Skip to main content

Membrane Surface Modification and Functionalization

  • Reference work entry
  • First Online:
Functional Polymers

Abstract

Surface functionalization of membranes is one of the efficient techniques that can bestow these membranes with novel properties and transform them into valuable finished products. It has been widely applied to polymeric membranes in many fields and has progressed rapidly in recent years. The modified membranes have been widely used in various applications, such as in separation processes for liquid and gaseous mixtures (gas separation, reverse osmosis, pervaporation, nanofiltration, ultrafiltration, microfiltration), biomaterials, catalysis (including fuel cell systems), and “smart” membranes. In this chapter, various approaches to the surface modification and functionalization of polymeric membranes are highlighted and reviewed. Also, the applications of the modified membranes will be discussed from the aspect of environmental stimuli-responsive gating membranes, antifouling membranes, adsorption membranes, pervaporation and reverse osmosis membranes, membranes for energy conversion, gas separation membranes, and biomedical membranes. A detailed overview of the usage of polyzwitterions and oxidative stability of surface modifiers to alter membrane surface charge will be outlined. Finally, recent advances and developments in surface modification techniques such as layer-by-layer assembly and chemical vapor deposition will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Misdan, A.F. Ismail, N. Hilal, Recent advances in the development of (bio)fouling resistant thin film composite membranes for desalination. Desalination 380, 105–111 (2016)

    Article  CAS  Google Scholar 

  2. W. Sun, J. Liu, H. Chu, B. Dong, Pretreatment and membrane hydrophilic modification to reduce membrane fouling. Membranes (Basel, Switzerland) 3(3), 226–241 (2013)

    CAS  Google Scholar 

  3. V. Kochkodan, N. Hilal, A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination 356, 187–207 (2015)

    Article  CAS  Google Scholar 

  4. J. Mueller, Y. Cen, R.H. Davis, Crossflow microfiltration of oily water. J. Membr. Sci. 129(2), 221–235 (1997)

    Article  CAS  Google Scholar 

  5. D. Rana, T. Matsuura, Surface modifications for antifouling membranes. Chem. Rev. 110(4), 2448–2471 (2010)

    Article  CAS  PubMed  Google Scholar 

  6. M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment. Science 333(6043), 712–717 (2011)

    Article  CAS  PubMed  Google Scholar 

  7. H. Ju, B.D. McCloskey, A.C. Sagle, V.A. Kusuma, B.D. Freeman, Preparation and characterization of crosslinked poly(ethylene glycol) diacrylate hydrogels as fouling-resistant membrane coating materials. J. Membr. Sci. 330(1–2), 180–188 (2009)

    Article  CAS  Google Scholar 

  8. A.C. Sagle, H. Ju, B.D. Freeman, M.M. Sharma, PEG-based hydrogel membrane coatings. Polymer 50(3), 756–766 (2009)

    Article  CAS  Google Scholar 

  9. H. Ju, B.D. McCloskey, A.C. Sagle, Y.-H. Wu, V.A. Kusuma, B.D. Freeman, Crosslinked poly(ethylene oxide) fouling resistant coating materials for oil/water separation. J. Membr. Sci. 307(2), 260–267 (2008)

    Article  CAS  Google Scholar 

  10. A.C. Sagle, E.M. Van Wagner, H. Ju, B.D. McCloskey, B.D. Freeman, M.M. Sharma, PEG-coated reverse osmosis membranes: desalination properties and fouling resistance. J. Membr. Sci. 340(1–2), 92–108 (2009)

    Article  CAS  Google Scholar 

  11. A. Roosjen, H.J. Kaper, H.C. van der Mei, W. Norde, H.J. Busscher, Inhibition of adhesion of yeast sand bacteria by poly(ethylene oxide)-brushes on glass in a parallel plate flow chamber. Microbiology 149(11), 3239–3246 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. M. Ulbricht, H. Matuschewski, A. Oechel, H.-G. Hicke, Photo-induced graft polymerization surface modifications for the preparation of hydrophilic and low-protein adsorbing ultrafiltration membranes. J. Membr. Sci. 115(1), 31–47 (1996)

    Article  CAS  Google Scholar 

  13. Y.-H. Zhao, K.-H. Wee, R. Bai, Highly hydrophilic and low-protein fouling polypropylene membrane prepared by surface modification with sulfobetaine-based zwitterionic polymer through a combined surface polymerization method. J. Membr. Sci. 362(1–2), 326–333 (2010)

    Article  CAS  Google Scholar 

  14. S. Jiang, Z. Cao, Ultra low-fouling, functionalizable, and hydrolysable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 22(9), 920–932 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. B. Zhao, W.J. Brittain, Polymer brushes: surface-immobilized macromolecules. Prog. Polym. Sci. 25, 677–710 (2000)

    Article  CAS  Google Scholar 

  16. Z-K. Xu, X-J. Huang, L-S. Wan, in Advanced Topics in Science and Technology in China: Surface Engineering of Polymer Membranes, Chapter 4 (Springer, Berlin, 2009), pp. 80

    Book  Google Scholar 

  17. K. Kato, E. Uchida, E.T. Kang, Y. Uyama, Y. Ikada, Polymer surface with graft chains. Prog. Polym. Sci. 28, 209–259 (2003)

    Article  CAS  Google Scholar 

  18. X. Fan, Y. Su, X. Zhao, Y. Li, R. Zhang, T. Ma, Y. Liu, Z. Jiang, Manipulating the segregation behavior of polyethylene glycol by hydrogen bonding interaction to endow ultrafiltration membranes with enhanced antifouling performance. J. Membr. Sci. 499, 56–64 (2016)

    Article  CAS  Google Scholar 

  19. W. Zhao, Y. Su, C. Li, Q. Shi, X. Ning, Z. Jiang, Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore forming agent. J. Membr. Sci. 318, 405–412 (2008)

    Article  CAS  Google Scholar 

  20. Y. Liu, Y. Su, X. Zhao, Y. Li, R. Zhang, Z. Jiang, Improved antifouling properties of polyethersulfone membrane by blending the amphiphilic surface modifier with crosslinked hydrophobic segments. J. Membr. Sci. 486, 195–206 (2015)

    Article  CAS  Google Scholar 

  21. H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849), 426–430 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. B.D. McCloskey, H.B. Park, H. Ju, B.W. Rowe, D.J. Miller, B.D. Freeman, A bioinspired fouling-resistant surface modification for water purification membranes. J. Membr. Sci. 413-414, 82–90 (2012)

    Article  CAS  Google Scholar 

  23. J.T. Arena, B. McCloskey, B.D. Freeman, J.R. McCutcheon, Surface modification of thin film composite membrane support layers with polydopamine: enabling use of reverse osmosis membranes in pressure retarded osmosis. J. Membr. Sci. 375(1–2), 55–62 (2011)

    Article  CAS  Google Scholar 

  24. H. Lee, Y. Lee, A.R. Statz, J. Rho, T.G. Park, P.B. Messersmith, Substrate-independent layer-by-layer assembly by using mussel-adhesive-inspired polymers. Adv. Mater. 20(9), 1619–1623 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. G. Han, S. Zhang, X. Li, N. Widjojo, T.-S. Chung, Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection. Chem. Eng. Sci. 80, 219–231 (2012)

    Article  CAS  Google Scholar 

  26. J.-H. Jiang, L.-P. Zhu, X.-L. Li, Y.-Y. Xu, B.-K. Zhu, Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin. J. Membr. Sci. 364(1–2), 194–202 (2010)

    Article  CAS  Google Scholar 

  27. J. Jiang, L. Zhu, L. Zhu, B. Zhu, Y. Xu, Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films. Langmuir 27(23), 14180–14187 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. Q. Wei, F. Zhang, J. Li, B. Li, C. Zhao, Oxidant-induced dopamine polymerization for multifunctional coatings. Polym. Chem. 1(9), 1430–1433 (2010)

    Article  CAS  Google Scholar 

  29. Z.-Y. Xi, Y.-Y. Xu, L.-P. Zhu, Y. Wang, B.-K. Zhu, A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine). J. Membr. Sci. 327(1–2), 244–253 (2009)

    Article  CAS  Google Scholar 

  30. D.J. Miller, X. Huang, H. Li, S. Kasemset, A. Lee, D. Agnihotri, T. Hayes, D.R. Paul, B.D. Freeman, Fouling-resistant membranes for the treatment of flowback water from hydraulic shale fracturing: a pilot study. J. Membr. Sci. 437, 265–275 (2013)

    Article  CAS  Google Scholar 

  31. D.J. Miller, S. Kasemset, L. Wang, D.R. Paul, B.D. Freeman, Constant flux crossflow filtration evaluation of surface-modified fouling-resistant membranes. J. Membr. Sci. 452, 171–183 (2014)

    Article  CAS  Google Scholar 

  32. F. Li, J. Meng, J. Ye, B. Yang, Q. Tian, C. Deng, Surface modification of PES ultrafiltration membrane by polydopamine coating and poly(ethylene glycol) grafting: morphology, stability, and anti-fouling. Desalination 344, 422–430 (2014)

    Article  CAS  Google Scholar 

  33. F. Li, C. Deng, C. Du, B. Yang, Q. Tian, Fouling mechanism and cleanability of ultrafiltration membranes modified with polydopamine-graft-PEG. Water SA 41(4), 448–456 (2015)

    Article  CAS  Google Scholar 

  34. F. Li, J. Ye, L. Yang, C. Deng, Q. Tian, B. Yang, Surface modification of ultrafiltration membranes by grafting glycine-functionalized PVA based on polydopamine coatings. Appl. Surf. Sci. 345, 301–309 (2015)

    Article  CAS  Google Scholar 

  35. T. Vladkova, P. Atanasova, S. Petrov, P. Dineff, Surface modification of polymeric ultrafiltration membranes: III. Effect of plasma-chemical surface modification onto some characteristics of polyacrylonitrile ultrafiltration membranes. High Energy Chem. 47(6), 346–352 (2013)

    Article  CAS  Google Scholar 

  36. G. Chen, Z. Wang, L.D. Nghiem, X.-M. Li, M. Xie, B. Zhao, M. Zhang, J. Song, T. He, Treatment of shale gas drilling flow back fluids (SGDFs) by forward osmosis: membrane fouling and mitigation. Desalination 366, 113–120 (2015)

    Article  CAS  Google Scholar 

  37. G. Zuo, R. Wang, Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation application. J. Membr. Sci. 447, 26–35 (2013)

    Article  CAS  Google Scholar 

  38. J. Ju, T. Wang, Q. Wang, Superhydrophilic and underwater superoleophobic PVDF membranes via plasma-induced surface PEGDA for effective separation of oil-in-water emulsions. Colloids Surf. A: Physicochem. Eng. Asp. 481, 151–157 (2015)

    Article  CAS  Google Scholar 

  39. R.N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936)

    Article  CAS  Google Scholar 

  40. L. Wu, J. Sun, F. Tong, Surface modification of a PVDF membrane by crosslinked collagen. RSC Adv. 4(109), 63989–63996 (2014)

    Article  CAS  Google Scholar 

  41. L. Zhi, Z. Wei, W. Xinwei, Surface modification of ultra high molecular weight polyethylene fibers via the sequential photoinduced graft polymerization. Appl. Surf. Sci. 257, 7600–7608 (2011)

    Article  CAS  Google Scholar 

  42. K. Pan, H. Gu, B. Cao, Interfacially polymerized thin-film composite membrane on UV-induced surface hydrophilic-modified polypropylene support for nanofiltration. Polymer Bull. (Heidelberg, Germany) 71(2), 415–431 (2014)

    CAS  Google Scholar 

  43. J. Wang, X. Gao, Q. Wang, H. Sun, X. Wang, C. Gao, Enhanced biofouling resistance of polyethersulfone membrane surface modified with capsaicin derivative and itaconic acid. Appl. Surf. Sci. 356, 467–474 (2015)

    Article  CAS  Google Scholar 

  44. H. Yu, X. Zhang, Y. Zhang, J. Liu, H. Zhang, Development of a hydrophilic PES ultrafiltration membrane containing SiO2@N-Halamine nanoparticles with both organic antifouling and antibacterial properties. Desalination 326, 69–76 (2013)

    Article  CAS  Google Scholar 

  45. D. Alves, M. Olívia Pereira, Mini-review: antimicrobial peptides and enzymes as promising candidates to functionalize biomaterial surfaces. Biofouling 30, 1–17 (2014)

    Article  CAS  Google Scholar 

  46. X. Gao, H. Wang, J. Wang, X. Huang, C. Gao, Surface-modified PSf UF membrane by UV-assisted graft polymerization of capsaicin derivative moiety for fouling and bacterial resistance. J. Membr. Sci. 445, 146–155 (2013)

    Article  CAS  Google Scholar 

  47. R.E. Holmlin, X. Chen, R.G. Chapman, S. Takayama, G.M. Whitesides, Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 17, 2841–2850 (2001)

    Article  CAS  PubMed  Google Scholar 

  48. M. Ginic-Markovic, T. Barclay, K.T. Constantopoulos, T. Al-Ghamdi, A. Blok, E. Markovic, A.V. Ellis, A versatile approach to grafting biofouling resistant coatings from polymeric membrane surfaces using an adhesive macroinitiator. RSC Adv. 5(77), 63017–63024 (2015)

    Article  CAS  Google Scholar 

  49. I. Eshet, V. Freger, R. Kasher, M. Herzberg, J. Lei, M. Ulbricht, Chemical and physical factors in design of antibiofouling polymer coatings. Biomacromolecules 12, 2681–2685 (2011)

    Article  CAS  PubMed  Google Scholar 

  50. M.Y. Zhou, H.W. Liu, J.E. Kilduff, R. Langer, D.G. Anderson, G. Belfort, High-throughput membrane surface modification to control NOM fouling. Environ. Sci. Technol. 43, 3865–3871 (2009)

    Article  CAS  PubMed  Google Scholar 

  51. M.-C. Sin, S.-H. Chen, Y. Chang, Hemocompatibility of zwitterionic interfaces and membranes, IMP example for biomedical applications, discuss factors below. Polymer J. (Tokyo, Japan) 46(8), 436–443 (2014)

    Article  CAS  Google Scholar 

  52. R. Bernstein, V. Freger, J.-H. Lee, Y.-G. Kim, J. Lee, M. Herzberg, ‘Should I stay or should I go?’ Bacterial attachment vs biofilm formation on surface-modified membranes “methods to investigate biofouling activity”. Biofouling 30(3), 367–376 (2014)

    Article  CAS  PubMed  Google Scholar 

  53. K. Matyjaszewski, H. Dong, W. Jakubowski, J. Pietrasik, Grafting from surfaces for “everyone”: ARGET ATRP in the presence of air. Langmuir 23, 4528–4531 (2007)

    Article  CAS  PubMed  Google Scholar 

  54. T. Gillich, E.M. Benetti, E. Rakhmatullina, R. Konradi, W. Li, A. Zhang, A.D. Schlüter, M. Textor, Self-assembly of focal point oligo-catechol ethylene glycol dendrons on titanium oxide surfaces: adsorption kinetics, surface characterization, and nonfouling properties. J. Am. Chem. Soc. 133, 10940–10950 (2011)

    Article  CAS  PubMed  Google Scholar 

  55. H.-Y. Yu, Y. Kang, Y. Liu, B. Mi, Grafting polyzwitterions onto polyamide by click chemistry and nucleophilic substitution on nitrogen: a novel approach to enhance membrane fouling resistance. J. Membr. Sci. 449, 50–57 (2014)

    Article  CAS  Google Scholar 

  56. R. Ranjan, W.J. Brittain, Combination of living radical polymerization and click chemistry for surface modification. Macromolecules 40, 6217–6223 (2007)

    Article  CAS  Google Scholar 

  57. J.F. Lutz, H.G. Borner, K. Weichenhan, Combining atom transfer radical polymerization and click chemistry: a versatile method for the preparation of end-functional polymers. Macromol. Rapid Commun. 26, 514–518 (2005)

    Article  CAS  Google Scholar 

  58. D.X. Wu, X.H. Song, T. Tang, H.Y. Zhao, Macromolecular brushes synthesized by grafting from approach based on click chemistry and RAFT polymerization. J. Polym. Sci. Part A Polym. Chem. 48, 443–453 (2010)

    Article  CAS  Google Scholar 

  59. H.-L. Jiang, D. Feng, T.-F. Liu, J.-R. Li, H.-C. Zhou, Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal-organic frameworks. J. Am. Chem. Soc. 134, 14690–14693 (2012)

    Article  CAS  PubMed  Google Scholar 

  60. Y. Gao, M. Hu, B. Mi, Membrane surface modification with TiO2-graphene oxide for enhanced photocatalytic performance. J. Membr. Sci. 455, 349–356 (2014)

    Article  CAS  Google Scholar 

  61. P. Kaner, D.J. Johnson, E. Seker, N. Hilal, S.A. Altinkaya, Layer-by-layer surface modification of polyethersulfone membranes using polyelectrolytes and AgCl/TiO2 xerogels. J. Membr. Sci. 493, 807–819 (2015)

    Article  CAS  Google Scholar 

  62. W. Ma, M.S. Rahaman, H. Therien-Aubin, Controlling biofouling of reverse osmosis membranes through surface modification via grafting patterned polymer brushes. J. Water Reuse Desalination 5(3), 326–334 (2015)

    Article  CAS  Google Scholar 

  63. H.M. Hegab, A. ElMekawy, T.G. Barclay, A. Michelmore, L. Zou, C.P. Saint, M. Ginic-Markovic, Fine-tuning the surface of forward osmosis membranes via grafting graphene oxide: performance patterns and biofouling propensity. ACS Appl. Mater. Interfaces 7(32), 18004–18016 (2015)

    Article  CAS  PubMed  Google Scholar 

  64. G.L. Liu, C. Han, M. Pelaez, D.W. Zhu, S.J. Liao, V. Likodimos, A.G. Kontos, P. Falaras, D.D. Dionysiou, Enhanced visible light photocatalytic activity of C–N-codoped TiO2 films for the degradation of microcystin-LR. J. Mol. Catal. A Chem. 372, 58–65 (2013)

    Article  CAS  Google Scholar 

  65. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review. Water Res. 44, 2997–3027 (2010)

    Article  CAS  PubMed  Google Scholar 

  66. J. Grzechulska-Damszel, M. Tomaszewska, A.W. Morawski, Integration of photocatalysis with membrane processes for purification of water contaminated with organic dyes. Desalination 241, 118–126 (2009)

    Article  CAS  Google Scholar 

  67. D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 107, 4545–4549 (2003)

    Article  CAS  Google Scholar 

  68. R. Leary, A. Westwood, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 49, 741–772 (2011)

    Article  CAS  Google Scholar 

  69. Y.H. Zhang, N. Zhang, Z.R. Tang, Y.J. Xu, Improving the photocatalytic performance of graphene–TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact. Phys. Chem. Chem. Phys. 14, 9167–9175 (2012)

    Article  CAS  PubMed  Google Scholar 

  70. D.L. Zhao, G.D. Sheng, C.L. Chen, X.K. Wang, Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure. Appl. Catal. B-Environ. 111, 303–308 (2012)

    Article  CAS  Google Scholar 

  71. Y.L. Min, K. Zhang, W. Zhao, F.C. Zheng, Y.C. Chen, Y.G. Zhang, Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue. Chem. Eng. J. 193, 203–210 (2012)

    Article  CAS  Google Scholar 

  72. G.D. Jiang, Z.F. Lin, C. Chen, L.H. Zhu, Q. Chang, N. Wang, W. Wei, H.Q. Tang, TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 49, 2693–2701 (2011)

    Article  CAS  Google Scholar 

  73. T.N. Lambert, C.A. Chavez, B. Hernandez-Sanchez, P. Lu, N.S. Bell, A. Ambrosini, T. Friedman, T.J. Boyle, D.R. Wheeler, D.L. Huber, Synthesis and characterization of titania–graphene nanocomposites. J. Phys. Chem. C 113, 19812–19823 (2009)

    Article  CAS  Google Scholar 

  74. M. Gupta, V. Kapur, N.M. Pinkerton, K.K. Gleason, Initiated chemical vapor deposition (iCVDv) of conformal polymeric nanocoatings for the surface modification of high-aspect-ratio pores. Chem. Mater. 20(4), 1646–1651 (2008)

    Article  CAS  Google Scholar 

  75. A.M. Coclite, R.M. Howden, D.C. Borrelli, C.D. Petruczok, R. Yang, J.L. Yague, A. Ugur, N. Chen, S. Lee, W.J. Jo, A. Liu, X. Wang, K.K. Gleason, 25th anniversary article: CVD polymers: a new paradigm for surface modification and device fabrication. Adv. Mater. 25(38), 5392–5423 (2013)

    Article  CAS  PubMed  Google Scholar 

  76. A. Matin, Z. Khan, K.K. Gleason, M. Khaled, S.M.J. Zaidi, A. Khalil, P. Moni, R. Yang, Surface-modified reverse osmosis membranes applying a copolymer film to reduce adhesion of bacteria as a strategy for biofouling control. Sep. Purific. Tech. 124, 117–123 (2014)

    Article  CAS  Google Scholar 

  77. F. Guo, A. Servi, A. Liu, K.K. Gleason, G.C. Rutledge, Desalination by membrane distillation using electrospun polyamide fiber membranes with surface fluorination by chemical vapor deposition. ACS Appl. Mater. Interfaces 7, 8225–8232 (2015)

    Article  CAS  PubMed  Google Scholar 

  78. G.O. Ince, A. Matin, Z.U. Khan, S.M.J. Zaidi, K.K. Gleason, Surface modification of reverse osmosis desalination membranes by thin-film coatings deposited by initiated chemical vapor deposition. Thin Solid Films 539, 181–187 (2013)

    Article  CAS  Google Scholar 

  79. R. Quintana, M. Gosa, D. Jańczewski, E. Kutnyanszky, G.J. Vancso, Enhanced stability of low fouling zwitterionic polymer brushes in seawater with diblock architecture. Langmuir 29, 10859–10867 (2013)

    Article  CAS  PubMed  Google Scholar 

  80. S. Rouaix, C. Causserand, P. Aimar, Experimental study of the effects of hypochlorite on polysulfone membrane properties. J. Membr. Sci. 277, 137–147 (2006)

    Article  CAS  Google Scholar 

  81. P.-F. Ren, Y. Fang, L.-S. Wan, X.-Y. Ye, Z.-K. Xu, Surface modification of polypropylene microfiltration membrane by grafting poly(sulfobetaine methacrylate) and poly(ethylene glycol): oxidative stability and antifouling capability. J. Membr. Sci. 492, 249–256 (2015)

    Article  CAS  Google Scholar 

  82. Q. Li, H.-H. Lin, X.-L. Wang, Preparation of sulfobetaine-grafted PVDF hollow fiber membranes with a stably anti-protein-fouling performance. Membranes (Basel, Switzerland) 4(2), 181–199 (2014)

    Google Scholar 

  83. J. Cardoso, L. Rubio, M. Albores-Velasco, Thermal degradation of poly(sulfobetaines). J. Appl. Polym. Sci. 73, 1409–1414 (1999)

    Article  CAS  Google Scholar 

  84. R. Zhou, P.-F. Ren, H.-C. Yang, Z.-K. Xu, Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine co-deposition. J. Membr. Sci. 466, 18–25 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the Center for Advanced Materials (CAM), Qatar University, for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Mohammed Javaid Zaidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zaidi, S.M.J., Mauritz, K.A., Hassan, M.K. (2019). Membrane Surface Modification and Functionalization. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95987-0_11

Download citation

Publish with us

Policies and ethics