Skip to main content

Cell Encapsulation

  • Reference work entry
  • First Online:

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

The task of developing novel techniques for curing human illnesses is really a complex and tough challenge. This chapter gives a comprehensive discussion of various materials and techniques used in cell encapsulation. Cell encapsulation is a technique whereby living cells are entrapped into a selectively permeable polymeric materials (membranes/beads) making them a potential tool for the treatment of various human illnesses such as Parkinson’s disease, hemophilia, lysosomal storage disease (LSD), cancer and diabetes. The encapsulated cells become immune, i.e., the immune system of the host could not recognize them; therefore, it does not develop any potential immune response against encapsulated cells. Overall, this chapter reviews wide range of techniques that could potentially use in cell encapsulation and discuss how the capsule properties are related to the performance of the cell to treat various diseases. Furthermore, the use of different materials and their impact on the properties and performance in cell encapsulation are also discussed in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T.M. Chang, Semipermeable microcapsules. Science 146, 524–525 (1964)

    Article  CAS  PubMed  Google Scholar 

  2. G. Orive, R.M. Hernández, A.R. Gascón, R. Calafiore, T.M.S. Chang, P.D. Vos, G. Hortelano, D. Hunkeler, I. Lacík, A.M.J. Shapiro, J.L. Pedraz, Cell encapsulation: promise and progress. Nat. Med. 9, 104–107 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. U. Matte, V.L. Lagranha, T.G. de Carvalho, F.Q. Mayer, R. Giugliani, Cell microencapsulation: a potential tool for the treatment of neuropathic lysosomal storage diseases. J. Inherit. Metab. Dis. 34, 983–990 (2011)

    Article  PubMed  Google Scholar 

  4. M.P. Zanin, L.N. Pettingill, A.R. Harvey, D.F. Emerich, C.G. Thanos, R.K. Shepherd, The development of encapsulated cell technologies as therapies for neurological and sensory diseases. J. Control. Release 160, 3–13 (2012)

    Article  CAS  PubMed  Google Scholar 

  5. K. Senior, Encapsulated cell technology provides new treatment options. Drug Discov. Today 6, 6–7 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. G. Orive, R.M. Hernández, A.R. Gascón, M. Igartua, J.L. Pedraz, Encapsulated cell technology: from research to market. Trends Biotechnol. 20, 382–387 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. T. Murua, A. Portero, A. Orive, G. Hernández, R.M. Castro, M. Pedraz, Cell microencapsulation technology: towards clinical application. J. Control. Release 132, 76–83 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. E. Santos, J. Pedraz, R.M. Hernández, G. Orive, Therapeutic cell encapsulation: ten steps towards clinical translation. J. Control. Release 170, 1–14 (2013)

    Article  CAS  PubMed  Google Scholar 

  9. R.M. Hernández, G. Orive, A. Murua, J.L. Pedraz, Microcapsules and microcarriers for in situ cell delivery. Adv. Drug Deliv. Rev. 62, 711–730 (2010)

    Article  PubMed  CAS  Google Scholar 

  10. A. Prokop, J.M. Davidson, Nanovehicular intracellular delivery systems. J. Pharm. Sci. 97, 3518–3590 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. T. Wang, J. Adcock, W. Kühtreiber, D. Qiang, K.J. Salleng, I. Trenary, P. Williams, Successful allotransplantation of encapsulated islets in pancreatectomized canines for diabetic management without the use of immunosuppression. Transplantation 85, 331–337 (2008)

    Article  PubMed  Google Scholar 

  12. S. Jolles, Paul Langerhans. J. Clin. Pathol. 55, 243 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M.A.J. Mazumder, Bio-encapsulation for the immune-protection of therapeutic cells. Adv. Mater. Res. 810, 1–39 (2013)

    Article  CAS  Google Scholar 

  14. C. Booth, B. Inusa, S.K. Obaro, Infection in sickle cell disease: a review. Int. J. Infect. Dis. 14, 2–12 (2012)

    Article  Google Scholar 

  15. M. Balyura, E. Gelfgat, M. Ehrhart-Bornstein, B. Ludwig, Z. Gendler, U. Barkai, B. Zimerman, A. Rotem, N.L. Block, A.V. Schally, S.R. Bornstein, Transplantation of bovine adrenocortical cells encapsulated in alginate. Proc. Natl. Acad. Sci. 112, 2527–2532 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. T. Xu, X. Jha, A. Harrington, D.A. Farach-Carson, Hyaluronic acid – based hydrogel: from a natural polysaccharide to complex networks. Soft Matter 8, 3280–3294 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. T. Matricardi, P. Meo, C. Di, T. Coviello, W.E. Hennink, F. Alhaique, Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv. Drug Deliv. Rev. 65, 1172–1187 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. T. Alvarez-Lorenzo, C. Blanco-Fernandez, B. Puga, A.M. Concheiro, Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv. Drug Deliv. Rev. 65, 1148–1171 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. T. Zhang, Y. Chan, H.F. Leong, Advanced materials and processing for drug delivery: the past and the future. Adv. Drug Deliv. Rev. 65, 104–120 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. D. Guan, M. Ramirez, L. Shao, D. Jacobsen, I. Barrera, J. Lutkenhaus, Z. Chen, Two-component protein hydrogels assembled using an engineered disulfide-forming protein-ligand pair. Biomacromolecules 14, 2909–2916 (2013)

    Article  CAS  PubMed  Google Scholar 

  21. Y. Sun, Z. Deng, Y. Tian, C. Lin, Horseradish peroxidase-mediated in situ forming hydrogels from degradable tyramine-based poly(amido amine)s. J. Appl. Polym. Sci. 127, 40–48 (2013)

    Article  CAS  Google Scholar 

  22. S. Sakai, T. Ashida, S. Ogino, M. Taya, Horseradish peroxidase-mediated encapsulation of mammalian cells in hydrogel particles by dropping. J. Microencapsul. 31, 100–104 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. L.M. Weber, K.S. Anseth, Hydrogel encapsulation environments functionalized with extracellular matrix interactions increase islet insulin secretion. Matrix Biol. 27, 667–673 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. G. Luca, R. Calafiore, G. Basta, M. Ricci, M. Calvitti, L. Neri, C. Nastruzzi, E. Becchetti, S. Capitani, P. Brunetti, C. Rossi, Improved function of rat islets upon co-microencapsulation with Sertoli’s cells in alginate/poly-l-ornithine. AAPS PharmSciTech 2, 48–54 (2001)

    Article  PubMed Central  Google Scholar 

  25. J.A.M. Steele, J.P. Hallé, D. Poncelet, R.J. Neufeld, Therapeutic cell encapsulation techniques and applications in diabetes. Adv. Drug Deliv. Rev. 67–68, 74–83 (2014)

    Article  PubMed  CAS  Google Scholar 

  26. T. Desai, L.D. Shea, Advances in islet encapsulation technologies. Nat. Rev. Drug Discov. 16, 338–350 (2016)

    Article  PubMed  CAS  Google Scholar 

  27. G.H. Wolters, W.M. Fritschy, D. Gerrits, R. van Schilfgaarde, A versatile alginate droplet generator applicable for microencapsulation of pancreatic islets. J. Appl. Biomater. 3, 281–286 (1991)

    Article  CAS  PubMed  Google Scholar 

  28. A. Kang, J. Park, J. Ju, G.S. Jeong, S.H. Lee, Cell encapsulation via microtechnologies. Biomaterials 35, 2651–2663 (2014)

    Article  CAS  PubMed  Google Scholar 

  29. S. Moeinzadeh, S.N. Khorasani, J. Ma, X. He, E. Jabbari, Synthesis and gelation characteristics of photo-crosslinkable star poly(ethylene oxide-co-lactide-glycolide acrylate) macromonomers. Polymer (Guildf) 52, 3887–3896 (2011)

    Article  CAS  PubMed Central  Google Scholar 

  30. F.M. Andreopoulos, E.J. Beckman, A.J. Russell, Light-induced tailoring of PEG-hydrogel properties. Biomaterials 19, 1343–1352 (1998)

    Article  CAS  PubMed  Google Scholar 

  31. G. Orive, R.M. Hernández, A.R. Gascón, J.L. Pedraz, Challenges in cell encapsulation, in Applications of Cell Immobilisation Biotechnology, ed. by V. Nedović, R. Willaert. Focus on Biotechnology, vol. 8B (2005), Springer, Netherlands, pp. 185–196

    Google Scholar 

  32. X. Ma, I. Vacek, A. Sun, Generation of alginate-poly-l-lysine-alginate (APA) biomicrocapsules: the relationship between the membrane strength and the reaction conditions. Artif. Cells Blood Substit. Immobil. Biotechnol. 22, 43–69 (1994)

    Article  CAS  PubMed  Google Scholar 

  33. K. Malleswari, R.B.D. Reddy, M. Swathi, Microencapsulation: a review a novel approach in drug delivery. Eur. J. Pharm. Med. Res. 3, 186–194 (2016)

    Google Scholar 

  34. L. Yu, Y. Li, K. Zhao, Y. Tang, Z. Cheng, J. Chen, J. Wu, L. Kong, S. Liu, W. Lei, Z. Wu, A novel injectable calcium phosphate cement-bioactive glass composite for bone regeneration. PLoS One 8(4), e62570 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. G. Orive, E. Santos, J.L. Pedraz, R.M. Hernández, Application of cell encapsulation for controlled delivery of biological therapeutics. Adv. Drug Deliv. Rev. 67–68, 3–14 (2014)

    Article  PubMed  CAS  Google Scholar 

  36. E.C. Opara, J.P. McQuilling, A.C. Farney, Microencapsulation of pancreatic islets for use in a bioartificial pancreas. Methods Mol. Biol. 1001, 261–266 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. M. Golzio, L. Mazzolini, P. Moller, M.P. Rols, J. Teissié, Inhibition of gene expression in mice muscle by in vivo electrically mediated siRNA delivery. Gene Ther. 12, 246–251 (2005)

    Article  CAS  PubMed  Google Scholar 

  38. S.K. Vishwakarma, A. Bardia, S.K. Tiwari, S.A. Paspala, A.A. Khan, Current concept in neural regeneration research: NSCs isolation, characterization and transplantation in various neurodegenerative diseases and stroke: a review. J. Adv. Res. 5, 277–294 (2014)

    Article  PubMed  Google Scholar 

  39. F. Chen, W. Cai, H. Hong, Engineering of mesoporous silica nanoparticles for in vivo cancer imaging and therapy, in Engineering in Translational Medicine, ed. by W. Cai (Springer, London, 2014)

    Google Scholar 

  40. K. Nilsson, P. Brodelius, K. Mosbach, Entrapment of microbial and plant cells in beaded polymers. Methods Enzymol. 135, 222–230 (1987)

    Article  CAS  PubMed  Google Scholar 

  41. K. Nilsson, W. Scheirer, O.W. Merten, H.W. Katinger, K. Mosbach, Entrapment of animal cells for the production of monoclonal antibodies and other biomolecules. Nature 302, 629–630 (1983)

    Article  CAS  PubMed  Google Scholar 

  42. Y. Ikada, Challenges in tissue engineering. J. R. Soc. Interface 10, 589–601 (2006)

    Article  CAS  Google Scholar 

  43. V. Aithilingam, M.M.W. Yim, J.L. Foster, T. Stait-Gardner, J. Oberholzer, B.E. Tuch, Noninvasive tracking of encapsulated insulin producing cells labelled with magnetic microspheres by magnetic resonance imaging. J. Diabetes Res. 2016, 6165893 (2016)

    Google Scholar 

  44. H. Iwata, H. Amemiya, T. Matsuda, H. Takano, T. Akutsu, Microencapsulation of Langerhans islets in agarose microbeads and their application for a bioartificial pancreas. J. Bioact. Compat. Polym. 3, 356–369 (1988)

    Article  CAS  Google Scholar 

  45. L.M. Weber, J. He, B. Bradley, K. Haskins, K.S. Anseth, PEG-based hydrogels as an in vitro encapsulation platform for testing controlled beta-cell microenvironments. Acta Biomater. 2, 1–8 (2006)

    Article  PubMed  Google Scholar 

  46. P.J. Stahl, H.R. Nicole, D. Wirtz, S.M. Yu, PEG-based hydrogels with collagen mimetic peptide-mediated and tunable physical cross-links. Biomacromolecules 11, 2336–2344 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. A. Hoshikawa, Y. Nakayama, T. Matsuda, H. Oda, K. Nakamura, K. Mabuchi, Encapsulation of chondrocytes in photopolymerizable styrenated gelatin for cartilage tissue engineering. Tissue Eng. 12, 2333–2341 (2006)

    Article  CAS  PubMed  Google Scholar 

  48. J. Kundu, L.A. Poole-Warren, P. Martens, S.C. Kundu, Silk fibroin/poly(vinyl alcohol) photocrosslinked hydrogels for delivery of macromolecular drugs. Acta Biomater. 8, 1720–1729 (2012)

    Article  CAS  PubMed  Google Scholar 

  49. I. Mironi-Harpaz, D.Y. Wang, S. Venkatraman, D. Seliktar, Photopolymerization of cell encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Acta Biomater. 8, 1838–1848 (2012)

    Article  CAS  PubMed  Google Scholar 

  50. S.M. Oliveira, G. Turner, S.P. Rodrigues, M.A. Barbosa, M. Alikhani, C.C. Teixeira, Spontaneous chondrocyte maturation on 3d-chitosan scaffolds. J. Tissue Sci. Eng. 4(1), 1000124 (2013)

    Google Scholar 

  51. A. Fakhari, C. Berkland, Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater. 9, 7081–7082 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. K. Beck, I. Hunter, J. Engel, Structure and function of laminin: anatomy of a multi domain glycoprotein. FASEB J. 4, 148–160 (1990)

    Article  CAS  PubMed  Google Scholar 

  53. H. Li, A.M. Koenig, P. Sloan, N.D. Leipzig, In vivo assessment of guided neural stem cell differentiation in growth factor immobilized chitosan-based hydrogel scaffolds. Biomaterials 35, 9049–9057 (2014)

    Article  CAS  PubMed  Google Scholar 

  54. T. Garg, O. Singh, S. Arora, R. Murthy, Scaffold: a novel carrier for cell and drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 29, 1–63 (2012)

    Article  CAS  PubMed  Google Scholar 

  55. M.A. Masuelli, C.O. Illanes, Review of the characterization of sodium alginate by intrinsic viscosity measurements. Comparative analysis between conventional and single point methods. Int. J. Biomater. Sci. Eng. 1, 1–11 (2014)

    Google Scholar 

  56. S. Szala, J. Szary, T. Cichoń, A. Sochanik, Antiangiogenic gene therapy in inhibition of metastasis. Acta Biochim. Pol. 49, 313–321 (2002)

    CAS  PubMed  Google Scholar 

  57. A. Prokop, Bioartificial pancreas: materials, devices, function, and limitations. Diabetes Technol. Ther. 3, 431–449 (2001)

    Article  CAS  PubMed  Google Scholar 

  58. K.W. Broadhead, P.A. Tresco, Effects of fabrication conditions on the structure and function of membranes formed from poly(acrylonitrile-vinylchloride). J. Membr. Sci. 147, 235–245 (1998)

    Article  CAS  Google Scholar 

  59. D.J. Gerbi, G. Dimotsis, J. Morgan, R. Williams, R. Kellman, The effect of water on the formation of polyarylethers via phase-transfer-catalyzed nucleophilic aromatic substitution. J. Polym. Sci. C Polym. Lett. 23, 551–556 (1985)

    Article  CAS  Google Scholar 

  60. I.L. Alsvik, M.B. Hägg, Pressure retarded osmosis and forward osmosis membranes: materials and methods. Polymers (Basel) 5, 303–327 (2013)

    Article  CAS  Google Scholar 

  61. J. Attia, F. Legendre, Q.T. Nguyen, C. Baugé, K. Boumediene, J.P. Pujol, Evaluation of adhesion, proliferation, and functional differentiation of dermal fibroblasts on glycosaminoglycan-coated polysulfone membranes. Tissue Eng. A 14, 1687–1697 (2008)

    Article  CAS  Google Scholar 

  62. B. Sarker, D.G. Papageorgiou, R. Silva, T. Zehnder, F. Gul-E-Noor, M. Bertmer, J. Kaschta, K. Chrissafis, R. Detsch, A.R. Boccaccini, Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico chemical properties. J. Mater. Chem. B 2, 1470–1482 (2014)

    Article  CAS  PubMed  Google Scholar 

  63. B. Balakrishnan, N. Joshi, A. Jayakrishnan, R. Banerjee, Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration. Acta Biomater. 10, 3650–3663 (2014)

    Article  CAS  PubMed  Google Scholar 

  64. A. Thakur, R. Sengupta, H. Matsui, D. Lillicrap, K. Jones, G. Hortelano, Characterization of viability and proliferation of alginate-poly-l-lysine-alginate encapsulated myoblasts using flow cytometry. J. Biomed. Mater. Res. B Appl. Biomater. 94, 296–304 (2010)

    PubMed  Google Scholar 

  65. S.I. Gundersen, A.F. Palmer, Conjugation of methoxypolyethylene glycol to the surface of bovine red blood cells. Biotechnol. Bioeng. 96, 1199–1210 (2007)

    Article  CAS  PubMed  Google Scholar 

  66. T. Majima, T. Funakosi, N. Iwasaki, S.T. Yamane, K. Harada, S. Nonaka, A. Minami, S. Nishimura, Alginate and chitosan polyion complex hybrid fibers for scaffolds in ligament and tendon tissue engineering. J. Orthop. Sci. 10, 302–307 (2005)

    Article  CAS  PubMed  Google Scholar 

  67. I.F. Farrés, R.J.A. Moakes, I.T. Norton, Designing biopolymer fluid gels: a microstructural approach. Food Hydrocoll. 42, 362–372 (2014)

    Article  CAS  Google Scholar 

  68. T.R. Hoare, D.S. Kohane, Hydrogels in drug delivery: progress and challenge. Polymer 49, 1993–2007 (2008)

    Article  CAS  Google Scholar 

  69. L.A. Kinard, F.K. Kasper, A.G. Mikos, Synthesis of oligo(poly(ethylene glycol) fumarate). Nat. Protoc. 7, 1219–1227 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. B.D. Mather, K. Viswanathan, K.M. Miller, T.E. Long, Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci. 31, 487–531 (2006)

    Article  CAS  Google Scholar 

  71. T.G. Vladkova, Surface engineered polymeric biomaterials with improved biocontact properties. Int. J. Polym. Sci. 2010, 1–22 (2010)

    Article  CAS  Google Scholar 

  72. M.K. Nguyen, E. Alsberg, Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog. Polym. Sci. 39, 1236–1265 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. M.E. Helgeson, S.C. Chapin, P.S. Doyle, Hydrogel microparticles from lithographic processes: novel materials for fundamental and applied colloid science. Curr. Opin. Colloid Interface Sci. 16, 106–117 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. S. Elmore, Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. S. Jo, H. Shin, A.K. Shung, J.P. Fisher, A.G. Mikos, Synthesis and characterization of oligo-(poly(ethylene glycol) fumarate) macromer. Macromolecules 34, 2839–2844 (2012)

    Article  CAS  Google Scholar 

  76. S. Drotleff, U. Lungwitz, M. Breunig, A. Dennis, T. Blunk, J. Tessmar, A. Göpferich, Biomimetic polymers in pharmaceutical and biomedical sciences. Eur. J. Pharm. Biopharm. 58, 385–407 (2004)

    Article  CAS  PubMed  Google Scholar 

  77. J.S. Temenoff, H. Park, E. Jabbari, D.E. Conway, T.L. Sheffield, C.G. Ambrose, A.G. Mikos, Thermally cross-linked oligo(poly(ethylene glycol) fumarate) hydrogels support osteogenic differentiation of encapsulated marrow stromal cells in vitro. Biomacromolecules 5, 5–10 (2004)

    Article  CAS  PubMed  Google Scholar 

  78. M. Hamidi, A. Azadi, P. Rafiei, Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 60, 1638–1649 (2008)

    Article  CAS  PubMed  Google Scholar 

  79. P.D. Benya, J.D. Shaffer, Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30, 215–224 (1982)

    Article  CAS  PubMed  Google Scholar 

  80. J. Liu, D.G. Kerns, Mechanisms of guided bone regeneration: a review. Open Dent. J. 8, 56–64 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. J. Elisseeff, K. Anseth, D. Sims, W. McIntosh, M. Randolph, R. Langer, Transdermal photopolymerization for minimally invasive implantation. Proc. Natl. Acad. Sci. 96, 3104–3107 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. M.M. Stevens, H.F. Qanadilo, R. Langer, S.V. Prasad, A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering. Biomaterials 25, 887–894 (2004)

    Article  CAS  PubMed  Google Scholar 

  83. P. Smeriglio, J.H. Lai, F. Yang, N. Bhutani, 3D hydrogel scaffolds for articular chondrocyte culture and cartilage generation. J. Vis. Exp. 104, e53085 (2015)

    Google Scholar 

  84. Y. Nakayama, T. Matsuda, Photocurable surgical tissue adhesive glues composed of photoreactive gelatin and poly(ethylene glycol) diacrylate. J. Biomed. Mater. Res. B Appl. Biomater. 48, 511–521 (1999)

    Article  CAS  Google Scholar 

  85. B.J. Klotz, D. Gawlitta, A.J.W.P. Rosenberg, J. Malda, F.P.W. Melchels, Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair. Trends Biotechnol. 34, 394–407 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. C.W. Patrick, R. Uthamanthil, E. Beahm, C. Frye, Animal models for adipose tissue engineering. Tissue Eng. B Rev. 14, 167–178 (2008)

    Article  CAS  Google Scholar 

  87. T. Manabe, H. Okino, M. Tanaka, T. Matsuda, In situ-formed, tissue-adhesive co-gel composed of styrenated gelatin and styrenated antibody: potential use for local anti-cytokine antibody therapy on surgically resected tissues. Biomaterials 25, 5867–5873 (2004)

    Article  CAS  PubMed  Google Scholar 

  88. S.B. Bruehlmann, J.B. Rattner, J.R. Matyas, N.A. Duncan, Regional variations in the cellular matrix of the annulus fibrosus of the intervertebral disc. J. Anat. 201, 159–171 (2002)

    Article  PubMed  PubMed Central  Google Scholar 

  89. A. Valiaev, D.W. Lim, S. Schmidler, R.L. Clark, A. Chilkoti, S. Zauscher, Hydration and conformational mechanics of single, end-tethered elastin-like polypeptides. J. Am. Chem. Soc. 130, 10939–10946 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. S.R. MacEwan, A. Chilkoti, Elastin-like polypeptides: biomedical applications of tunable biopolymers. Biopolymers 94, 60–77 (2010)

    Article  CAS  PubMed  Google Scholar 

  91. J.K. Chen, C.J. Chang, Fabrications and applications of stimulus-responsive polymer films and patterns on surfaces, a review. Materials 7, 805–875 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. D.T. Chang, R. Chai, R. DiMarco, S.C. Heilshorn, A.G. Cheng, Protein engineered hydrogel encapsulation for 3-D culture of murine cochlea. Otol. Neurotol. 36, 531–538 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  93. T. Kowalczyk, K. Hnatuszko-Konka, A. Gerszberg, A.K. Kononowicz, Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers. World J. Microbiol. Biotechnol. 30, 2141–2152 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. J.L. Frandsen, H. Ghandehari, Recombinant protein-based polymers for advanced drug delivery. Chem. Soc. Rev. 41, 2696–2706 (2012)

    Article  CAS  PubMed  Google Scholar 

  95. F. Liu, J. Mu, B. Xing, Recent advances on the development of pharmacotherapeutic agents on the basis of human serum albumin. Curr. Pharm. Des. 21, 1866–1888 (2015)

    Article  CAS  PubMed  Google Scholar 

  96. E. Mastria, A. Chilkoti, Genetically encoded ‘smart’ peptide polymers for biomedicine. MRS Bull. 39, 35–43 (2014)

    Article  CAS  Google Scholar 

  97. L. Mi, Molecular cloning of protein-based polymers. Biomacromolecules 7, 2099–2107 (2006)

    Article  CAS  PubMed  Google Scholar 

  98. D.L. Nettles, A. Chilkoti, L.A. Setton, Applications of elastin-like polypeptides in tissue engineering. Adv. Drug Deliv. Rev. 62, 1479–1485 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. J. Necas, L. Bartosikova, P. Brauner, J. Kolar, Hyaluronic acid (hyaluronan): a review. Vet. Med. 53, 397–411 (2008)

    Article  CAS  Google Scholar 

  100. P. Dahiya, R. Kamal, Hyaluronic acid: a boon in periodontal therapy. N. Am. J. Med. Sci. 5, 309–315 (2015)

    Article  Google Scholar 

  101. D. Vigetti, M. Voila, E. Karousou, G.D. Luca, A. Passi, Metabolic control of hyaluronan synthases. Matrix Biol. 35, 8–13 (2014)

    Article  CAS  PubMed  Google Scholar 

  102. T. Cornelia, M.B. James, Y. Arjang, T. Eva, Hyaluronan and RHAMM in wound repair and the “cancerization” of stromal tissues. Biomed. Res. Int. 2014, 1–18 (2014)

    Google Scholar 

  103. B.P. Chan, K.W. Leong, Scaffolding in tissue engineering: general approaches and tissue specific considerations. Eur. Spine J. 17, 467–479 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. K.H. Bae, J.J. Yoon, T.G. Park, Fabrication of hyaluronic acid hydrogel beads for cell encapsulation. Biotechnol. Prog. 22, 297–302 (2006)

    Article  CAS  PubMed  Google Scholar 

  105. J.M. Macdonald, J.P. Griffin, H. Kubota, L. Griffith, J. Fair, L.M. Reid, Bioartificial livers, in Cell Encapsulation Technology and Therapeutics, ed. by W.M. Kühtreiber, R.P. Lanza, W.L. Chick (Birkhäuser, Boston, 1999)

    Google Scholar 

  106. D.G. Wallace, J. Rosenblatt, Collagen gel systems for sustained delivery and tissue engineering. Adv. Drug Deliv. Rev. 55, 1631–1649 (2003)

    Article  CAS  PubMed  Google Scholar 

  107. C.M. Pérez, A. Panitch, J. Chmielewski, A collagen peptide-based physical hydrogel for cell encapsulation. Macromol. Biosci. 11, 1426–1431 (2011)

    Article  PubMed  CAS  Google Scholar 

  108. T. Luo, L. He, P. Theato, K.L. Kiick, Thermoresponsive self-assembly of nanostructures from a collagen-like peptide-containing diblock copolymer. Macromol. Biosci. 15, 111–123 (2015)

    Article  CAS  PubMed  Google Scholar 

  109. E. Engvall, Laminin variants: why, where and when? Kidney Int. 43, 2–6 (1993)

    Article  CAS  PubMed  Google Scholar 

  110. S. Suri, C.E. Schmidt, Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels. Acta Biomater. 5, 2385–2397 (2009)

    Article  CAS  PubMed  Google Scholar 

  111. A.C. de Luca, S.P. Lacour, W. Raffoul, P.G. Summa, Extracellular matrix components in peripheral nerve repair: how to affect neural cellular response and nerve regeneration. Neural Regen. Res. 9, 1943–1948 (2014)

    PubMed  PubMed Central  Google Scholar 

  112. D.N. Rockwood, R.C. Preda, T. Yucel, X. Wang, M.L. Lovett, D.L. Kaplan, Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6, 1612–1631 (2011)

    Article  CAS  PubMed  Google Scholar 

  113. M. Mondal, K. Trivedy, S.N. Kumar, V. Kumar, Scanning electron microscopic study on the cross sections of cocoon filament and degummed fiber of different breeds/hybrids of mulberry silkworm, Bombyx mori Linn. J. Entomol. 4, 362–370 (2007)

    Article  Google Scholar 

  114. The NIH Public Access Policy. Retrieve date: 23 Dec 2017. https://publicaccess.nih.gov/public_access_policy_implications_2012.pdf

  115. M.A. Collin, K. Mita, F. Sehnal, C.Y. Hayashi, Molecular evolution of lepidopteran silk proteins: insights from the ghost moth, Hepialus californicus. J. Mol. Evol. 70, 519–529 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. L. Römer, S. Thomas, The elaborate structure of spider silk: structure and function of a natural high performance fiber. Prion 2, 154–161 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  117. X. Wang, K. Jon, G.L. Gary, L.K. David, Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 29, 1054–1064 (2009)

    Article  CAS  Google Scholar 

  118. L. Gasperini, J.F. Mano, R.L. Reis, Natural polymers for the microencapsulation of cells. J. R. Soc. Interface 11(100), 20140817 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. W. Zhang, X. Wang, S. Wang, J. Zhao, L. Xu, C. Zhu, D. Zeng, J. Chen, Z. Zhang, D.L. Kaplan, X. Jiang, The use of injectable sonication-induced silk hydrogel for VEGF165 and BMP2 delivery for elevation of the maxillary sinus floor. Biomaterials 32, 9415–9424 (2012)

    Article  CAS  Google Scholar 

  120. M. Rinaudo, Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603–632 (2006)

    Article  CAS  Google Scholar 

  121. K.M. Vårum, M.H. Ottøy, O. Smidsrød, Acid hydrolysis of chitosans. Carbohydr. Polym. 46, 89–98 (2001)

    Article  Google Scholar 

  122. D.W. Lee, Engineered chitosans for drug detoxification preparation, characterization and drug uptake studies. Dissertation, University of Florida, 2004

    Google Scholar 

  123. P. de Vos, M.M. Faas, B. Strand, R. Calafiore, Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27, 5603–5617 (2006)

    Article  PubMed  CAS  Google Scholar 

  124. W. Zhang, X. Wenshui, Dissolution and stability of chitosan in a sodium hydroxide/urea aqueous solution. J. Appl. Polym. Sci. 131, 1–644 (2014)

    Google Scholar 

  125. C.Y. Chen, Y.C. Chung, Antibacterial effect of water-soluble chitosan on representative dental pathogens Streptococcus mutans and Lactobacilli brevis. J. Appl. Oral Sci. 20, 620–627 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. H.K. Yang, K.H. Yoon, Current status of encapsulated islet transplantation. J. Diabetes Complicat. 29, 737–743 (2015)

    Article  Google Scholar 

  127. K.Y. Lee, D.J. Mooney, Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106–126 (2013)

    Article  CAS  Google Scholar 

  128. F. Croisier, C. Jérôme, Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 49, 780–792 (2013)

    Article  CAS  Google Scholar 

  129. L. Yonekura, H. Sun, C. Soukoulis, I. Fisk, Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fiber by spray drying: technological characterization, storage stability and survival after in vitro digestion. J. Funct. Foods 6, 205–214 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. B. Jung, P. Theato, Chemical strategies for the synthesis of protein – polymer conjugates. Adv. Polym. Sci. 253, 37–70 (2014)

    Article  CAS  Google Scholar 

  131. A. Busilacchi, A. Gigante, M. Mattioli-Belmonte, S. Manzotti, R.A.A. Muzzarelli, Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydr. Polym. 98, 665–676 (2013)

    Article  CAS  PubMed  Google Scholar 

  132. H.L. Zhang, J.F. Li, B.P. Zhang, Microstructure and electrical properties of porous PZT ceramics derived from different pore-forming agents. Acta Mater. 55, 171–181 (2007)

    Article  CAS  Google Scholar 

  133. H. Li, A. Wijekoon, N.D. Leipzig, Encapsulated neural stem cell neuronal differentiation in fluorinated methacrylamide chitosan hydrogels. Ann. Biomed. Eng. 42, 1456–1469 (2014)

    Article  PubMed  Google Scholar 

  134. D.J. Kretlow, Injectable biomaterials for regenerating complex craniofacial tissues. Adv. Mater. 21, 3368–3393 (2015)

    Article  CAS  Google Scholar 

  135. S. Chaterji, K. Kwon, K. Park, Smart polymeric gels: redefining the limits of biomedical devices. Prog. Polym. Sci. 32, 1083–1122 (2008)

    Article  CAS  Google Scholar 

  136. S.R. Caliari, J.A. Burdick, A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. F. Reyes-Ortega, pH-responsive polymers: properties, synthesis and applications, in Smart 1651 Polymers and Their Applications, ed. by M.R.Aguilar, J.S. Román (Woodhead Publishing, Cambridge, UK 2014)

    Google Scholar 

  138. N.H. Romano, D. Sengupta, C. Chung, S.C. Heilshorn, Protein-engineered biomaterials: nanoscale mimics of the extracellular matrix. Biochim. Biophys. Acta 1810, 339–349 (2011)

    Article  CAS  PubMed  Google Scholar 

  139. R. Freter, H. Brickner, J. Fekete, M.M. Vickerman, K.E. Carey, Survival and implantation of Escherichia coli in the intestinal tract. Infect. Immun. 39, 686–703 (1983)

    CAS  PubMed  PubMed Central  Google Scholar 

  140. C.T.S. Wong Po Foo, J.S. Lee, W. Mulyasasmita, A. Parisi-Amon, S.C. Heilshorn, Two component protein-engineered physical hydrogels for cell encapsulation. Proc. Natl. Acad. Sci. 106, 22067–22072 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  141. S. Sart, T. Ma, Y. Li, Preconditioning stem cells for in vivo delivery. Biores. Open Access 3, 137–149 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. D. Maric, I. Maric, Y.H. Chang, J.L. Barker, Prospective cell sorting of embryonic rat neural stem cells and neuronal and glial progenitors reveals selective effects of basic fibroblast growth factor and epidermal growth factor on self-renewal and differentiation. J. Neurosci. 23, 240–251 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. A. Chaudhari, K. Vig, D. Baganizi, R. Sahu, S. Dixit, V. Dennis, S. Singh, S. Pillai, Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int. J. Mol. Sci. 17, 1974–2005 (2016)

    Article  PubMed Central  CAS  Google Scholar 

  144. R. Langer, Drug delivery and targeting. Nature 392, 5–10 (1998)

    CAS  PubMed  Google Scholar 

  145. J. Wu, Z.-G. Su, G.-H. Ma, A thermo- and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate. Int. J. Pharm. 315, 1–11 (2006)

    Article  CAS  PubMed  Google Scholar 

  146. I. Drachuk, M.K. Gupta, V.V. Tsukruk, Biomimetic coatings to control cellular function through cell surface engineering. Adv. Funct. Mater. 23, 4437–4453 (2013)

    Article  CAS  Google Scholar 

  147. H. Tan, K.G. Marra, Injectable, biodegradable hydrogels for tissue engineering applications. Materials 3, 1746–1767 (2010)

    Article  CAS  PubMed Central  Google Scholar 

  148. A. Bhattacharya, P. Ray, Introduction, in Polymer Grafting and Crosslinking, ed. by A. Bhattacharya, J.W. Rawlins, P. Ray (Wiley, Hoboken, 2008)

    Google Scholar 

  149. B. Balakrishnan, A. Jayakrishnan, Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials 26, 3941–3951 (2005)

    Article  CAS  PubMed  Google Scholar 

  150. G. Selestina, K. Vanja, Collagen- vs. gelatine-based biomaterials and their biocompatibility: review and perspectives, in Biomaterials Applications for Nanomedicine, ed. by R. Pignatello (In Tech, London, UK 2011)

    Google Scholar 

  151. Z. Xue, B. Cao, W. Zhao, J. Wang, T. Yu, T. Mu, Heterogeneous Nb-containing catalyst/N,N-dimethylacetamide–salt mixtures: novel and efficient catalytic systems for the dehydration of fructose. RSC Adv. 6, 1–3 (2016)

    Article  CAS  Google Scholar 

  152. B.R. Sharma, L. Naresh, N.C. Dhuldhoya, S.U. Merchant, U.C. Merchant, An overview on pectins. Times Food Process. J. 23, 44–51 (2006)

    Google Scholar 

  153. J. Sun, H. Tan, Alginate-based biomaterials for regenerative medicine applications. Materials 6, 1285–1309 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. S.H. Cho, S.M. Lim, D.K. Han, S.H. Yuk, G.I. Im, J.H. Lee, Time-dependent alginate/polyvinyl alcohol hydrogels as injectable cell carriers. J. Biomater. Sci. Polym. Ed. 20, 863–876 (2009)

    Article  CAS  PubMed  Google Scholar 

  155. D. Chitkara, A. Shikanov, N. Kumar, A.J. Domb, Biodegradable injectable in situ depot forming drug delivery systems. Macromol. Biosci. 6, 977–990 (2006)

    Article  CAS  PubMed  Google Scholar 

  156. F. Xiao, Y. Wei, L. Yang, X. Zhao, L. Tian, Z. Ding, S. Yuan, Y. Lou, F. Liu, Y. Wen, J. Li, H. Deng, B. Kang, Y. Mao, S. Lei, Q. He, J. Su, Y. Lu, T. Niu, J. Hou, M.J. Huang, A gene therapy for cancer based on the angiogenesis inhibitor, vasostatin. Gene Ther. 9, 1207–1213 (2002)

    Article  CAS  PubMed  Google Scholar 

  157. Q. Zhang, X. Lu, L. Zhao, Preparation of polyvinylidene fluoride (PVDF) hollow fiber hemodialysis membranes. Membranes (Basel) 4, 81–95 (2014)

    Article  CAS  Google Scholar 

  158. D. Rana, T. Matsuura, Surface modifications for antifouling membranes. Chem. Rev. 110, 2448–2471 (2010)

    Article  CAS  PubMed  Google Scholar 

  159. R.X. Zhang, T.Y. Liu, J. Vanneste, L. Poelmans, A. Sotto, X.L. Wang, B.V.D. Bruggen, A design of composite hollow fiber membranes with tunable performance and reinforced mechanical strength. J. Appl. Polym. Sci. 132, 41247 (2015)

    Google Scholar 

  160. M.S. Shoichet, S.R. Winn, Cell delivery to the central nervous system. Adv. Drug Deliv. Rev. 42, 81–102 (2000)

    Article  CAS  PubMed  Google Scholar 

  161. K.W. Broadhead, R. Biran, P.A. Tresco, Hollow fiber membrane diffusive permeability regulates encapsulated cell line biomass, proliferation, and small molecule release. Biomaterials 23, 4689–4699 (2002)

    Article  CAS  PubMed  Google Scholar 

  162. D.F. Emerich, H.C. Salzberg, Update on immunoisolation cell therapy for CNS diseases. Cell Transplant. 10, 3–24 (2001)

    Article  CAS  PubMed  Google Scholar 

  163. B. List, M.V. Gemmeren, Phase-transfer-catalyzed nucleophilic arylation of 3-aryloxindoles. Synfacts 10, 869–869 (2014)

    Article  Google Scholar 

  164. B. Zhang, L. Li, G. He, F. Gai, F. Zhang, Imidazolium functionalized polysulfone electrolyte membranes with varied chain structures: a comparative study. RSC Adv. 6, 31336–31346 (2016)

    Article  CAS  Google Scholar 

  165. R.E. Kesting, Phase inversion membranes. ACS Symp. Ser. 269, 131–164 (1985)

    Article  CAS  Google Scholar 

  166. B. Chakrabarty, A.K. Ghoshal, M.K. Purkait, Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive. J. Membr. Sci. 315, 36–47 (2008)

    Article  CAS  Google Scholar 

  167. C.A. Smolders, A.J. Reuvers, R.M. Boom, I.M. Wienk, Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. J. Membr. Sci. 73, 259–275 (1992)

    Article  CAS  Google Scholar 

  168. P. Vandezande, L.E.M. Gevers, I.F. Vankelecom, Solvent resistant nanofiltration: separating on a molecular level. Chem. Soc. Rev. 37, 365–405 (2008)

    Article  CAS  PubMed  Google Scholar 

  169. R. Sengupta, S. Chakraborty, S. Bandyopadhyay, S. Dasgupta, R. Mukhopadhyay, R.K. Auddy, A.S. Deuri, A short review on rubber/clay nanocomposites with emphasis on mechanical properties. Engineering 47, 21–25 (2007)

    Google Scholar 

  170. T. Böddeker, Membranes and membrane processes. J. Membr. Sci. 31, 343–344 (1987)

    Article  Google Scholar 

  171. R.M. Boom, I.M. Wienk, T.V.D. Boomgaard, C.A. Smolders, Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive. J. Membr. Sci. 73, 277–292 (1992)

    Article  CAS  Google Scholar 

  172. H.T. Yeo, S.T. Lee, M.J. Han, Role of a polymer additive in casting solution in preparation of phase inversion polysulfone membranes. J. Chem. Eng. Jpn. 33, 180–184 (2000)

    Article  CAS  Google Scholar 

  173. T. Jung, B. Joon, K.Y. Kim, B. Rhee, Effect of molecular weight of polymeric additives on formation, permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes. J. Membr. Sci. 243, 45–57 (2004)

    Article  CAS  Google Scholar 

  174. C. Guo, L. Zhou, J. Lv, Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym. Polym. Compos. 21, 449–456 (2013)

    CAS  Google Scholar 

  175. A. Chwojnowski, C. Wojciechowski, K. Dudzinski, E. Lukowska, Polysulphone and polyethersulphone hollow fiber membranes with developed inner surface as material for biomedical applications. Biocybern. Biomed. Eng. 29, 47–59 (2009)

    Google Scholar 

  176. W.H. De Jong, P.J. Borm, Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomedicine 3, 133–149 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  177. A. Munin, F. Edwards-Lévy, Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics 3, 793–832 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. P. Zucca, R. Fernandez-Lafuente, E. Sanjust, Agarose and its derivatives as supports for enzyme immobilization. Molecules 21, 1577–1603 (2016)

    Article  PubMed Central  CAS  Google Scholar 

  179. S. Sakai, K. Kawabata, S. Tanaka, N. Harimoto, I. Hashimoto, C. Mu, K. Kawakam, Subsieve size agarose capsules enclosing ifosfamide-activating cells: a strategy toward chemotherapeutic targeting to tumors. Mol. Cancer Ther. 4, 1786–1790 (2005)

    Article  CAS  PubMed  Google Scholar 

  180. M.K. Moghaddam, S.M. Mortazavi, T. Khayamian, Preparation of calcium alginate microcapsules containing n-nonadecane by a melt coaxial electrospray method. J. Electrost. 73, 56–64 (2015)

    Article  CAS  Google Scholar 

  181. M. Whelehan, I.W. Marison, Microencapsulation using vibrating technology. J. Microencapsul. 28, 669–688 (2011)

    Article  CAS  PubMed  Google Scholar 

  182. V. Shenoy, J. Rosenblatt, J. Vincent, A. Gaigalas, Measurement of mesh sizes in concentrated rigid and flexible polyelectrolyte solutions by an electron spin resonance technique. Macromolecules 28, 525–530 (1995)

    Article  CAS  Google Scholar 

  183. H. Uludag, V. De, P.A. Tresco, Technology of mammalian cell encapsulation. Adv. Drug Deliv. Rev. 42, 29–64 (2000)

    Article  CAS  PubMed  Google Scholar 

  184. G.M. Grass, S.A. Sweetana, In vitro measurement of gastrointestinal tissue permeability using a new diffusion cell. Pharm. Res. 5, 372–376 (1988)

    Article  CAS  PubMed  Google Scholar 

  185. S. Vasudevan, Membranes and diaphragms for electrochemical processes. Res. J. Chem. Sci. 3, 1–3 (2013)

    CAS  Google Scholar 

  186. O. Pakhomov, J. Honiger, E. Gouin, R. Cariolet, G. Reach, S. Darquy, Insulin treatment of mice recipients preserves beta-cell function in porcine islet transplantation. Cell Transplant. 11, 721–728 (2002)

    Article  PubMed  Google Scholar 

  187. Y. Mori, M. Watanabe, S. Nakagawa, Y. Asawa, S. Nishizawa, K. Okubo, H. Saijo, S. Nagata, Y. Fujihara, T. Takato, K. Hoshi, Hollow fiber module applied for effective proliferation and harvest of cultured chondrocytes. Mater. Sci. Appl. 4, 62–67 (2013)

    Google Scholar 

  188. G.D. Nicodemus, S.J. Bryant, Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. 14, 149–165 (2008)

    Article  CAS  Google Scholar 

  189. V.G. Kadajji, G.V. Betageri, Water soluble polymers for pharmaceutical applications. Polymers 3, 1972–2009 (2011)

    Article  CAS  Google Scholar 

  190. R.M. Olabisi, Cell microencapsulation with synthetic polymers. J. Biomed. Mater. Res. A 103, 846–859 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. F.J. Wu, J.R. Friend, A. Lazar, H.J. Mann, R.P. Remmel, F.B. Cerra, W.S. Hu, Hollow fiber bioartificial liver utilizing collagen-entrapped porcine hepatocyte spheroids. Biotechnol. Bioeng. 52, 34–44 (1996)

    Article  CAS  PubMed  Google Scholar 

  192. A. Lathuilière, N. Mach, B.L. Schneider, Encapsulated cellular implants for recombinant protein delivery and therapeutic modulation of the immune system. Int. J. Mol. Sci. 16, 10578–10600 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. K. Leena-Stiina, Cell encapsulation in hydrogels for long-term protein delivery and tissue engineering applications. Dissertation, University of Helsinki, 2014

    Google Scholar 

  194. I.M. El-Sherbiny, M.H. Yacoub, Hydrogel scaffolds for tissue engineering: progress and challenges. Glob. Cardiol. Sci. Pract. 3, 316–342 (2013)

    Google Scholar 

  195. M.N. Singh, K.S.Y. Hemant, M. Ram, H.G. Shivakumar, Microencapsulation: a promising technique for controlled drug delivery. Res. Pharm. Sci. 5, 65–77 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  196. N.V. Jyothi, P.M. Prasanna, S.N. Sakarkar, K.S. Prabha, P.S. Ramaiah, G.Y. Srawan, Microencapsulation techniques, factors influencing encapsulation efficiency. J. Microencapsul. 27, 187–197 (2010)

    Article  CAS  PubMed  Google Scholar 

  197. M. Qi, Transplantation of encapsulated pancreatic islets as a treatment for patients with type 1 diabetes mellitus. Adv. Med. 2014, 1–15 (2014)

    Article  Google Scholar 

  198. H. Nur, V.T. Pinkrah, J.C. Mitchell, L.S. Benée, M.J. Snowden, Synthesis and properties of polyelectrolyte microgel particles. Adv. Colloid Interf. Sci. 158, 15–20 (2010)

    Article  CAS  Google Scholar 

  199. F. Lim, A.M. Sun, Microencapsulated islets as bioartificial endocrine pancreas. Science 210, 908–1110 (1980)

    Article  CAS  PubMed  Google Scholar 

  200. V. Vaithilingam, B.E. Tuch, Islet transplantation and encapsulation: an update on recent developments. Rev. Diabet. Stud. 8, 51–67 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  201. A. King, B. Strand, A.-M. Rokstad, B. Kulseng, A. Andersson, G. Skjåk-Braek, S. Sandler, Improvement of the biocompatibility of alginate/poly-l-lysine/alginate microcapsules by the use of epimerized alginate as a coating. J. Biomed. Mater. Res. A 64, 533–539 (2003)

    Article  PubMed  CAS  Google Scholar 

  202. M. Peirone, C.J. Ross, G. Hortelano, J.L. Brash, P.L. Chang, Encapsulation of various recombinant mammalian cell types in different alginate microcapsules. Biomed. Mater. Res. 42, 587–596 (1998)

    Article  CAS  Google Scholar 

  203. C.J. King, Spray drying food liquids and the retention of volatiles. Chem. Eng. Prog. 6, 33–39 (1990)

    Google Scholar 

  204. D.V.S. Elezabeth, P. Ramachandran, Microbiological investigation on Vetiveria lawsonii. Int J Pharm. Bio. Sci 6, 472–475 (2015)

    Google Scholar 

  205. F.T. Gentile, E.J. Doherty, D.H. Rein, M.S. Shoichet, S.R. Winn, Polymer science for macroencapsulation of cells for central nervous system transplantation. React. Polym. 25, 207–227 (1995)

    Article  CAS  Google Scholar 

  206. B. Dupuy, C. Cadic, H. Gin, C. Baquey, B. Dufy, D. Ducassou, Microencapsulation of isolated pituitary cells by polyacrylamide micro latex coagulation on agarose beads. Biomaterials 12, 493–506 (1991)

    Article  CAS  PubMed  Google Scholar 

  207. E.N. Brown, M.R. Kessler, N.R. Sottos, S.R. White, In situ poly(urea-formaldehyde)microencapsulation of dicyclopentadiene. J. Microencapsul. 20, 719–730 (2003)

    Article  CAS  PubMed  Google Scholar 

  208. A. Tomei, V. Manzoli, C. Fraker, J. Giraldo, D. Velluto, M. Najjar, M. Najjar, A. Pileggi, R.D. Molano, C. Ricordi, C.L. Stabler, J.A. Hubbell, Device design and materials optimization of conformal coating for islets of Langerhans. Proc. Natl. Acad. Sci. 111, 10514–10519 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. K.P. Peterson, C.M. Peterson, E.J. Pope, Silica sol-gel encapsulation of pancreatic islets. Proc. Soc. Exp. Biol. Med. 218, 365–369 (1998)

    Article  CAS  PubMed  Google Scholar 

  210. M.F. Desimone, G.S. Alvarez, M.L. Foglia, L.E. Diaz, Development of sol-gel hybrid materials for whole cell immobilization. Recent Pat. Biotechnol. 3, 55–60 (2009)

    Article  CAS  PubMed  Google Scholar 

  211. G.S. Alvarez, F.L. Pieckenstain, M.F. Desimone, M.J. Estrella, O. Ruiz, B. Aires, Evaluation of sol-gel silica matrices as inoculant carriers for Mesorhizobium spp. Cells, in Current Research Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, ed. By A. Mendez-Vilas (Formatex, Badajoz, Spain, 2010)

    Google Scholar 

  212. H. Almeida, M.H. Amaral, P. Lobão, Temperature and pH stimuli-responsive polymers and their applications in controlled and self-regulated drug delivery. J. Appl. Pharm. Sci. 02, 1–10 (2012)

    Google Scholar 

  213. L. Klouda, A.G. Mikos, Thermoresponsive hydrogels in biomedical applications – a review. Eur. J. Pharm. Biopharm. 68, 34–45 (2008)

    Article  CAS  PubMed  Google Scholar 

  214. B. Mukherjee, Nanosize drug delivery system. Curr. Pharm. Biotechnol. 14(15), 1221 (2013)

    Article  CAS  PubMed  Google Scholar 

  215. J.P. Weick, Functional properties of human stem cell-derived neurons in health and disease. Stem Cells Int. 2016, 1–10 (2016)

    Google Scholar 

  216. J.M. Pollok, J.F. Begemann, P.M. Kaufmann, D. Kluth, C.E. Broelsch, J.R. Izbicki, X. Rogiers, Long-term insulin-secretory function of islets of Langerhans encapsulated with a layer of confluent chondrocytes for immunoisolation. Pediatr. Surg. Int. 15, 164–167 (1999)

    Article  CAS  PubMed  Google Scholar 

  217. J.M. Pollok, M. Lorenzen, P.A. Kölln, E. Török, P.M. Kaufmann, D. Kluth, K.H. Bohuslavizki, M. Gundlach, X. Rogiers, In vitro function of islets of Langerhans encapsulated with a membrane of porcine chondrocytes for immunoisolation. Dig. Surg. 18, 204–210 (2001)

    Article  CAS  PubMed  Google Scholar 

  218. D.B. Flagfeldt, V. Siewers, L. Huang, J. Nielsen, Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae. Yeast 26, 545–551 (2009)

    Article  PubMed  CAS  Google Scholar 

  219. Y. Ma, Y. Zhang, Y. Wang, Q. Wang, M. Tan, Y. Liu, X. Ma, Study of the effect of membrane thickness on microcapsule strength, permeability, and cell proliferation. J. Biomed. Mater. Res. A 101, 1007–1015 (2013)

    Article  PubMed  CAS  Google Scholar 

  220. C.A. Crooks, J.A. Douglas, R.L. Broughton, M.V. Sefton, Microencapsulation of mammalian cells in a HEMA-MMA copolymer: effects on capsule morphology and permeability. J. Biomed. Mater. Res. 24, 1241–1262 (1990)

    Article  CAS  PubMed  Google Scholar 

  221. M. Brissova, I. Lacík, A.C. Powers, A.V. Anilkumar, T. Wang, Control and measurement of permeability for design of microcapsule cell delivery system. J. Biomed. Mater. Res. 39, 61–70 (1998)

    Article  CAS  PubMed  Google Scholar 

  222. M.A.J. Mazumder, N.A.D. Burke, F. Shen, M.A. Potter, H.D.H. Stöver, Core cross linked alginate microcapsules for cell encapsulation. Biomacromolecules 10, 1365–1373 (2009)

    Article  CAS  PubMed  Google Scholar 

  223. E. Arkhangelsky, V. Gitis, Effect of transmembrane pressure on rejection of viruses by ultrafiltration membranes. Sep. Purif. Technol. 62, 619–628 (2008)

    Article  CAS  Google Scholar 

  224. T.A. Desai, D. Hansfordb, M. Ferraric, Characterization of micromachined silicon membranes for immunoisolation and bioseparation applications. J. Membr. Sci. 159, 221–231 (1999)

    Article  CAS  Google Scholar 

  225. H.W. Matthew, S.O. Salley, W.D. Peterson, M.D. Klein, Complex coacervate microcapsules for mammalian cell culture and artificial organ development. Biotechnol. Prog. 9, 510–519 (1993)

    Article  CAS  PubMed  Google Scholar 

  226. M.A. Jafar Mazumder, N.A.D. Burke, T. Chu, F. Shen, M.A. Potter, H.D.H. Stöver, Synthetic reactive polyelectrolytes for cell encapsulation. ACS Polym. Deliv. Ther. 7, 131–159 (2010)

    Article  CAS  Google Scholar 

  227. K.K. Liu, D.R. Williams, B.J. Briscoe, Compressive deformation of a single microcapsule. Phys. Rev. E 54, 6673–6680 (1996)

    Article  CAS  Google Scholar 

  228. M.W. Keller, N.R. Sottos, Mechanical properties of microcapsules used in a self-healing polymer. Exp. Mech. 46, 725–733 (2006)

    Article  CAS  Google Scholar 

  229. W. Wang, E.Q. Wang, J.P. Balthasar, Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther. 84, 548–558 (2008)

    Article  CAS  PubMed  Google Scholar 

  230. S. Razin, D. Yogev, Y. Naot, Molecular biology and pathogenicity of mycoplasmas. Microbiol. Mol. Biol. Rev. 62, 1094–1156 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  231. C.A.J. Janeway, Responses to alloantigens and transplant rejection, in Immunobiology: The Immune System in Health and Disease, 5th edn. (Garland Science, Newyork, USA, 2001)

    Google Scholar 

  232. R. Krishnan, M. Alexander, L. Robles, C.E. Foster, J.R.T. Lakey, Islet and stem cell encapsulation for clinical transplantation. Rev. Diabet. Stud. 11, 84–101 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  233. L.H. Granicka, A. Weryński, J. Kawiak, Polypropylene silanized membranes for immunoisolation. Sep. Purif. Technol. 41, 221–230 (2005)

    Article  CAS  Google Scholar 

  234. J.M. Anderson, D.T. Rodriguez, D.T. Chang, Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008)

    Article  CAS  PubMed  Google Scholar 

  235. P. de Vos, A. Andersson, S.K. Tam, M.M. Faas, J.P. Halle, Advances and barriers in mammalian cell encapsulation for treatment of diabetes. Immunol. Endocr. Metab. Agents 6, 139–153 (2006)

    Article  Google Scholar 

  236. U. Zimmermann, S. Mimietz, H. Zimmermann, M. Hillgärtner, H. Schneider, J. Ludwig, C. Hasse, A. Haase, M. Rothmund, G.J. Fuhr, Hydrogel-based non-autologous cell and tissue therapy. BioTechniques 29, 564–572 (2000)

    Article  CAS  PubMed  Google Scholar 

  237. B.L. Strand, A.E. Coron, G. Skjak-Braek, Current and future perspectives on alginate encapsulated pancreatic islet. Stem Cells Transl. Med. 6, 1053–1058 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. J.M. Anderson, Biological responses to materials. Annu. Rev. Mater. Res. 31, 81–110 (2001)

    Article  CAS  Google Scholar 

  239. A. Singh, T. Wyant, C. Anaya-Bergman, J. Aduse-Opoku, J. Brunner, M.L. Laine, M.A. Curtis, J.P. Lewis, The capsule of Porphyromonas gingivalis leads to a reduction in the host inflammatory response, evasion of phagocytosis, and increase in virulence. Infect. Immun. 79, 4533–4542 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. P. Sharma, A.B. Jha, R.S. Dubey, M. Pessarakli, Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 1–26 (2012)

    Article  CAS  Google Scholar 

  241. D.A. Christian, C.A. Hunter, Particle-mediated delivery of cytokines for immunotherapy. Immunotherapy 18, 1199–1216 (2013)

    Google Scholar 

  242. M. Qi, Transplantation of encapsulated pancreatic islets as a treatment for patients with type I diabetes mellitus. Adv. Med. 14, 1–15 (2014)

    Article  Google Scholar 

  243. D.G. Birch, F.Q. Liang, Age-related macular degeneration: a target for nanotechnology derived medicines. Int. J. Nanomedicine 2, 65–77 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. J.C. Kraft, J.P. Freeling, Z. Wang, R.J. Ho, Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J. Pharm. Sci. 103, 29–52 (2014)

    Article  CAS  PubMed  Google Scholar 

  245. J.M. Morais, F. Papadimitrakopoulos, D.J. Burgess, Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J. 12, 188–196 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. P. de Vos, H.A. Lazarjani, D. Poncelet, M.M. Fass, Polymers in cell encapsulation from an enveloped cell perspective. Adv. Drug Deliv. Rev. 67, 15–34 (2014)

    Article  PubMed  CAS  Google Scholar 

  247. G. Orive, A.R. Gascón, R.M. Hernández, M. Igartua, J.L. Pedraz, Cell microencapsulation technology for biomedical purposes: novel insights and challenges. Trends Pharmacol. Sci. 24, 207–210 (2003)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia for providing excellent research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Abu Jafar Mazumder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Waheed, A., Mazumder, M.A.J., Al-Ahmed, A., Roy, P., Ullah, N. (2019). Cell Encapsulation. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Biopolymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95990-0_4

Download citation

Publish with us

Policies and ethics