Introduction to mathematical simulations of traffic flow. MCNMO, Moscow (in Russian)

    Google Scholar 

  • Gazis DC (2002) Traffic theory. Springer, Berlin

    MATH  Google Scholar 

  • Gazis DC, Herman R, Potts RB (1959) Car-following theory of steady-state traffic flow. Oper Res 7:499–505

    Article  MathSciNet  Google Scholar 

  • Gazis DC, Herman R, Rothery RW (1961) Nonlinear follow-the-leader models of traffic flow. Oper Res 9:545–567

    Article  MathSciNet  MATH  Google Scholar 

  • Gerlough DL, Huber MJ (1975) Traffic flow theory. Special Report 165. Transportation Research Board, National Research Council. Washington, DC

    Google Scholar 

  • Goudie D (2017) Natural disasters and evacuations as a communication and social phenomenon. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin

    Google Scholar 

  • Goulias K (2009) Travel behavior and demand analysis and prediction. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin, pp 9536–9565

    Chapter  Google Scholar 

  • Greenshields BD, Bibbins JR, Channing WS, Miller HH (1935) A study of traffic capacity. Highw Res Board Proc 14:448–477

    Google Scholar 

  • Haight FA (1963) Mathematical theories of traffic flow. Academic, New York

    MATH  Google Scholar 

  • Hegyi A, Bellemans T, De Schutter B (2017) Freeway traffic management and control. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin

    Google Scholar 

  • Helbing D (2001) Traffic and related self-driven many particle systems. Rev Mod Phys 73:1067–1141

    Article  MathSciNet  ADS  Google Scholar 

  • Herman R, Montroll EW, Potts RB, Rothery RW (1959) Traffic dynamics: analysis of stability in car following. Oper Res 7:86–106

    Article  MathSciNet  Google Scholar 

  • Highway Capacity Manual (2000) National research council. Transportation Research Board, Washington, DC

    Google Scholar 

  • Highway Capacity Manual (2016) National research council. Transportation Research Board, Washington, DC

    Google Scholar 

  • Horni A, Nagel K, Axhausen KW (eds) (2016) The multi-agent transport simulation MATSim. Ubiquity, London. https://doi.org/10.5334/baw. URL: http://matsim.org/the-book

    Book  Google Scholar 

  • Kachroo P, Özbay KMA (2018) Feedback control theory for dynamic traffic assignment. Springer, Berlin

    Book  MATH  Google Scholar 

  • Kerner BS (2004) The physics of traffic. Springer, Berlin/New York

    Book  Google Scholar 

  • Kerner BS (2009) Introduction to modern traffic flow theory and control. Springer, Berlin/New York

    Book  MATH  Google Scholar 

  • Kerner BS (2013) Criticism of generally accepted fundamentals and methodologies of traffic and transportation theory: a brief review. Physica A 392:5261–5282

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Kerner BS (2015) Failure of classical traffic flow theories: a critical review. Elektrotech Inf 132:417–433

    Article  Google Scholar 

  • Kerner BS (2016) Failure of classical traffic flow theories: stochastic highway capacity and automatic driving. Physica A 450:700–747

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Kerner BS (2017a) Breakdown minimization principle versus Wardrops equilibria for dynamic traffic assignment and control in traffic and transportation networks: a critical mini-review. Physica A 466:626–662

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Kerner BS (2017b) Breakdown in traffic networks. Springer, Berlin/New York

    Book  MATH  Google Scholar 

  • Kerner BS (2017c) Traffic networks, breakdown in. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin. https://doi.org/10.1007/978-3-642-27737-5701-1

    Chapter  Google Scholar 

  • Kerner BS (2018a) Traffic breakdown, modeling approaches to. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin. https://doi.org/10.1007/978-3-642-27737-5559-2

    Chapter  Google Scholar 

  • Kerner BS (2018b) Traffic congestion, spatiotemporal features of. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin. https://doi.org/10.1007/978-3-642-27737-5560-2

    Chapter  Google Scholar 

  • Kerner BS (2018c) Autonomous driving in the framework of three-phase traffic theory. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin. https://doi.org/10.1007/978-3-642-27737-5_724-1

    Google Scholar 

  • Kerner BS, Klenov SL (2018) Traffic breakdown, mathematical probabilistic approaches to. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin. https://doi.org/10.1007/978-3-642-27737-5_558-3

    Google Scholar 

  • Kessels F (2019) Traffic flow modelling. Springer, Berlin

    Book  MATH  Google Scholar 

  • Kometani E, Sasaki T (1958) On the stability of traffic flow (report-I). Oper Res Soc Jpn 2:11–26

    MathSciNet  Google Scholar 

  • Kometani E, Sasaki T (1959) A safety index for traffic with linear spacing. Oper Res 7:704–720

    Article  Google Scholar 

  • Kometani E, Sasaki T (1961a) Car following theory and stability limit of traffic volume. Oper Res Soc Jpn 3:176–190

    Google Scholar 

  • Kometani E, Sasaki T (1961b) Dynamic behavior of traffic with a nonlinear spacing-speed relationship. In: Proceedings of symposium on the theory of traffic flow. Elsevier, Amsterdam, pp 105–119

    Google Scholar 

  • Kuhn TS (2012) The structure of scientific revolutions, 4th edn. The University of Chicago Press, Chicago/London

    Book  Google Scholar 

  • Leutzbach W (1988) Introduction to the theory of traffic flow. Springer, Berlin

    Book  Google Scholar 

  • Lighthill MJ, Whitham GB (1995) On kinematic waves. I flow movement in long rives. II a theory of traffic flow on long crowded roads. Proc Roy Soc A 229:281–345

    ADS  Google Scholar 

  • Lubashevsky I, Morimura K (2018) Physics of mind and car-following problem. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin

    Google Scholar 

  • Maerivoet S, De Moor B (2005) Cellular automata models of road traffic. Phys Rep 419:1–64

    Article  MathSciNet  ADS  Google Scholar 

  • Mahmassani HS (2001) Dynamic network traffic assignment and simulation methodology for advanced system management applications. Netw Spat Econ 1:267–292

    Article  Google Scholar 

  • Mahnke R, Kaupužs J, Lubashevsky I (2009) Physics of stochastic processes: how randomness acts in time. Wiley-VCH, Weinheim

    MATH  Google Scholar 

  • Mannering FL, Kilareski WP (1998) Principles of highway engineering and traffic analysis, 2nd edn. Wiley, New York

    Google Scholar 

  • May AD (1990) Traffic flow fundamentals. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Moskowitz K (1954) Waiting for a gap in a traffic stream. Proc Highw Res Board 33:385–395

    Google Scholar 

  • Nagatani T (2002) The physics of traffic jams. Rep Prog Phys 65:1331–1386

    Article  ADS  Google Scholar 

  • Nagatani T (2017) Complex dynamics of bus, tram, and elevator delays in transportation systems. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin

    Google Scholar 

  • Nagel K, Wagner P, Woesler R (2003) Still flowing: approaches to traffic flow and traffic jam modeling. Oper Res 51:681–716

    Article  MathSciNet  MATH  Google Scholar 

  • Newell GF (1961) Nonlinear effects in the dynamics of car following. Oper Res 9:209–229

    Article  MATH  Google Scholar 

  • Newell GF (1963) Instability in dense highway traffic, a review. In: Proceedings of the second international symposium on traffic road traffic flow. OECD, London, pp 73–83

    Google Scholar 

  • Newell GF (1982) Applications of queuing theory. Chapman Hall, London

    Book  Google Scholar 

  • Papageorgiou M, Papamichail I (2008) Overview of traffic signal operation policies for ramp metering. Transp Res Rec 2047:2836

    Google Scholar 

  • Peeta S, Ziliaskopoulos AK (2001) Foundations of dynamic traffic assignment: the past, the present and the future. Netw Spat Econ 1:233–265

    Article  Google Scholar 

  • Piccoli B, Tosin A (2009) Vehicular traffic: a review of continuum mathematical models. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin, pp 9727–9749

    Chapter  Google Scholar 

  • Pipes LA (1953) An operational analysis of traffic dynamics. J Appl Phys 24:274–281

    Article  MathSciNet  ADS  Google Scholar 

  • Prigogine I (1961) A Boltzmann-like approach to the statistical theory of traffic flow. Proceedings of the first international symposium on the theory of traffic flow (Warren, Mich., 1959). Elsevier, Amsterdam/New York, pp 158–164

