Skip to main content

Cerebellar Development and Neurogenesis in Zebrafish

  • Living reference work entry
  • First Online:

Abstract

Cerebellar organization and function have been studied in numerous species of fish. Fish models such as goldfish, weakly electric fish, and sharks have led to important findings about the cerebellar architecture, cerebellar circuit physiology, and brain evolution. However, most of the studied fish models are not well suited for developmental and genetic studies of the cerebellum. The rapid transparent ex utero development in zebrafish allows direct access and precise visualization of all the major events in cerebellar development. Furthermore, the zebrafish is amenable to high-throughput screening techniques and advanced forward and reverse genetics approaches allowing interrogation and identification of genes and molecules in cerebellar development. The superficial position of the cerebellar primordium and the cerebellum facilitates in vivo imaging and physiological measurements of individual cerebellar cells or circuits. In addition, cerebellar neurogenesis and regeneration can be studied in the adult animal. Taken together, these features have allowed zebrafish to emerge as a complete model for studies of molecular, cellular, and physiological mechanisms involved in cerebellar development, function, and repair at cell and circuit level.

This is a preview of subscription content, log in via an institution.

References

  • Adolf B, Bellipanni G, Huber V, Bally-Cuif L (2004) atoh1.2 and beta3.1 are two new bHLH-encoding genes expressed in selective precursor cells of the zebrafish anterior hindbrain. Gene Expr Patterns 5(1):35–41

    Article  CAS  PubMed  Google Scholar 

  • Alonso JR, Arevalo R, Brinon JG, Lara J, Weruaga E, Aijon J (1992) Parvalbumin immunoreactive neurons and fibres in the teleost cerebellum. Anat Embryol 185(4):355–361

    Article  CAS  Google Scholar 

  • Altman J, Bayer SA (1997) Development of the cerebellar system: in relation to its evolution, structure, and functions. CRC Press, Boca Raton

    Google Scholar 

  • Alvarado-Mallart RM (2005) The chick/quail transplantation model: discovery of the isthmic organizer center. Brain Res 49(2):109–113

    Article  Google Scholar 

  • Ambrosi G, Flace P, Lorusso L, Girolamo F, Rizzi A, Bosco L, Errede M, Virgintino D, Roncali L, Benagiano V (2007) Non-traditional large neurons in the granular layer of the cerebellar cortex. Eur J Histochem 51(Suppl 1):59–64

    PubMed  Google Scholar 

  • Ampatzis K, Dermon CR (2007) Sex differences in adult cell proliferation within the zebrafish (Danio rerio) cerebellum. Eur J Neurosci 25(4):1030–1040

    Article  PubMed  Google Scholar 

  • Bae YK, Kani S, Shimizu T, Tanabe K, Nojima H, Kimura Y, Higashijima S, Hibi M (2009) Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Dev Biol 330(2):406–426

    Article  CAS  PubMed  Google Scholar 

  • Bell CC (2002) Evolution of cerebellum-like structures. Brain Behav Evol 59(5–6):312–326

    Article  PubMed  Google Scholar 

  • Bell CC, Han V, Sawtell NB (2008) Cerebellum-like structures and their implications for cerebellar function. Annu Rev Neurosci 31:1–24

    Article  CAS  PubMed  Google Scholar 

  • Belting HG, Hauptmann G, Meyer D, Abdelilah-Seyfried S, Chitnis A, Eschbach C, Soll I, Thisse C, Thisse B, Artinger KB, Lunde K, Driever W (2001) Spiel ohne grenzen/pou2 is required during establishment of the zebrafish midbrain-hindbrain boundary organizer. Development 128(21):4165–4176

    CAS  PubMed  Google Scholar 

  • Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, Matzuk MM, Zoghbi HY (1997) Math1 is essential for genesis of cerebellar granule neurons. Nature 390(6656):169–172

    Article  CAS  PubMed  Google Scholar 

  • Brand M, Heisenberg CP, Jiang YJ, Beuchle D, Lun K, Furutani-Seiki M, Granato M, Haffter P, Hammerschmidt M, Kane DA, Kelsh RN, Mullins MC, Odenthal J, van Eeden FJ, Nusslein-Volhard C (1996) Mutations in zebrafish genes affecting the formation of the boundary between midbrain and hindbrain. Development 123:179–190

    CAS  PubMed  Google Scholar 

  • Broccoli V, Boncinelli E, Wurst W (1999) The caudal limit of Otx2 expression positions the isthmic organizer. Nature 401(6749):164–168

    Article  CAS  PubMed  Google Scholar 

  • Buckles GR, Thorpe CJ, Ramel MC, Lekven AC (2004) Combinatorial Wnt control of zebrafish midbrain-hindbrain boundary formation. Mech Dev 121(5):437–447

    Article  CAS  PubMed  Google Scholar 

  • Burgess S, Reim G, Chen W, Hopkins N, Brand M (2002) The zebrafish spiel-ohne-grenzen (spg) gene encodes the POU domain protein Pou2 related to mammalian Oct4 and is essential for formation of the midbrain and hindbrain, and for pre-gastrula morphogenesis. Development 129(4):905–916

    CAS  PubMed  Google Scholar 

  • Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Butts T, Hanzel M, Wingate RJ (2014a) Transit amplification in the amniote cerebellum evolved via a heterochronic shift in NeuroD1 expression. Development 141(14):2791–2795. https://doi.org/10.1242/dev.101758

    Article  CAS  PubMed  Google Scholar 

  • Butts T, Modrell MS, Baker CV, Wingate RJ (2014b) The evolution of the vertebrate cerebellum: absence of a proliferative external granule layer in a non-teleost ray-finned fish. Evol Dev 16(2):92–100. https://doi.org/10.1111/ede.12067

    Article  PubMed  PubMed Central  Google Scholar 

  • Canning CA, Lee L, Irving C, Mason I, Jones CM (2007) Sustained interactive Wnt and FGF signaling is required to maintain isthmic identity. Dev Biol 305(1):276–286

    Article  CAS  PubMed  Google Scholar 

  • Carletti B, Rossi F (2008) Neurogenesis in the cerebellum. Neuroscientist 14(1):91–100

    Article  PubMed  Google Scholar 

  • Chaplin N, Tendeng C, Wingate RJ (2010) Absence of an external germinal layer in zebrafish and shark reveals a distinct, anamniote ground plan of cerebellum development. J Neurosci 30(8):3048–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costagli A, Kapsimali M, Wilson SW, Mione M (2002) Conserved and divergent patterns of Reelin expression in the zebrafish central nervous system. J Comp Neurol 450(1):73–93

    Article  CAS  PubMed  Google Scholar 

  • Crook J, Hendrickson A, Robinson FR (2006) Co-localization of glycine and gaba immunoreactivity in interneurons in Macaca monkey cerebellar cortex. Neuroscience 141(4):1951–1959

    Article  CAS  PubMed  Google Scholar 

  • Dahmane N, Ruiz i Altaba A (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126(14):3089–3100

    PubMed  Google Scholar 

  • Delgado L, Schmachtenberg O (2008) Immunohistochemical localization of GABA, GAD65, and the receptor subunits GABAAalpha1 and GABAB1 in the zebrafish cerebellum. Cerebellum 7(3):444–450

    Article  CAS  PubMed  Google Scholar 

  • Devor A (2000) Is the cerebellum like cerebellar-like structures? Brain Res 34(3):149–156

    Article  CAS  Google Scholar 

  • Elsen GE, Choi LY, Millen KJ, Grinblat Y, Prince VE (2008) Zic1 and Zic4 regulate zebrafish roof plate specification and hindbrain ventricle morphogenesis. Dev Biol 314(2):376–392

    Article  CAS  PubMed  Google Scholar 

  • Elsen GE, Choi LY, Prince VE, Ho RK (2009) The autism susceptibility gene met regulates zebrafish cerebellar development and facial motor neuron migration. Dev Biol 335(1):78–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Englund C, Kowalczyk T, Daza RA, Dagan A, Lau C, Rose MF, Hevner RF (2006) Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci 26(36):9184–9195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finger TE (1978) Efferent neurons of the teleost cerebellum. Brain Res 153(3):608–614

    Article  CAS  PubMed  Google Scholar 

  • Finger TE (1983) Organization of the teleost cerebellum. In: Northcutt RG, Davis RE (eds) Fish neurobiology. Brain stem and sense organs, vol 1. University of Michigan Press, Ann Arbor, pp 261–284

    Google Scholar 

  • Fink AJ, Englund C, Daza RA, Pham D, Lau C, Nivison M, Kowalczyk T, Hevner RF (2006) Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci 26(11):3066–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folgueira M, Anadon R, Yanez J (2006) Afferent and efferent connections of the cerebellum of a salmonid, the rainbow trout (Oncorhynchus mykiss): a tract-tracing study. J Comp Neurol 497(4):542–565

    Article  PubMed  Google Scholar 

  • Foucher I, Mione M, Simeone A, Acampora D, Bally-Cuif L, Houart C (2006) Differentiation of cerebellar cell identities in absence of Fgf signalling in zebrafish Otx morphants. Development 133(10):1891–1900

    Article  CAS  PubMed  Google Scholar 

  • Gibbs MA, Northmore DP (1996) The role of torus longitudinalis in equilibrium orientation measured with the dorsal light reflex. Brain Behav Evol 48(3):115–120

    Article  CAS  PubMed  Google Scholar 

  • Gona AG (1976) Autoradiographic studies of cerebellar histogenesis in the bullfrog tadpole during metamorphosis: the external granular layer. J Comp Neurol 165:77–87

    Article  CAS  PubMed  Google Scholar 

  • Hans S, Kaslin J, Freudenreich D, Brand M (2009) Temporally-controlled site-specific recombination in zebrafish. PLoS One 4(2):e4640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoshino M (2006) Molecular machinery governing GABAergic neuron specification in the cerebellum. Cerebellum 5(3):193–198

    Article  CAS  PubMed  Google Scholar 

  • Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, Fukuda A, Fuse T, Matsuo N, Sone M, Watanabe M, Bito H, Terashima T, Wright CV, Kawaguchi Y, Nakao K, Nabeshima Y (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47(2):201–213

    Article  CAS  PubMed  Google Scholar 

  • Housden BE, Muhar M, Gemberling M, Gersbach CA, Stainier DYR, Seydoux G, Mohr SE, Zuber J, Perrimon N (2016) Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nat Rev Genet 18:24. https://doi.org/10.1038/nrg.2016.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikenaga T, Yoshida M, Uematsu K (2002) Efferent connections of the cerebellum of the goldfish, Carassius auratus. Brain Behav Evol 60(1):36–51

    Article  PubMed  Google Scholar 

  • Ikenaga T, Yoshida M, Uematsu K (2005) Morphology and immunohistochemistry of efferent neurons of the goldfish corpus cerebelli. J Comp Neurol 487(3):300–311

    Article  CAS  PubMed  Google Scholar 

  • Ikenaga T, Yoshida M, Uematsu K (2006) Cerebellar efferent neurons in teleost fish. Cerebellum 5(4):268–274

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Yoshimoto M (1990) Cytoarchitecture and fiber connections of the nucleus lateralis valvulae in the carp (Cyprinus carpio). J Comp Neurol 298(4):385–399

    Article  CAS  PubMed  Google Scholar 

  • Jaszai J, Reifers F, Picker A, Langenberg T, Brand M (2003) Isthmus-to-midbrain transformation in the absence of midbrain-hindbrain organizer activity. Development 130(26):6611–6623

    Article  CAS  PubMed  Google Scholar 

  • Joyner AL (1996) Engrailed, Wnt and Pax genes regulate midbrain – hindbrain development. Trends Genet 12(1):15–20

    Article  CAS  PubMed  Google Scholar 

  • Kani S, Bae YK, Shimizu T, Tanabe K, Satou C, Parsons MJ, Scott E, Higashijima S, Hibi M (2010) Proneural gene-linked neurogenesis in zebrafish cerebellum. Dev Biol 343(1–2):1–17

    Article  CAS  PubMed  Google Scholar 

  • Kaslin J, Ganz J, Geffarth M, Grandel H, Hans S, Brand M (2009) Stem cells in the adult zebrafish cerebellum: initiation and maintenance of a novel stem cell niche. J Neurosci 29(19):6142–6153. https://doi.org/10.1523/JNEUROSCI.0072-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaslin J, Kroehne V, Benato F, Argenton F, Brand M (2013) Development and specification of cerebellar stem and progenitor cells in zebrafish: from embryo to adult. Neural Dev 8:9. https://doi.org/10.1186/1749-8104-8-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaslin J, Kroehne V, Ganz J, Hans S, Brand M (2017) Distinct roles of neuroepithelial-like and radial glia-like stem and progenitor cells in cerebellar regeneration. Development 144(8):1462–1471. https://doi.org/10.1242/dev.144907

    Article  CAS  PubMed  Google Scholar 

  • Katahira T, Sato T, Sugiyama S, Okafuji T, Araki I, Funahashi J, Nakamura H (2000) Interaction between Otx2 and Gbx2 defines the organizing center for the optic tectum. Mech Dev 91(1–2):43–52

    Article  CAS  PubMed  Google Scholar 

  • Katsuyama Y, Oomiya Y, Dekimoto H, Motooka E, Takano A, Kikkawa S, Hibi M, Terashima T (2007) Expression of zebrafish ROR alpha gene in cerebellar-like structures. Dev Dyn 236(9):2694–2701

    Article  CAS  PubMed  Google Scholar 

  • Kim CH, Bae YK, Yamanaka Y, Yamashita S, Shimizu T, Fujii R, Park HC, Yeo SY, Huh TL, Hibi M, Hirano T (1997) Overexpression of neurogenin induces ectopic expression of HuC in zebrafish. Neurosci Lett 239(2–3):113–116

    Article  CAS  PubMed  Google Scholar 

  • Koster RW, Fraser SE (2001) Direct imaging of in vivo neuronal migration in the developing cerebellum. Curr Biol 11(23):1858–1863

    Article  CAS  PubMed  Google Scholar 

  • Koster RW, Fraser SE (2006) FGF signaling mediates regeneration of the differentiating cerebellum through repatterning of the anterior hindbrain and reinitiation of neuronal migration. J Neurosci 26(27):7293–7304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laine J, Axelrad H (1994) The candelabrum cell: a new interneuron in the cerebellar cortex. J Comp Neurol 339(2):159–173

    Article  CAS  PubMed  Google Scholar 

  • Langenberg T, Dracz T, Oates AC, Heisenberg CP, Brand M (2006) Analysis and visualization of cell movement in the developing zebrafish brain. Dev Dyn 235(4):928–933

    Article  PubMed  Google Scholar 

  • Lekven AC, Buckles GR, Kostakis N, Moon RT (2003) Wnt1 and wnt10b function redundantly at the zebrafish midbrain-hindbrain boundary. Dev Biol 254(2):172–187

    Article  CAS  PubMed  Google Scholar 

  • Leucht C, Stigloher C, Wizenmann A, Klafke R, Folchert A, Bally-Cuif L (2008) MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nat Neurosci 11(6):641–648

    Article  CAS  PubMed  Google Scholar 

  • Li M, Zhao L, Page-McCaw PS, Chen W (2016) Zebrafish genome engineering using the CRISPR-Cas9 system. Trends Genet 32(12):815–827. https://doi.org/10.1016/j.tig.2016.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsey BW, Douek AM, Loosli F, Kaslin J (2018a) A whole brain staining, embedding, and clearing pipeline for adult zebrafish to visualize cell proliferation and morphology in 3-dimensions. Front Neurosci 11(750). https://doi.org/10.3389/fnins.2017.00750

  • Lindsey BW, Hall ZJ, Heuze A, Joly JS, Tropepe V, Kaslin J (2018b) The role of neuro-epithelial-like and radial-glial stem and progenitor cells in development, plasticity, and repair. Prog Neurobiol 11(17):30185–30185

    Google Scholar 

  • Liu A, Joyner AL (2001) Early anterior/posterior patterning of the midbrain and cerebellum. Annu Rev Neurosci 24:869–896

    Article  CAS  PubMed  Google Scholar 

  • Louvi A, Alexandre P, Metin C, Wurst W, Wassef M (2003) The isthmic neuroepithelium is essential for cerebellar midline fusion. Development 130(22):5319–5330

    Article  CAS  PubMed  Google Scholar 

  • Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274(5290):1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Lun K, Brand M (1998) A series of no isthmus (noi) alleles of the zebrafish pax2.1 gene reveals multiple signaling events in development of the midbrain-hindbrain boundary. Development 125(16):3049–3062

    CAS  PubMed  Google Scholar 

  • Machold R, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Martinez S, Alvarado-Mallart RM (1989) Rostral cerebellum originates from the caudal portion of the so-called ‘mesencephalic’ vesicle: a study using chick/quail chimeras. Eur J Neurosci 1(6):549–560

    Article  PubMed  Google Scholar 

  • Matsui H, Namikawa K, Babaryka A, Koster RW (2014) Functional regionalization of the teleost cerebellum analyzed in vivo. Proc Natl Acad Sci U S A 111(32):11846–11851. https://doi.org/10.1073/pnas.1403105111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFarland KA, Topczewska JM, Weidinger G, Dorsky RI, Appel B (2008) Hh and Wnt signaling regulate formation of olig2+ neurons in the zebrafish cerebellum. Dev Biol 318(1):162–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meek J (1983) Functional anatomy of the tectum mesencephali of the goldfish. An explorative analysis of the functional implications of the laminar structural organization of the tectum. Brain Res 287(3):247–297

    Article  CAS  PubMed  Google Scholar 

  • Meek J (1992) Comparative aspects of cerebellar organization. From mormyrids to mammals. Eur J Morphol 30(1):37–51

    CAS  PubMed  Google Scholar 

  • Meek J (1998) Holosteans and teleosts. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates. Springer, Berlin

    Google Scholar 

  • Meek J, Yang JY, Han VZ, Bell CC (2008) Morphological analysis of the mormyrid cerebellum using immunohistochemistry, with emphasis on the unusual neuronal organization of the valvula. J Comp Neurol 510(4):396–421

    Article  PubMed  PubMed Central  Google Scholar 

  • Millet S, Campbell K, Epstein DJ, Losos K, Harris E, Joyner AL (1999) A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature 401(6749):161–164

    Article  CAS  PubMed  Google Scholar 

  • Mugnaini E, Sekerkova G, Martina M (2011) The unipolar brush cell: a remarkable neuron finally receiving the deserved attention. Brain Res Rev 66:220–245. https://doi.org/10.1016/j.brainresrev.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  • Murakami T, Morita Y (1987) Morphology and distribution of the projection neurons in the cerebellum in a teleost, Sebastiscus marmoratus. J Comp Neurol 256(4):607–623

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuys R, Pouwels E, Smulders-Kersten E (1974) The neuronal organization of cerebellar lobe C1 in the mormyrid fish Gnathonemus petersii (teleostei). Z Anat Entwicklungsgesch 144(3):315–336

    Article  CAS  PubMed  Google Scholar 

  • Northmore DP, Williams B, Vanegas H (1983) The teleostean torus longitudinalis: responses related to eye movements, visuotopic mapping, and functional relations with the optic tectum. J Comp Physiol A 150:39–50

    Article  Google Scholar 

  • O’Hara FP, Beck E, Barr LK, Wong LL, Kessler DS, Riddle RD (2005) Zebrafish Lmx1b.1 and Lmx1b.2 are required for maintenance of the isthmic organizer. Development 132(14):3163–3173

    Article  PubMed  CAS  Google Scholar 

  • Pascual M, Abasolo I, Mingorance-Le Meur A, Martinez A, Del Rio JA, Wright CV, Real FX, Soriano E (2007) Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci U S A 104(12):5193–5198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picker A, Brennan C, Reifers F, Clarke JD, Holder N, Brand M (1999) Requirement for the zebrafish mid-hindbrain boundary in midbrain polarisation, mapping and confinement of the retinotectal projection. Development 126(13):2967–2978

    CAS  PubMed  Google Scholar 

  • Pouwels E (1978) On the development of the cerebellum of the trout, Salmo gairdneri. IV. Development of the pattern of connectivity. Anat Embryol 153(1):55–65

    Article  CAS  Google Scholar 

  • Raible F, Brand M (2004) Divide et Impera – the midbrain-hindbrain boundary and its organizer. Trends Neurosci 27(12):727–734

    Article  CAS  PubMed  Google Scholar 

  • Reifers F, Bohli H, Walsh EC, Crossley PH, Stainier DY, Brand M (1998) Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125(13):2381–2395

    CAS  PubMed  Google Scholar 

  • Reim G, Brand M (2002) Spiel-ohne-grenzen/pou2 mediates regional competence to respond to Fgf8 during zebrafish early neural development. Development 129(4):917–933

    CAS  PubMed  Google Scholar 

  • Rhinn M, Brand M (2001) The midbrain--hindbrain boundary organizer. Curr Opin Neurobiol 11(1):34–42

    Article  CAS  PubMed  Google Scholar 

  • Rhinn M, Lun K, Luz M, Werner M, Brand M (2005) Positioning of the midbrain-hindbrain boundary organizer through global posteriorization of the neuroectoderm mediated by Wnt8 signaling. Development 132(6):1261–1272

    Article  CAS  PubMed  Google Scholar 

  • Rhinn M, Picker A, Brand M (2006) Global and local mechanisms of forebrain and midbrain patterning. Curr Opin Neurobiol 16(1):5–12

    Article  CAS  PubMed  Google Scholar 

  • Rhinn M, Lun K, Ahrendt R, Geffarth M, Brand M (2009) Zebrafish gbx1 refines the midbrain-hindbrain boundary border and mediates the Wnt8 posteriorization signal. Neural Dev 4:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rieger S, Senghaas N, Walch A, Koster RW (2009) Cadherin-2 controls directional chain migration of cerebellar granule neurons. PLoS Biol 7(11):e1000240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scott EK (2009) The Gal4/UAS toolbox in zebrafish: new approaches for defining behavioral circuits. J Neurochem 110(2):441–456

    Article  CAS  PubMed  Google Scholar 

  • Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL (2005) Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron 45(1):27–40

    CAS  PubMed  Google Scholar 

  • Sgaier SK, Lao Z, Villanueva MP, Berenshteyn F, Stephen D, Turnbull RK, Joyner AL (2007) Genetic subdivision of the tectum and cerebellum into functionally related regions based on differential sensitivity to engrailed proteins. Development 134(12):2325–2335

    Article  CAS  PubMed  Google Scholar 

  • Simeone A (2000) Positioning the isthmic organizer where Otx2 and Gbx2meet. Trends Genet 16(6):237–240

    Article  CAS  PubMed  Google Scholar 

  • Simmich J, Staykov E, Scott E (2012) Zebrafish as an appealing model for optogenetic studies. Prog Brain Res 196:145–162. https://doi.org/10.1016/B978-0-444-59426-6.00008-2

    Article  CAS  PubMed  Google Scholar 

  • Takacs J, Markova L, Borostyankoi Z, Gorcs TJ, Hamori J (1999) Metabotrop glutamate receptor type 1a expressing unipolar brush cells in the cerebellar cortex of different species: a comparative quantitative study. J Neurosci Res 55(6):733–748

    Article  CAS  PubMed  Google Scholar 

  • Tour E, Pillemer G, Gruenbaum Y, Fainsod A (2002) Gbx2 interacts with Otx2 and patterns the anterior-posterior axis during gastrulation in Xenopus. Mech Dev 112(1–2):141–151

    Article  CAS  PubMed  Google Scholar 

  • Toyama R, Gomez DM, Mana MD, Dawid IB (2004) Sequence relationships and expression patterns of zebrafish zic2 and zic5 genes. Gene Expr Patterns 4(3):345–350

    Article  CAS  PubMed  Google Scholar 

  • Volkmann K, Rieger S, Babaryka A, Koster RW (2008) The zebrafish cerebellar rhombic lip is spatially patterned in producing granule cell populations of different functional compartments. Dev Biol 313(1):167–180

    Article  CAS  PubMed  Google Scholar 

  • Volkmann K, Chen YY, Harris MP, Wullimann MF, Koster RW (2010) The zebrafish cerebellar upper rhombic lip generates tegmental hindbrain nuclei by long-distance migration in an evolutionary conserved manner. J Comp Neurol 518(14):2794–2817

    PubMed  Google Scholar 

  • Wang VY, Zoghbi HY (2001) Genetic regulation of cerebellar development. Nat Rev Neurosci 2(7):484–491

    Article  CAS  PubMed  Google Scholar 

  • Wang VY, Rose MF, Zoghbi HY (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48(1):31–43

    Article  CAS  PubMed  Google Scholar 

  • Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by sonic hedgehog. Neuron 22(1):103–114

    Article  CAS  PubMed  Google Scholar 

  • Wingate RJ (2001) The rhombic lip and early cerebellar development. Curr Opin Neurobiol 11(1):82–88

    Article  CAS  PubMed  Google Scholar 

  • Wingate RJ, Hatten ME (1999) The role of the rhombic lip in avian cerebellum development. Development 126(20):4395–4404

    CAS  PubMed  Google Scholar 

  • Wullimann MF (1997) The central nervous system. In: Evans DH, Claiborne JB (eds) In physiology of fishes, vol II. CRC Press, Boca Raton

    Google Scholar 

  • Wullimann MF, Northcutt RG (1988) Connections of the corpus cerebelli in the green sunfish and the common goldfish: a comparison of perciform and cypriniform teleosts. Brain Behav Evol 32(5):293–316

    Article  CAS  PubMed  Google Scholar 

  • Wullimann MF, Northcutt RG (1989) Afferent connections of the valvula cerebelli in two teleosts, the common goldfish and the green sunfish. J Comp Neurol 289(4):554–567

    Article  CAS  PubMed  Google Scholar 

  • Wurst W, Bally-Cuif L (2001) Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2(2):99–108

    Article  CAS  PubMed  Google Scholar 

  • Xue HG, Yang CY, Yamamoto N (2008) Afferent sources to the inferior olive and distribution of the olivocerebellar climbing fibers in cyprinids. J Comp Neurol 507(3):1409–1427

    Article  PubMed  Google Scholar 

  • Zecchin E, Mavropoulos A, Devos N, Filippi A, Tiso N, Meyer D, Peers B, Bortolussi M, Argenton F (2004) Evolutionary conserved role of ptf1a in the specification of exocrine pancreatic fates. Dev Biol 268(1):174–184

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jan Kaslin or Michael Brand .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kaslin, J., Brand, M. (2020). Cerebellar Development and Neurogenesis in Zebrafish. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_63-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_63-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics