Skip to main content

Porous Coordination Polymers

  • Reference work entry
  • First Online:
Book cover Functional Polymers

Abstract

This chapter discusses about porous coordination polymers (PCPs) and/or metal-organic frameworks and mainly emphasizes the historical background, their synthesis, structural properties, and potential applications (mainly gas storage). We organize the gas storage application of PCPs into three sections – H2, CH4, and CO2 storage – in order to highlight the important concerns we must know before designing new functional MOFs. In the case of H2 storage application of MOFs, we have discussed four important parameters which effect their successful design for H2 storage application with examples from the literature, such as (1) H2 adsorption condition (pressure and temperature), (2) inclusion of reducing agents in the MOF, (3) effect of structural defect in MOF, and (4) effect of adsorption sites in the MOF structure (examples: MOF-177, Pt/AC/IRMOF-8, UiO-66(Zr), Yb-BTC). Further, we highlight the investigation results of methane storage application of MOFs, with appropriate examples such as PCN-14, M2(dhtp) [M: open metal = Mg, Mn, Co, Ni, Zn; dhtp = 2,5-dihydroxyterephthalate], and UTSA-20. And then we discuss more details of various factors which we must take care before the successful design and synthesis of new MOFs for more CO2 storage such as: (1) the effect of open metal sites in the MOF, (2) the effect of the pore size and surface area of the framework, (3) effect of doping metals, (4) effect of amine functionalization in MOFs, (5) effect of nitrogen-rich MOFs, (6) effect of water molecules, with some important examples such as M-MOF-74 (M = Mg, Co, Fe, Zn, Ni), HKUST-1, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) S. Kitagawa, R. Kitaura, S.I. Noro, Functional porous coordination polymers. Angew. Chemie Int. Ed. 43(18), 2334–2375 (2004). (b) N.L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe, O.M. Yaghi, Rod packings and metal−organic frameworks constructed from rod-shaped secondary building units, J. Am. Chem. Soc. 127, 1504–1518 (2005) (c) O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials. Nature, 423, 705–714 (2003) (d) M. Eddaoudi, D.B. Moler, H.L. Li, B.L. Chen, T.M. Reineke, M. O’Keeffe, O.M. Yaghi, Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 34, 319–330 (2001) (d) S.R. Batten, R. Robson, Interpenetrating nets: Ordered, periodic entanglement. Angew. Chem. Int. Ed. 37, 1460–1494 (1998) (e) W.L. Leong, J.J. Vittal, One-dimensional coordination polymers: Complexity and diversity in structures, properties, and applications. Chem. Rev. 111(2), 688–764 (2010) (f) S.R. Batten, S.M. Neville, D.R. Turner, Coordination Polymers: Design, Analysis and Application (Royal Society of Chemistry, Cambridge, 2009) (g) M. O’Keeffe, O.M. Yaghi, Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 112, 675–702 (2012)

    Google Scholar 

  2. (a) C. Janiak, J.K. Vieth, MOFs, MILs and more: Concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 34, 2366–2388 (2010) (b) K. Biradha, A. Ramanan, J.J. Vittal, Coordination polymers versus metal−organic frameworks. Cryst. Growth Des. 9(7), 2969–2970 (2009)

    Google Scholar 

  3. A.F. Wells, Three-Dimensional Nets and Polyhedra (Wiley, New York, 1977)

    Google Scholar 

  4. (a) B.F. Hoskins, R. Robson, Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 111(15), 5962–5964 (1989) (b) B.F. Hoskins, R. Robson, Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4″,4″′-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J. Am. Chem. Soc. 112(4), 1546–1554 (1990)

    Google Scholar 

  5. R. Robson, A net-based approach to coordination polymers. J. Chem. Soc. Dalton Trans., 3735–3744 (2000)

    Google Scholar 

  6. J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives (Wiley-VCH, Weinheim, 1995)

    Book  Google Scholar 

  7. (a) G.R. Desiraju, The Crystal as a Supramolecular Entity Perspectives in Supramolecular Chemistry (Wiley, New Jersey, 1996) (b) D. Dunitz, A. Gavezzotti, Supramolecular synthons: Validation and ranking of intermolecular interaction energies. Cryst. Growth Des. 12, 5873–5877 (2012)

    Google Scholar 

  8. G.M.J. Schmidt, Photodimerization in the solid-state. Pure Appl. Chem. 27, 647–678 (1971)

    Article  CAS  Google Scholar 

  9. G.R. Desiraju, Crystal engineering: A holistic view. Angew. Chem. Int. Ed. 46, 8342–8356 (2007)

    Article  CAS  Google Scholar 

  10. J. Maddox, Crystals from first principles. Nature 335, 201 (1988)

    Article  Google Scholar 

  11. K. Biradha, M. Sarkar, L. Rajput, Crystal engineering of coordination polymers using 4,4′-bipyridine as a bond between transition metal atoms. Chem. Commun., 4169–4179 (2006)

    Google Scholar 

  12. B. Moulton, M.J. Zaworotko, From molecules to crystal engineering: Supramolecular isomerism and polymorphism in network solids. Chem. Rev. 101(6), 1629–1658 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. N.N. Adarsh, P. Dastidar, Coordination polymers: What has been achieved in going from innocent 4, 4′-bipyridine to bis-pyridyl ligands having a non-innocent backbone? Chem. Soc. Rev. 41(8), 3039–3060 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. M. Nagarathinam, A.M.P. Peedikakkal, J.J. Vittal, Stacking of double bonds for photochemical [2+2] cycloaddition reactions in the solid state. Chem. Commun. (42), 5277–5288 (2008)

    Google Scholar 

  15. O.M. Yaghi, Reticular chemistry – Construction, properties, and precision reactions of frameworks. J. Am. Chem. Soc. 138(48), 15507–15509 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. M. Witman, S. Ling, A. Gladysiak, K.C. Stylianou, B. Smit, B. Slater, M. Haranczyk, Rational design of a low-cost, high-performance metal–organic framework for hydrogen storage and carbon capture. J. Phys. Chem. C 121(2), 1171–1181 (2017)

    Article  CAS  Google Scholar 

  17. B.-Q. Ma, K.L. Mulfort, J.T. Hupp, Microporous pillared paddle-wheel frameworks based on mixed-ligand coordination of zinc ions. Inorg. Chem. 44(14), 4912–4914 (2005)

    Article  CAS  PubMed  Google Scholar 

  18. A.M.P. Peedikakkal, Y. M, R.-G. Song, S. Xiong, J.J.V. Gao, Influence of the anions on the formation of coordination polymeric structures of Co(II) with trans-1,2-bis(4-pyridyl)ethylene. Eur. J. Inorg. Chem. 2010, 3856–3865 (2010)

    Article  CAS  Google Scholar 

  19. A.M.P. Peedikakkal, J.J. Vittal, Solid-state photochemical behavior of triple-stranded ladder coordination polymer. Inorg. Chem. 49, 10–12 (2010)

    Article  CAS  PubMed  Google Scholar 

  20. A.M.P. Peedikakkal, L.L. Koh, J.J. Vittal, Photodimerization of a 1D hydrogen-bonded zwitter-ionic Lead(II) complex and its isomerization in solution. Chem. Commun. (4), 441–443 (2008)

    Google Scholar 

  21. X.–.M. Chen, M.–.L. Tonga, Solvothermal in situ metal/ligand reactions: A new bridge between coordination chemistry and organic synthetic chemistry. Acc. Chem. Res. 40, 162–170 (2007)

    Article  PubMed  CAS  Google Scholar 

  22. S.S.-Y. Chui, S.M.-F. Los, J.P.H. Charmant, A.G. Open, I.D. Williams, A chemically functionalizable nanoporous material. Science 238, 1148–1150 (1999)

    Article  Google Scholar 

  23. D.M.P. Mingos, D.R. Baghurst, Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem. Soc. Rev. 20, 1–47 (1991)

    Article  CAS  Google Scholar 

  24. N. Stock, T. Bein, High-throughput synthesis of phosphonate based inorganicorganic hybrid compounds under hydrothermal conditions. Angew. Chem. Int. Ed. 43, 749–752 (2004)

    Article  CAS  Google Scholar 

  25. (a) S.R. Batten, Topology of interpenetration. Cryst. Eng. Comm. 3, 67–73 (2001) (b) M. O’Keeffe, M. Eddaoudi, H. Li, T. Reineke, O.M. Yaghi, Frameworks for extended solids: Geometrical design principles. J. Solid State Chem. 152, 3–20 (2000) (c) M. O’Keeffe, M.A. Peskov, S.J. Ramsden, O.M. Yaghi, The reticular chemistry structure resource. (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 41, 1782–1789 (2008) (d) I.A. Baburin, V.A. Blatov, L. Carlucci, G. Ciani, D.M. Proserpio, Interpenetrated three-dimensional networks of hydrogen-bonded organic species: A systematic analysis of the Cambridge structural database. Cryst. Growth Des. 8, 519–539 (2008)

    Google Scholar 

  26. S.R. Batten, B.F. Hoskins, R. Robson, Interdigitation, interpenetration and intercalation in layered cuprous tricyanomethanide derivatives. Chem. Eur. J. 6, 156–161 (2000)

    Article  CAS  PubMed  Google Scholar 

  27. M.J. Manos, M.S. Markoulides, C.D. Malliakas, G.S. Papaefstathiou, N. Chronakis, M.G. Kanatzidis, P.N. Trikalitis, A.J. Tasiopoulos, A highly porous interpenetrated metal–organic framework from the use of a novel nanosized organic linker. Inorg. Chem. 50, 11297–11299 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. J.L.C. Rowsell, O.M. Yaghi, Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal−organic frameworks. J. Am. Chem. Soc. 128, 1304–1315 (2006)

    Article  CAS  PubMed  Google Scholar 

  29. S. Ma, D. Sun, M.W. Ambrogio, J.A. Fillinger, S. Parkin, H.-C. Zhou, Framework-catenation isomerism in metal−organic frameworks and its impact on hydrogen uptake. J. Am. Chem. Soc. 129, 1858–1859 (2007)

    Article  CAS  PubMed  Google Scholar 

  30. M.J. Zawortko, Superstructural diversity in two dimensions: Crystal engineering of laminated solids. Chem. Commun., 1–9 (2001)

    Google Scholar 

  31. H. Gudbjartson, K. Biradha, K.M. Poirier, M.J. Zaworotko, Novel nanoporous coordination polymer sustained by self-assembly of T-shaped moieties. J. Am. Chem. Soc. 121(11), 2599–2600 (1999)

    Article  CAS  Google Scholar 

  32. B. Fernández, J.M. Seco, J. Cepeda, A.J. Calahorro, A. Rodríguez-Diéguez, Tuning the porosity through interpenetration of azobenzene-4,4′-dicarboxylate-based metal–organic frameworks. Cryst Eng Comm 17, 7636–7645 (2015)

    Article  CAS  Google Scholar 

  33. S. Furukawa, J. Reboul, S. Diring, K. Sumida, S. Kitagawa, Structuring of metal–organic frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev. 43, 5700–5734 (2014)

    Article  CAS  PubMed  Google Scholar 

  34. M. Fujita, Y.J. Kwon, S. Washizu, K. Ogura, Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4'-bipyridine. J. Am. Chem. Soc. 116, 1151–1152 (1994)

    Article  CAS  Google Scholar 

  35. O.M. Yaghi, G. Li, H. Li, Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703–706 (1995)

    Article  CAS  Google Scholar 

  36. M. Kondo, T. Yoshitomi, K. Seki, H. Matsuzaka, S. Kitagawa, Three-dimensional framework with channeling cavities for small molecules: {[M2(4,4′-bpy)3(NO3)4]·xH2O}n (M Co, Ni, Zn)S. Angew. Chem. Int. Ed. Engl. 36, 1725–1727 (1997)

    Article  CAS  Google Scholar 

  37. H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)

    Article  CAS  Google Scholar 

  38. K. Uemura, R. Matsuda, S. Kitagawa, Flexible microporous coordination polymers. J. Solid State Chem. 178, 2420–2429 (2005)

    Article  CAS  Google Scholar 

  39. H. Li, M. Eddaoudi, T.L. Groy, O.M. Yaghi, Establishing microporosity in open metal−organic frameworks: Gas sorption isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate). J. Am. Chem. Soc. 120, 8571–8572 (1998)

    Article  CAS  Google Scholar 

  40. H.K. Chae, D.Y. Siberio-Pérez, J. Kim, Y.B. Go, M. Eddaoudi, A.J. Matzger, M. O’Keeffe, O.M. Yaghi, A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004)

    Article  CAS  PubMed  Google Scholar 

  41. H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.O. Yazaydin, R.Q. Snurr, M. O’Keeffe, J. Kim, O.M. Yaghi, Ultra-high porosity in metal-organic frameworks. Science 329, 424–428 (2010)

    Article  CAS  PubMed  Google Scholar 

  42. S.-Y. Zhang, Z. Zhang, M.J. Zaworotko, Topology, chirality and interpenetration in coordination polymers. Chem. Commun. 49, 9700–9703 (2013)

    Article  CAS  Google Scholar 

  43. R.R. Yun, Z.Y. Lu, Y. Pan, X.Z. You, J.F. Bai, Formation of a metal–organic framework with high surface area and gas uptake by breaking edges off truncated cuboctahedral cages. Angew. Chem. Int. Ed. 52, 11282 (2013)

    Article  CAS  Google Scholar 

  44. A.P. Nelson, O.K. Farha, K.L. Mulfort, J.T. Hupp, Supercritical processing as a route to high internal surface areas and permanent microporosity in metal−organic framework materials. J. Am. Chem. Soc. 131(2), 458–460 (2008)

    Article  CAS  Google Scholar 

  45. H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.Ö. Yazaydın, R.Q. Snurr, M. O’Keeffe, J. Kim, O.M. Yaghi, Ultrahigh porosity in metal-organic frameworks. Science 329, 424–428 (2010)

    Article  CAS  PubMed  Google Scholar 

  46. O.K. Farha, A.Ö. Yazaydın, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2, 944–948 (2010)

    Article  CAS  PubMed  Google Scholar 

  47. D. Yuan, D. Zhao, D. Sun, H.-C. Zhou, An Isoreticular series of metal–organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem. Int. Ed. 49, 5357–5361 (2010)

    Article  CAS  Google Scholar 

  48. (a) Z. Yang, Y. Xia, R. Mokaya, Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J. Am. Chem. Soc. 129, 1673–1679 (2007) (b) S.K. Bhatia, A.L. Myers, Optimum conditions for adsorptive storage, Langmuir, 22, 1688–1700 (2006) (c) Y. Ren, G.H. Chia, Z. Gao, Metal–organic frameworks in fuel cell technologies. Nanotoday 8, 577–597 (2013)

    Google Scholar 

  49. T.L. Easun, F. Moreau, Y. Yan, S. Yang, M. Schröder, Structural and dynamic studies of substrate binding in porous metal–organic frameworks. Chem. Soc. Rev. 46, 239–274 (2017)

    Article  CAS  PubMed  Google Scholar 

  50. M.P. Suh, H.J. Park, T.K. Prasad, D.-W. Lim, Hydrogen storage in metal–organic frameworks. Chem. Rev. 112, 782–835 (2012)

    Article  CAS  PubMed  Google Scholar 

  51. (a) B. Sakintuna, F. Lamari-Darkrimb, M. Hirscher, Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydrogen Energy 32, 1121–1140 (2007) (b) Y.-H. P. Zhang, Renewable carbohydrates are a potential high-density hydrogen carrier. Int. J. Hydrogen Energy 35, 10334–10342 (2010) (c) V.V. Struzhkin, B. Militzer, W.L. Mao, H.-K. Mao, R.J. Hemley, Hydrogen storage in molecular clathrates. Chem. Rev. 107, 4133–4151 (2007) (d) H.-M. Cheng, Q.-H. Yang, C. Liu, Hydrogen storage in carbon nanotubes. Carbon 39, 1447–1454 (2001)

    Google Scholar 

  52. (a) H.W. Langmi, J. Ren, B. North, M. Mathe, D. Bessarabov, Hydrogen storage in metal-organic frameworks: A review. Electrochim. Acta 128 368–392 (2014) (b) L.J. Murray, M. Dinca, J.R. Long, Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009) (c) O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, Metal–organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 134, 15016–15021 (2012)

    Google Scholar 

  53. (a) N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Hydrogen storage in microporous metal-organic frameworks. Science, 300, 1127–1129 (2003) (b) G. Férey, M. Latroche, C. Serre, F. Millange, T. Loiseau, A. Percheron-Guégan, Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C–C6H4–CO2) (M = Al3+, Cr3+), MIL-53. Chem. Commun. 2976–2977 (2003)

    Google Scholar 

  54. J. Sculley, D. Yuan, H.-C. Zhou, The current status of hydrogen storage in metal–organic frameworks – Updated. Energy Environ. Sci. 4, 2721–2735 (2011)

    Article  CAS  Google Scholar 

  55. B. Panella, M. Hirscher, H. Putter, U. Muller, Hydrogen adsorption in metal–organic frameworks: Cu-MOFs and Zn-MOFs compared. Adv. Funct. Mater. 16, 520–524 (2006)

    Article  CAS  Google Scholar 

  56. (a) D. Saha, Z. Wei and S. Deng: Equilibrium, kinetics and enthalpy of hydrogen adsorption in MOF-177, Int. J. Hydrog. Energy, 33, 7479–7488 (2008). (b) J. L. Rowsell and O. M. Yaghi: Startegies for hydrogen storage in metal-organic frameworks, Angew. Chem. Int. Ed., 2005, 44, 4670–4679.

    Google Scholar 

  57. (a) Y. Li, R.T. Yang, Significantly enhanced hydrogen storage in metal−organic frameworks via spillover. J. Am. Chem. Soc. 128, 726–727 (2006) (b) Y. Li, R.T. Yang, Hydrogen storage in metal−organic frameworks by bridged hydrogen spillover. J. Am. Chem. Soc. 128, 8136–8137 (2006)

    Google Scholar 

  58. W.C. Conner, J.L. Falconer, Spillover in heterogeneous catalysis. Chem. Rev. 95, 759–788 (1995)

    Article  CAS  Google Scholar 

  59. D.W. Breck, Zeolite Molecular Sieves: Structure, Chemistry and Use (Wiley, New York, 1974), pp. 593–724

    Google Scholar 

  60. J. Ren, M. Ledwaba, N.M. Musyoka, H.W. Langmi, M. Mathe, S. Liao, W. Pang, Coord. Chem. Rev. (2017) ASAP

    Google Scholar 

  61. A. Xin, J. Bai, Y. Pan, M.J. Zaworotko, Synthesis and enhanced H2 adsorption properties of a mesoporous nanocrystal of MOF-5: Controlling nano−/mesostructures of MOFs to improve their H2 heat of adsorption. Chem. Eur. J. 16, 13049–13052 (2010)

    Article  CAS  PubMed  Google Scholar 

  62. Y.F. Feng, H. Jiang, M. Chen, Y.R. Wang, Construction of an interpenetrated MOF-5 with high mesoporosity for hydrogen storage at low pressure. Powder Technol. 249, 38–42 (2013)

    Article  CAS  Google Scholar 

  63. J.W. Ren, H. Langmi, N. Musyoka, M. Mathe, X.D. Kang, Tuning defects to facilitate hydrogen storage in core-shell MIL-101(Cr)@UiO-66(Zr) nanocrystals. Mater. Today: Proc. 2, 3964–3972 (2015)

    Google Scholar 

  64. M. Erkartal, U. Sen, Boronic acid moiety as functional defect in UiO-66 and its effect on hydrogen uptake capacity and selective CO2 adsorption: A comparative study. ACS Appl. Mater. Interfaces 10(1), 787–795 (2018)

    Article  CAS  PubMed  Google Scholar 

  65. D. Zhao, D. Yuan, H.-C. Zhou, The current status of hydrogen storage in metal–organic frameworks. Energy Environ. Sci. 1, 222–235 (2008)

    Article  CAS  Google Scholar 

  66. K.L. Mulfort, O.K. Farha, C.L. Stern, A.A. Sarjeant, J.T. Hupp, Post-synthesis alkoxide formation within metal−organic framework materials: A strategy for incorporating highly coordinatively unsaturated metal ions. J. Am. Chem. Soc. 131(11), 3866–3868 (2009)

    Article  CAS  PubMed  Google Scholar 

  67. J. Luo, H. Xu, Y. Liu, Y. Zhao, L.L. Daemen, C. Brown, T.V. Timofeeva, S. Ma, H. Zhou, J. Am. Chem. Soc. 130(30), 9626–9627 (2008)

    Article  CAS  PubMed  Google Scholar 

  68. T. Burchell, M. Rogers. SAE Tech. Pap. Ser. 2000, 2000-01-2205

    Google Scholar 

  69. Y. He, W. Zhou, G. Qian, B. Chen, Methane storage in metal–organic frameworks. Chem. Soc. Rev. 43, 5657–5678 (2014)

    Article  CAS  PubMed  Google Scholar 

  70. S. Noro, S. Kitagawa, M. Kondo, K. Seki, A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4′-bipyridine)2}n]. Angew. Chem. Int. Ed. 39, 2081–2084 (2000)

    Article  CAS  Google Scholar 

  71. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002)

    Article  CAS  PubMed  Google Scholar 

  72. K. Seki, Design of an adsorbent with an ideal pore structure for methane adsorption using metal complexes. Chem. Commun., 1496–1497 (2001)

    Google Scholar 

  73. V.C. Menon, S. Komarneni, Porous adsorbents for vehicular natural gas storage: A review. J. Porous. Mater. 5, 43–58 (1998)

    Article  CAS  Google Scholar 

  74. S. Ma, D. Sun, J.M. Simmons, C.D. Collier, D. Yuan, H.-C. Zhou, Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J. Am. Chem. Soc. 130(3), 1012–1016 (2008)

    Article  CAS  PubMed  Google Scholar 

  75. H. Wu, W. Zhou, T. Yildirim, High-capacity methane storage in metal-organic frameworks M2(dhtp): The important role of open metal sites. J. Am. Chem. Soc. 131, 4995–5000 (2009)

    Article  CAS  PubMed  Google Scholar 

  76. Z. Guo, H. Wu, G. Srinivas, Y. Zhou, S. Xiang, Z. Chen, Y. Yang, W. Zhou, M. O’Keeffe, B. Chen, A metal–organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature. Angew. Chem. Int. Ed. 50, 3178–3181 (2011)

    Article  CAS  Google Scholar 

  77. C.E. Wilmer, M. Leaf, C.Y. Lee, O.K. Farha, B.G. Hauser, J.T. Hupp, R.Q. Snurr, Large-scale screening of hypothetical metal–organic frameworks. Nat. Chem. 4, 83–89 (2012)

    Article  CAS  Google Scholar 

  78. C. Liang, Z. Shi, C. He, J. Tan, H. Zhou, H. Zhou, Y. Lee, Y. Zhang, Engineering of pore geometry for ultrahigh capacity methane storage in mesoporous metal−organic frameworks. J. Am. Chem. Soc. 139, 13300–13303 (2017)

    Article  CAS  PubMed  Google Scholar 

  79. C. Figueres, H.J. Schellnhuber, G. Whiteman, J. Rockström, A. Hobley, S. Rahmstorf, Three years to safeguard our climate. Nature 546, 593–595 (2017)

    Article  CAS  PubMed  Google Scholar 

  80. https://www.co2.earth/

  81. J. Johnson, Chem. Eng. News 82, 36 (2004)

    Google Scholar 

  82. A. Lu, G. Hao, Porous materials for carbon dioxide capture. Annu. Rep. Prog. Chem. Sect. A: Inorg. Chem. 109, 484–503 (2013)

    Article  CAS  Google Scholar 

  83. K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T. Bae, J.R. Long, Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112, 724–781 (2012)

    Article  CAS  PubMed  Google Scholar 

  84. A.R. Millward, O.M. Yaghi, Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998–17999 (2005)

    Article  CAS  PubMed  Google Scholar 

  85. R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O.M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008)

    Article  CAS  PubMed  Google Scholar 

  86. S.R. Caskey, A.G. Wong-Foy, A.J. Matzger, Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 130, 10870–10871 (2008)

    Article  CAS  PubMed  Google Scholar 

  87. Q.-G. Zhai, X. Bu, C. Mao, X. Zhao, P. Feng, Systematic and dramatic tuning on gas sorption performance in heterometallic metal–organic frameworks. J. Am. Chem. Soc. 138(8), 2524–2527 (2016)

    Article  CAS  PubMed  Google Scholar 

  88. X. Yan, S. Komarneni, Z. Zhang, Z. Yan, Extremely enhanced CO2 uptake by HKUST-1 metal–organic framework via a simple chemical treatment. Microporous Mesoporous Mater. 183, 69–73 (2014)

    Article  CAS  Google Scholar 

  89. E. Garcia-Perez, J. Gascon, V. Morales-Florez, J.M. Castillo, F. Kapteijn, S. Calero, Identification of adsorption sites in Cu-BTC by experimentation and molecular simulation. Langmuir 25, 1725–1731 (2009)

    Article  CAS  PubMed  Google Scholar 

  90. D. Alezi, A.M.P. Peedikakkal, L.J. Weselinski, V. Guillerm, Y. Belmabkhout, A.J. Cairns, Z. Chen, L. Wojtas, M. Eddaoudi, Quest for highly connected metal-organic framework platforms: Rare earth polynuclear clusters versatility meets net topology needs. J. Am. Chem. Soc. 137, 5421–5430 (2015)

    Article  CAS  PubMed  Google Scholar 

  91. D.Q. Yuan, D. Zhao, D.F. Sun, H.C. Zhou, An isoreticular series of metal–organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem. Int. Edit. 49, 5357–5361 (2010)

    Article  CAS  Google Scholar 

  92. C.E. Wilmer, O.K. Farha, T. Yildirim, I. Eryazici, V. Krungleviciute, A.A. Sarjeant, R.Q. Snurr, J.T. Hupp, Gram-scale, high-yield synthesis of a robust metal–organic framework for storing methane and other gases. Energy Environ. Sci. 6, 1158–1163 (2013)

    Article  CAS  Google Scholar 

  93. B.S. Zheng, J.F. Bai, J.G. Duan, L. Wojtas, M.J. Zaworotko, Enhanced CO2 binding affinity of a high-uptake rht-type metal−organic framework decorated with acylamide groups. J. Am. Chem. Soc. 133(4), 748–751 (2011)

    Article  CAS  PubMed  Google Scholar 

  94. P.L. Llewellyn, S. Bourrely, C. Serre, A. Vimont, M. Daturi, L. Hamon, G.D. Weireld, J.-S. Chang, D.-Y. Hong, Y.K. Hwang, S.H. Jhung, G. Ferey, High uptakes of CO2 and CH4 in mesoporous metal–organic frameworks MIL-100 and MIL-101. Langmuir 24, 7245–7250 (2008)

    Article  CAS  PubMed  Google Scholar 

  95. J.A. Botas, G. Calleja, M. Sanchez-Sanchez, M. Gisela Orcajo, Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties. Langmuir 26, 5300–5303 (2010)

    Article  CAS  PubMed  Google Scholar 

  96. M. Kim, J.F. Cahill, H. Fei, K.A. Prather, S.M. Cohen, Postsynthetic ligand and cation exchange in robust metal–organic frameworks. J. Am. Chem. Soc. 134, 18082–18088 (2012)

    Article  CAS  PubMed  Google Scholar 

  97. C.H. Lau, R. Babarao, M.R. Hill, A route to drastic increase of CO2 uptake in Zr metal organic framework UiO-66. Chem. Commun. 49, 3634–3636 (2013)

    Article  Google Scholar 

  98. S.S. Kaye, J.R. Long, Hydrogen storage in the dehydrated Prussian blue analogues M3[co(CN)6]2 (M = Mn, Fe, co, Ni, cu, Zn). J. Am. Chem. Soc. 127, 6506–6507 (2005)

    Article  CAS  PubMed  Google Scholar 

  99. Y. Lin, C. Konga, L. Chen, Amine-functionalized metal–organic frameworks: Structure, synthesis and applications. RSC Adv. 6, 32598–32614 (2016)

    Article  CAS  Google Scholar 

  100. Y.K. Hwang, D.Y. Hong, J.S. Chang, S.H. Jhung, Y.K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Ferey, Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation. Angew. Chem. Int. Edit. 47, 4144–4148 (2008)

    Article  CAS  Google Scholar 

  101. T.M. McDonald, W.R. Lee, J.A. Mason, B.M. Wiers, C.S. Hong, J.R. Long, Capture of carbon dioxide from air and flue gas in the alkylamine appended Metal−organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134, 7056–7065 (2012)

    Article  CAS  PubMed  Google Scholar 

  102. K. Lee, J.D. Howe, L.-C. Lin, B. Smit, J.B. Neaton, Small-molecule adsorption in open-site metal−organic frameworks: A systematic density functional theory study for rational design. Chem. Mater. 27, 668–678 (2015)

    Article  CAS  Google Scholar 

  103. J.-S. Qin, D.-Y. Du, W.-L. Li, J.-P. Zhang, S.-L. Li, Z.-M. Su, X.-L. Wang, Q. Xu, K.-Z. Shao, Y.-Q. Lan, N-rich zeolite-like metal–organic framework with sodalite topology: High CO2 uptake, selective gas adsorption and efficient drug delivery. Chem. Sci. 3, 2114–2118 (2012)

    Article  CAS  Google Scholar 

  104. A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’Keefee, O.M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 43, 58–67 (2010)

    Article  CAS  PubMed  Google Scholar 

  105. A.C. Kizzie, A.G. Wong-Foy, A.J. Matzger, Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture. Langmuir 27, 6368–6373 (2011)

    Article  CAS  PubMed  Google Scholar 

  106. A.O. Yazaydin, A.I. Benin, S.A. Faheem, P. Jakubczak, J.J. Low, R.R. Willis, R.Q. Snurr, Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem. Mater. 21, 1425–1430 (2009)

    Article  CAS  Google Scholar 

  107. V.A. Blatov, D.M. Proserpio, TOPOS 4.0, A program package for multipurpose crystallochemical analysis

    Google Scholar 

Download references

Acknowledgments

A. M. P. Peedikakkal would like to acknowledge the support provided by KACST for funding through NSTIP. Project No. 14-ENE2278-04 for his research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Malik P. Peedikakkal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Peedikakkal, A.M.P., Adarsh, N.N. (2019). Porous Coordination Polymers. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95987-0_5

Download citation

Publish with us

Policies and ethics