    Google Scholar 

  • Prigogine I, Herman R (1971) Kinetic theory of vehicular traffic. American Elsevier, New York

    MATH  Google Scholar 

  • Rakha H, Tawfik A (2009) Traffic networks: dynamic traffic routing, assignment, and assessment. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin, pp 9429–9470

    Chapter  Google Scholar 

  • Ran B, Boyce D (1996) Modeling dynamic transportation networks. Springer, Berlin

    Book  MATH  Google Scholar 

  • Rehborn H, Klenov SL, Koller M (2017) Traffic prediction of congested patterns. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin

    Google Scholar 

  • Rempe F, Franeck P, Fastenrath U, Bogenberger K (2016) Online freeway traffic estimation with real floating car data. In: Proceedings of 2016 I.E. 19th international conference on ITS, pp 1838–1843

    Google Scholar 

  • Rempe F, Franeck P, Fastenrath U, Bogenberger K (2017) A phase-based smoothing method for accurate traffic speed estimation with floating car data. Trans Res C 85:644–663

    Article  Google Scholar 

  • Reuschel A (1950a) Vehicle movements in a platoon. Österreichishes Ing-Arch 4:193–215 (In German)

    MATH  Google Scholar 

  • Reuschel A (1950b) Vehicle movements in a platoon with uniform acceleration or deceleration of the lead vehicle. Z. Österreichischen Ing.-Archit.-Ver 95: 59–62, 73–77 (1950) (In German)

    Google Scholar 

  • Richards PI (1956) Shockwaves on the highway. Oper Res 4:42–51

    Article  Google Scholar 

  • Roess RP, Prassas ES (2014) The highway capacity manual: a conceptual and research history. Springer, Berlin

    Book  Google Scholar 

  • Saifuzzaman M, Zheng Z (2014) Incorporating human factors in car-following models: a review of recent developments and research needs. Transp Res C 48:379–403

    Article  Google Scholar 

  • Schadschneider A, Chowdhury D, Nishinari K (2011) Stochastic transport in complex systems. Elsevier Science, New York

    MATH  Google Scholar 

  • Seo T, Bayen AM, Kusakabe T, Asakura Y (2017) Traffic state estimation on highway: a comprehensive survey. Annu Rev Control 43:128–151

    Article  Google Scholar 

  • Sheffi Y (1984) Urban transportation networks: equilibrium analysis with mathematical programming methods. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Shvetsov VI (2003) Mathematical modeling of traffic flow. Autom Remote Control 64:1651–1689

    Article  MathSciNet  MATH  Google Scholar 

  • Sridhar B, Sheth K (2019) Air traffic control, complex dynamics of. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin

    Google Scholar 

  • Tian J-F, Zhu C, Jiang R (2018) Cellular automaton models in the framework of three-phase traffic theory. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin

    Google Scholar 

  • TRANSIMS (2017) U.S. Department of Transportation, Federal Highway Administration, Washington, DC. https://www.fhwa.dot.gov/planning/tmip/resources/transims/

  • TRANSIMS Open Source (2013) Getting started with TRANSIMS, webpage, http://code.google.com/p/transims/wiki/GettingStarted

  • Treiber M, Kesting A (2013) Traffic flow dynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Wardrop JG (1952) Some theoretical aspects of road traffic research. In: Proceedings of the institute of civil engineers part II, vol 1, pp 325–378

    Google Scholar 

  • Webster FV (1958) Traffic signal settings. HMSO, London

    Google Scholar 

  • Zhang C, Xie Y-C, Gartner NH, Stamatiadis C, Arsava T (2015) AM-band: an asymmetrical multi-band model for arterial traffic signal coordination. Transp Res C 58:515–531

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Michael Schreckenberg, Hubert Rehborn, Craig Davis, Ihor Lubashevsky, Sergey Klenov, Micha Koller, Sven-Eric Molzahn, Dominik Wegerle, and Yildirim Dülgar for many useful comments. I thank our partners for their support in the projects “UR:BAN -- Urban Space: User oriented assistance systems and network management” and “MEC-View – Object detection for automated driving based on Mobile Edge Computing”, funded by the German Federal Ministry of Economic Affairs and Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris S. Kerner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kerner, B.S. (2019). Complex Dynamics of Traffic Management: Introduction. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_78-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_78-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics