Skip to main content

Photo-polymerization

  • Reference work entry
  • First Online:
Functional Polymers

Abstract

The synthesis of functional polymers by photopolymerization thrives on the rich tradition of industrial photochemistry. Photo-induced polymerization can be broadly divided based on the initiation mechanism as radical, cationic, and anionic photopolymerization. A wide variety of initiators, photosensitizers, and polymerizable materials have been studied for various applications. This chapter is intended to be a primer to major concepts of photopolymerization. In the beginning of the chapter, physical aspects of light matter interactions are presented followed by photochemical pathways leading to reactions. In the subsequent sections radical polymerization is discussed by introducing different types of initiating systems and polymerizable materials. Within the section on radical polymerization, visible light polymerization and thio-ene photochemistry are also discussed. The section on thiol-ene looks at the fundamentals of thiol-ene reactions, their initiation, reactivity, and advantages over other radical driven polymerizations. Cationic polymerization is covered based on the material science of ionic and nonionic photoacid generators (PAGs). This section also discusses spectral broadening of reactivity in PAGs to visible wavelengths through electron transfer sensitization and free radical promoted cationic polymerization (FRPCP). Unlike radical and cationic polymerization there are little or no reports of commercial application of anionic polymerization. However, due to typical monomers employed in anionic polymerization and the control over the extent of polymerization afforded by this techniques makes it very attractive for functional applications. The section on anionic polymerization summarizes recent developments in this field. Finally in the section about two-photon initiated polymerization, we discuss the scope of nonlinear optical phenomena in photopolymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.V. Crivello, E. Reichmanis, Photopolymer materials and processes for advanced technologies. Chem. Mater. 26, 533–548 (2013)

    Article  CAS  Google Scholar 

  2. J.-P. Fouassier, J. Lalevée, Photoinitiators for Polymer Synthesis: Scope, Reactivity, and Efficiency (Wiley, Weinheim, 2012)

    Book  Google Scholar 

  3. G.D. Stucky, S.R. Marder, J.E. Sohn, Linear and Nonlinear Polarizability, S.R. Marder, J.E. Sohn, G.D. Stucky (Eds), Materials for nonlinear optics chemical perspectives, ACS-Symposium-Series, No. 455907, 1–30 (Washington, DC, 1991)

    Google Scholar 

  4. R.W. Boyd, Nonlinear Optics (Academic, San Diego, 2003)

    Google Scholar 

  5. J. Jortner, R.S. Berry, Radiationless transitions and molecular quantum beats. J. Chem. Phys. 48, 2757–2766 (1968)

    Article  CAS  Google Scholar 

  6. B. König, Organic Photochemistry. University of Regensburg webpage (http://www.uni-regensburg.de/), Germany, 6/12 (2016)

  7. A.D. McNaught, A. Wilkinson, IUPAC. Compendium of Chemical Terminology, (The “Gold Book”), 2nd edn. (Blackwell Scientific, Oxford, 1997)

    Google Scholar 

  8. N.J. Turro, Modern Molecular Photochemistry (University Science Books, Sausalito, 1991)

    Google Scholar 

  9. J.P. Fouassier, D. Burr, Triplet state reactivity of α-sulfonyloxy ketones used as polymerization photoinitiators. Macromolecules 23, 3615–3619 (1990)

    Article  CAS  Google Scholar 

  10. J. Fouassier, D. Lougnot, J. Scaiano, A laser spectroscopy investigation of excited-state processes in α-sulphonyl ketones. Chem. Phys. Lett. 160, 335–341 (1989)

    Article  CAS  Google Scholar 

  11. K. Dietliker, R. Hüsler, J.-L. Birbaum, S. Ilg, S. Villeneuve, K. Studer, T. Jung, J. Benkhoff, H. Kura, A. Matsumoto, Advancements in photoinitiators – Opening up new applications for radiation curing. Prog. Org. Coat. 58, 146–157 (2007)

    Article  CAS  Google Scholar 

  12. J. Lalevee, M. El-Roz, F. Morlet-Savary, B. Graff, X. Allonas, J.-P. Fouassier, New highly efficient radical photoinitiators based on si-si bond cleavage. Macromolecules 40, 8527–8530 (2007)

    Article  CAS  Google Scholar 

  13. C. Chatgilialoglu, Organosilanes in Radical Chemistry (Wiley, Chichester, 2004)

    Book  Google Scholar 

  14. E. Rizzardo, D.H. Solomon, A new method for investigating the mechanism of initiation of radical polymerization. Polym. Bull. 1, 529–534 (1979)

    Article  CAS  Google Scholar 

  15. D.H. Solomon, G. Moad, Initiation. The reactions of primary radicals. Macromol. Symp. 10, 109–125 (1987)

    Article  Google Scholar 

  16. C.S. Colley, D.C. Grills, N.A. Besley, S. Jockusch, P. Matousek, A.W. Parker, M. Towrie, N.J. Turro, P.M. Gill, M.W. George, Probing the reactivity of photoinitiators for free radical polymerization: Time-resolved infrared spectroscopic study of benzoyl radicals. J. Am. Chem. Soc. 124, 14952–14958 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. A. Fedorov, E. Danilov, A. Merzlikine, M. Rodgers, D. Neckers, Application of time-resolved step-scan Fourier transform infrared spectroscopy to photochemical mechanistic investigations of alkyl phenylglyoxylates. J. Phys. Chem. A 107, 3208–3214 (2003)

    Article  CAS  Google Scholar 

  18. W.K. Robbins, R. Eastman, Photodecarbonylation in solution. II. Trapping of intermediates in the photolysis of dibenzyl ketone. J. Am. Chem. Soc. 92, 6077–6079 (1970)

    Article  CAS  Google Scholar 

  19. M. Kamachi, ESR studies on radical polymerization, in Polymer Physics, vol. 82, (Springer, Berlin/Heidelberg, 1987), pp. 207–275

    Chapter  Google Scholar 

  20. K.A. McLauchlan, D. Stevens, Flash photolysis electron spin resonance. Acc. Chem. Res. 21, 54–59 (1988)

    Article  CAS  Google Scholar 

  21. I. Gatlik, P. Rzadek, G. Gescheidt, G. Rist, B. Hellrung, J. Wirz, K. Dietliker, G. Hug, M. Kunz, J.-P. Wolf, Structure-reactivity relationships in radical reactions: A novel method for the simultaneous determination of absolute rate constants and structural features. J. Am. Chem. Soc. 121, 8332–8336 (1999)

    Article  CAS  Google Scholar 

  22. P. Hore, C. Joslin, K. McLauchlan, The role of chemically-induced dynamic electron polarization (CIDEP) in chemistry. Chem. Soc. Rev. 8, 29–61 (1979)

    Article  CAS  Google Scholar 

  23. J.S. Baskin, L. Banares, S. Pedersen, A. Zewail, Femtosecond real-time probing of reactions. 20. Dynamics of twisting, alignment, and IVR in the trans-stilbene isomerization reaction. J. Phys. Chem. 100, 11920–11933 (1996)

    Article  CAS  Google Scholar 

  24. A.B. Oelkers, L.F. Scatena, D.R. Tyler, Femtosecond pump-probe transient absorption study of the photolysis of [Cp′Mo (CO) 3] 2 (Cp′= η5−C5H4CH3): Role of translational and rotational diffusion in the radical cage effect. J. Phys. Chem. A 111, 5353–5360 (2007)

    Google Scholar 

  25. A. Morandeira, A. Fürstenberg, E. Vauthey, Fluorescence quenching in electron-donating solvents. 2. Solvent dependence and product dynamics. J. Phys. Chem. A 108, 8190–8200 (2004)

    Article  CAS  Google Scholar 

  26. F. Morlet-Savary, C. Ley, P. Jacques, J. Fouassier, Photophysics of a bridged 7-diethylamino-4-methyl-coumarin C102: Studying the hydrogen bonding effect by time resolved stimulated emission. J. Phys. Chem. A 105, 11026–11033 (2001)

    Article  CAS  Google Scholar 

  27. D.W. McCamant, P. Kukura, R.A. Mathies, Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin. J. Phys. Chem. B 109, 10449–10457 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. H. Mohapatra, S. Umapathy, Influence of solvent on photoinduced electron-transfer reaction: Time-resolved resonance Raman study. J. Phys. Chem. A 113, 6904–6909 (2009)

    Article  CAS  PubMed  Google Scholar 

  29. S.E. Braslavsky, G.E. Heibel, Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution. Chem. Rev. 92, 1381–1410 (1992)

    Article  CAS  Google Scholar 

  30. M. Buback, A. M. van Herk (eds.), Radical Polymerization: Kinetics and Mechanism (Wiley, Weinheim, 2007)

    Google Scholar 

  31. W. Schnabel, J. Fouassier, J. Rabek, Lasers in Polymer Science and Technology: Applications (CRC Press, Boca Raton, 1990)

    Google Scholar 

  32. J.-P. Fouassier, Photoinitiation, Photopolymerization, and Photocuring: Fundamentals and Applications (Hanser, Munich, 1995)

    Google Scholar 

  33. X. Allonas, J. Lalevee, J. Fouassier, in Photoinitiated Polymerization, ACS Symposium Series, ed. by K.D. Belfield, J.V. Crivello, vol 847 (American Chemical Society, Washington, DC, 2003), p. 140

    Google Scholar 

  34. G. Odian, Principles of Polymerization (Wiley, Hoboken, 2004)

    Book  Google Scholar 

  35. N.S. Allen, Photochemistry and Photophysics of Polymeric Materials (Wiley, Weinheim, 2010)

    Book  Google Scholar 

  36. P. Xiao, J. Zhang, F. Dumur, M.A. Tehfe, F. Morlet-Savary, B. Graff, D. Gigmes, J.P. Fouassier, J. Lalevée, Visible light sensitive photoinitiating systems: Recent progress in cationic and radical photopolymerization reactions under soft conditions. Prog. Polym. Sci. 41, 32–66 (2015)

    Article  CAS  Google Scholar 

  37. J. Lalevée, M.-A. Tehfe, F. Dumur, D. Gigmes, B. Graff, F. Morlet-Savary, J.-P. Fouassier, Light-harvesting organic photoinitiators of polymerization. Macromol. Rapid Commun. 34, 239–245 (2013)

    Article  PubMed  CAS  Google Scholar 

  38. M.-A. Tehfe, J. Lalevée, S. Telitel, E. Contal, F. Dumur, D. Gigmes, D. Bertin, M. Nechab, B. Graff, F. Morlet-Savary, J.-P. Fouassier, Polyaromatic structures as organo-photoinitiator catalysts for efficient visible light induced dual radical/cationic photopolymerization and interpenetrated polymer networks synthesis. Macromolecules 45, 4454–4460 (2012)

    Article  CAS  Google Scholar 

  39. B. Ganster, U.K. Fischer, N. Moszner, R. Liska, New photocleavable structures. Diacylgermane-based photoinitiators for visible light curing. Macromolecules 41, 2394–2400 (2008)

    Article  CAS  Google Scholar 

  40. N. Moszner, U.K. Fischer, B. Ganster, R. Liska, V. Rheinberger, Benzoyl germanium derivatives as novel visible light photoinitiators for dental materials. Dent. Mater. 24, 901–907 (2008)

    Article  CAS  PubMed  Google Scholar 

  41. M.-A. Tehfe, N. Blanchard, C. Fries, J. Lalevée, X. Allonas, J.P. Fouassier, Bis(germyl)ketones: Toward a new class of type I photoinitiating systems sensitive above 500 nm? Macromol. Rapid Commun. 31, 473–478 (2010)

    Article  CAS  PubMed  Google Scholar 

  42. J. Lalevée, X. Allonas, J.P. Fouassier, Acylgermanes: Excited state processes and reactivity. Chem. Phys. Lett. 469, 298–303 (2009)

    Article  CAS  Google Scholar 

  43. J. Lalevée, N. Blanchard, M.-A. Tehfe, M. Peter, F. Morlet-Savary, J.P. Fouassier, A novel photopolymerization initiating system based on an iridium complex photocatalyst. Macromol. Rapid Commun. 32, 917–920 (2011)

    Article  PubMed  CAS  Google Scholar 

  44. J. Lalevée, M. Peter, F. Dumur, D. Gigmes, N. Blanchard, M.-A. Tehfe, F. Morlet-Savary, J.P. Fouassier, Subtle ligand effects in oxidative photocatalysis with iridium complexes: Application to photopolymerization. Chem. Eur. J. 17, 15027–15031 (2011)

    Article  PubMed  CAS  Google Scholar 

  45. A.F. Jacobine, Thiol-ene photopolymers, in Radiation Curing in Polymer Science and Technology, vol. 3, (Kluwer Academic Publishers Group, Netherlands, 1993), pp. 219–268

    Google Scholar 

  46. C.E. Hoyle, T.Y. Lee, T. Roper, Thiol-enes: Chemistry of the past with promise for the future. J. Polym. Sci. Part A: Polym. Chem. 42, 5301–5338 (2004)

    Article  CAS  Google Scholar 

  47. C.E. Hoyle, C.N. Bowman, Thiol-ene click chemistry. Angew. Chem. Int. Ed. 49, 1540–1573 (2010)

    Article  CAS  Google Scholar 

  48. A. Dondoni, The emergence of thiol-ene coupling as a click process for materials and bioorganic chemistry. Angew. Chem. Int. Ed. 47, 8995–8997 (2008)

    Article  CAS  Google Scholar 

  49. A.B. Lowe, Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym. Chem. 1, 17–36 (2010)

    Article  CAS  Google Scholar 

  50. T.Y. Lee, C.A. Guymon, E.S. Jönsson, C.E. Hoyle, The effect of monomer structure on oxygen inhibition of (meth)acrylates photopolymerization. Polymer 45, 6155–6162 (2004)

    Article  CAS  Google Scholar 

  51. V.S. Khire, Y. Yi, N.A. Clark, C.N. Bowman, Formation and surface modification of nanopatterned thiol-ene substrates using step and flash imprint lithography. Adv. Mater. 20, 3308–3313 (2008)

    Article  CAS  Google Scholar 

  52. S.K. Reddy, R.P. Sebra, K.S. Anseth, C.N. Bowman, Living radical photopolymerization induced grafting on thiol-ene based substrates. J. Polym. Sci. Part A: Polym. Chem. 43, 2134–2144 (2005)

    Article  CAS  Google Scholar 

  53. M. Liu, J. van Hensbergen, R.P. Burford, A.B. Lowe, Thiol-Michael coupling chemistry: Facile access to a library of functional exo-7-oxanorbornenes and their ring-opening metathesis (co)polymerization. Polym. Chem. 3, 1647–1658 (2012)

    Article  CAS  Google Scholar 

  54. M. Liu, B.H. Tan, R.P. Burford, A.B. Lowe, Nucleophilic thiol-Michael chemistry and hyperbranched (co)polymers: Synthesis and ring-opening metathesis (co)polymerization of novel difunctional exo-7-oxanorbornenes with in situ inimer formation. Polym. Chem. 4, 3300–3311 (2013)

    Article  CAS  Google Scholar 

  55. S. Ohsawa, K. Morino, A. Sudo, T. Endo, Synthesis of bicyclic bis (γ-butyrolactone) derivatives bearing sulfide moieties and their alternating copolymers with epoxide. J. Polym. Sci. Part A: Polym. Chem. 50, 4666–4673 (2012)

    Article  CAS  Google Scholar 

  56. M. Firdaus, L. Montero de Espinosa, M.A. Meier, Terpene-based renewable monomers and polymers via thiol-ene additions. Macromolecules 44, 7253–7262 (2011)

    Article  CAS  Google Scholar 

  57. Y. Li, W.-B. Zhang, J.E. Janoski, X. Li, X. Dong, C. Wesdemiotis, R.P. Quirk, S.Z. Cheng, Anionic synthesis of mono-and heterotelechelic polystyrenes via thiol-ene “click” chemistry and hydrosilylation. Macromolecules 44, 3328–3337 (2011)

    Article  CAS  Google Scholar 

  58. A.J. Magenau, J.W. Chan, C.E. Hoyle, R.F. Storey, Facile polyisobutylene functionalization via thiol-ene click chemistry. Polym. Chem. 1, 831–833 (2010)

    Article  CAS  Google Scholar 

  59. J.A. Syrett, M.W. Jones, D.M. Haddleton, A facile route to end-functionalised polymers synthesised by SET-LRP via a one-pot reduction/thiol-ene Michael-type addition. Chem. Commun. 46, 7181–7183 (2010)

    Article  CAS  Google Scholar 

  60. M. Hong, S.R. Liu, B.X. Li, Y.S. Li, Application of thiol-ene click chemistry to preparation of functional polyethylene with high molecular weight and high polar group content: Influence of thiol structure and vinyl type on reactivity. J. Polym. Sci. Part A: Polym. Chem. 50, 2499–2506 (2012)

    Article  CAS  Google Scholar 

  61. J. Mazzolini, O. Boyron, V. Monteil, F. D’Agosto, C. Boisson, G.C. Sanders, J.P. Heuts, R. Duchateau, D. Gigmes, D. Bertin, Polyethylene end functionalization using thia-Michael addition chemistry. Polym. Chem. 3, 2383–2392 (2012)

    Article  CAS  Google Scholar 

  62. H. Durmaz, M. Butun, G. Hizal, U. Tunca, Postfunctionalization of polyoxanorbornene via sequential Michael addition and radical thiol-ene click reactions. J. Polym. Sci. Part A: Polym. Chem. 50, 3116–3125 (2012)

    Article  CAS  Google Scholar 

  63. H. Mutlu, A.N. Parvulescu, P.C. Bruijnincx, B.M. Weckhuysen, M.A. Meier, On the polymerization behavior of telomers: Metathesis versus thiol-ene chemistry. Macromolecules 45, 1866–1878 (2012)

    Article  CAS  Google Scholar 

  64. J.S. Silverstein, B.J. Casey, M.E. Natoli, B.J. Dair, P. Kofinas, Rapid modular synthesis and processing of thiol-ene functionalized styrene–butadiene block copolymers. Macromolecules 45, 3161–3167 (2012)

    Article  CAS  Google Scholar 

  65. O. Kreye, T. Tóth, M.A. Meier, Copolymers derived from rapeseed derivatives via ADMET and thiol-ene addition. Eur. Polym. J. 47, 1804–1816 (2011)

    Article  CAS  Google Scholar 

  66. N.K. Singha, M.I. Gibson, B.P. Koiry, M. Danial, H.-A. Klok, Side-chain peptide-synthetic polymer conjugates via tandem “ester-amide/thiol-ene” post-polymerization modification of poly (pentafluorophenyl methacrylate) obtained using ATRP. Biomacromolecules 12, 2908–2913 (2011)

    Article  CAS  PubMed  Google Scholar 

  67. J. Kienberger, N. Noormofidi, I. Mühlbacher, I. Klarholz, C. Harms, C. Slugovc, Antimicrobial equipment of poly (isoprene) applying thiol-ene chemistry. J. Polym. Sci. Part A: Polym. Chem. 50, 2236–2243 (2012)

    Article  CAS  Google Scholar 

  68. L. Yin, M.C. Dalsin, A. Sizovs, T.M. Reineke, M.A. Hillmyer, Glucose-functionalized, serum-stable polymeric micelles from the combination of anionic and RAFT polymerizations. Macromolecules 45, 4322–4332 (2012)

    Article  CAS  Google Scholar 

  69. O. Türünç, M.A. Meier, Thiol-ene vs. ADMET: A complementary approach to fatty acid-based biodegradable polymers. Green Chem. 13, 314–320 (2011)

    Article  CAS  Google Scholar 

  70. J. Mergy, A. Fournier, E. Hachet, R. Auzély-Velty, Modification of polysaccharides via thiol-ene chemistry: A versatile route to functional biomaterials. J. Polym. Sci. Part A: Polym. Chem. 50, 4019–4028 (2012)

    Article  CAS  Google Scholar 

  71. C.E. Hoyle, A.B. Lowe, C.N. Bowman, Thiol-click chemistry: A multifaceted toolbox for small molecule and polymer synthesis. Chem. Soc. Rev. 39, 1355–1387 (2010)

    Article  CAS  PubMed  Google Scholar 

  72. A.F. Senyurt, C.E. Hoyle, Three component ketocoumarin, amine, maleimide photoinitiator II. Eur. Polym. J. 42, 3133–3139 (2006)

    Article  CAS  Google Scholar 

  73. T.M. Roper, C.A. Guymon, E.S. Jönsson, C.E. Hoyle, Influence of the alkene structure on the mechanism and kinetics of thiol-alkene photopolymerizations with real-time infrared spectroscopy. J. Polym. Sci. Part A: Polym. Chem. 42, 6283–6298 (2004)

    Article  CAS  Google Scholar 

  74. T.M. Roper, T.Y. Lee, C.A. Guymon, C.E. Hoyle, In situ characterization of photopolymerizable systems using a thin-film calorimeter. Macromolecules 38, 10109–10116 (2005)

    Article  CAS  Google Scholar 

  75. S.K. Reddy, N.B. Cramer, C.N. Bowman, Thiol-vinyl mechanisms. 2. Kinetic modeling of ternary thiol-vinyl photopolymerizations. Macromolecules 39, 3681–3687 (2006)

    Article  CAS  Google Scholar 

  76. O. Okay, C.N. Bowman, Kinetic modeling of thiol-ene reactions with both step and chain growth aspects. Macromol. Theory Simul. 14, 267–277 (2005)

    Article  CAS  Google Scholar 

  77. H. Lu, J.A. Carioscia, J.W. Stansbury, C.N. Bowman, Investigations of step-growth thiol-ene polymerizations for novel dental restoratives. Dent. Mater. 21, 1129–1136 (2005)

    Article  CAS  PubMed  Google Scholar 

  78. T.Y. Lee, T.M. Roper, C.A. Guymon, E.S. Jonsson, C.E. Hoyle, Film Formation, vol 941 (American Chemical Society, Washington, DC, 2006), pp. 17–28, Chap. 2

    Book  Google Scholar 

  79. T.Y. Lee, J. Carioscia, Z. Smith, C.N. Bowman, Thiol-allyl ether-methacrylate ternary systems. Evolution mechanism of polymerization-induced shrinkage stress and mechanical properties. Macromolecules 40, 1473–1479 (2007)

    Article  CAS  Google Scholar 

  80. T.Y. Lee, Z. Smith, S.K. Reddy, N.B. Cramer, C.N. Bowman, Thiol-allyl ether-methacrylate ternary systems. Polymerization mechanism. Macromolecules 40, 1466–1472 (2007)

    Article  CAS  Google Scholar 

  81. S.K. Reddy, N.B. Cramer, M. Kalvaitas, T.Y. Lee, C.N. Bowman, Mechanistic modelling and network properties of thiol-vinyl photopolymerizations. Aust. J. Chem. 59, 586–593 (2006)

    Article  CAS  Google Scholar 

  82. J.V. Crivello, The discovery and development of onium salt cationic photoinitiators. J. Polym. Sci. A Polym. 37, 4241–4254 (1999)

    Article  CAS  Google Scholar 

  83. J.V. Crivello, J. Lam, Diaryliodonium salts. A new class of photoinitiators for cationic polymerization. Macromolecules 10, 1307–1315 (1977)

    Article  CAS  Google Scholar 

  84. J.V. Crivello, J. Lam, Photoinitiated cationic polymerization with triarylsulfonium salts. J. Polym. Sci. Part A: Polym. Chem. 17, 977–999 (1979)

    CAS  Google Scholar 

  85. J. Crivello, Initiators, Poly-reactions, Optical Activity (Springer, Heidelberg, 1984), pp. 1–48

    Book  Google Scholar 

  86. M.U. Kahveci, A.G. Yilmaz, Y. Yagci, Photoinitiated cationic polymerization reactivity and mechanistic aspects, in Photochemistry and Photophysics of Polymer Materaterials, ed. by N. S. Allen (Wiley, Hoboken, 2010), pp. 421–478

    Google Scholar 

  87. M. Sangermano, N. Razza, J.V. Crivello, Cationic UV-curing: Technology and applications. Macromol. Mater. Eng. 299, 775–793 (2014)

    Article  CAS  Google Scholar 

  88. J.V. Crivello, Diaryliodonium salt photoacid generators, in Iodine Chemistry and Applications, ed. by T. Kaiho (Wiley, Weinheim, 2014), p. 459

    Google Scholar 

  89. J. Lalevée, A. Dirani, M. El-Roz, X. Allonas, J.P. Fouassier, Germanes as efficient coinitiators in radical and cationic photopolymerizations. J. Polym. Sci. Part A: Polym. Chem. 46, 3042–3047 (2008)

    Article  CAS  Google Scholar 

  90. J. Lalevée, N. Blanchard, M. El-Roz, B. Graff, X. Allonas, J.P. Fouassier, New photoinitiators based on the silyl radical chemistry: Polymerization ability, ESR spin trapping, and laser flash photolysis investigation. Macromolecules 41, 4180–4186 (2008)

    Article  CAS  Google Scholar 

  91. N. Moszner, F. Zeuner, I. Lamparth, U.K. Fischer, Benzoylgermanium derivatives as novel visible-light photoinitiators for dental composites. Macromol. Mater. Eng. 294, 877–886 (2009)

    Article  CAS  Google Scholar 

  92. Y.Y. Durmaz, M. Kukut, N. Moszner, Y. Yagci, Sequential photodecomposition of bisacylgermane type photoinitiator: Synthesis of block copolymers by combination of free radical promoted cationic and free radical polymerization mechanisms. J. Polym. Sci. Part A: Polym. Chem. 47, 4793–4799 (2009)

    Article  CAS  Google Scholar 

  93. Y.Y. Durmaz, N. Moszner, Y. Yagci, Visible light initiated free radical promoted cationic polymerization using acylgermane based photoinitiator in the presence of onium salts. Macromolecules 41, 6714–6718 (2008)

    Article  CAS  Google Scholar 

  94. J.V. Crivello, M.F. Aldersley, Supramolecular diaryliodonium salt-crown ether complexes as cationic photoinitiators. J. Polym. Sci. Part A: Polym. Chem. 51, 801–814 (2013)

    Article  CAS  Google Scholar 

  95. M.U. Kahveci, M.A. Tasdelen, Y. Yagci, Photochemically initiated free radical promoted living cationic polymerization of isobutyl vinyl ether. Polymer 48, 2199–2202 (2007)

    Article  CAS  Google Scholar 

  96. Y. Yagci, S. Jockusch, N.J. Turro, Photoinitiated polymerization: Advances, challenges, and opportunities. Macromolecules 43, 6245–6260 (2010)

    Article  CAS  Google Scholar 

  97. M.U. Kahveci, M. Uygun, M.A. Tasdelen, W. Schnabel, W.D. Cook, Y. Yagci, Photoinitiated cationic polymerization of vinyl ethers using substituted vinyl halides. Macromolecules 42, 4443–4448 (2009)

    Article  CAS  Google Scholar 

  98. J. Lalevée, N. Blanchard, M.-A. Tehfe, F. Morlet-Savary, J.P. Fouassier, Green bulb light source induced epoxy cationic polymerization under air using tris(2,2′-bipyridine)ruthenium(II) and silyl radicals. Macromolecules 43, 10191–10195 (2010)

    Article  CAS  Google Scholar 

  99. J. Lalevee, N. Blanchard, M.-A. Tehfe, M. Peter, F. Morlet-Savary, D. Gigmes, J.P. Fouassier, Efficient dual radical/cationic photoinitiator under visible light: A new concept. Polym. Chem. 2, 1986–1991 (2011)

    Article  CAS  Google Scholar 

  100. J. Lalevée, M.-A. Tehfe, F. Dumur, D. Gigmes, N. Blanchard, F. Morlet-Savary, J.P. Fouassier, Iridium photocatalysts in free radical photopolymerization under visible lights. ACS Macro Lett. 1, 286–290 (2012)

    Article  CAS  Google Scholar 

  101. M.-A. Tehfe, D. Gigmes, F. Dumur, D. Bertin, F. Morlet-Savary, B. Graff, J. Lalevee, J.-P. Fouassier, Cationic photosensitive formulations based on silyl radical chemistry for green and red diode laser exposure. Polym. Chem. 3, 1899–1902 (2012)

    Article  CAS  Google Scholar 

  102. J. Lalevée, F. Dumur, C.R. Mayer, D. Gigmes, G. Nasr, M.-A. Tehfe, S. Telitel, F. Morlet-Savary, B. Graff, J.P. Fouassier, Photopolymerization of N-vinylcarbazole using visible-light harvesting iridium complexes as photoinitiators. Macromolecules 45, 4134–4141 (2012)

    Article  CAS  Google Scholar 

  103. M.-A. Tehfe, J. Lalevée, S. Telitel, J. Sun, J. Zhao, B. Graff, F. Morlet-Savary, J.-P. Fouassier, Iridium complexes incorporating coumarin moiety as catalyst photoinitiators: Towards household green LED bulb and halogen lamp irradiation. Polymer 53, 2803–2808 (2012)

    Article  CAS  Google Scholar 

  104. M. Shirai, M. Tsunooka, Photoacid and photobase generators: Chemistry and applications to polymeric materials. Prog. Polym. Sci. 21, 1–45 (1996)

    Article  CAS  Google Scholar 

  105. H. Yamato, T. Asakura, T. Hintermann, M. Ohwa, Novel Nonionic Photoacid Generator Releasing Strong Acid for Chemically Amplified Resists, Proc. SPIE 5376 (SPIE, Bellingham, 2004), pp. 103–114

    Google Scholar 

  106. M.K. Gupta, R.P. Singh, Diphenyldiselenide as novel non-salt photoinitiator for photosensitized cationic polymerization of N-vinyl carbazole. Macromol. Symp. 240, 186–193 (2006)

    Article  CAS  Google Scholar 

  107. M. Shirai, H. Okamura, i-Line sensitive photoacid generators for UV curing. Prog. Org. Coat. 64, 175–181 (2009)

    Article  CAS  Google Scholar 

  108. J.-P. Malval, S. Suzuki, F. Morlet-Savary, X. Allonas, J.-P. Fouassier, S. Takahara, T. Yamaoka, Photochemistry of naphthalimide photoacid generators. J. Phys. Chem. A 112, 3879–3885 (2008)

    Article  CAS  PubMed  Google Scholar 

  109. J.-P. Pascault, R. J. Williams (eds.), Epoxy Polymers (Wiley, Weinheim, 2009)

    Google Scholar 

  110. Y. Yagci, Photoinitiated cationic polymerization of unconventional monomers. Macromol. Symp. 240, 93–101 (2006)

    Article  CAS  Google Scholar 

  111. J.-P. Fouassier, X. Allonas, Basics and Applications of Photopolymerization Reactions (Research Signpost, Trivandrum, 2010)

    Google Scholar 

  112. J.V. Crivello, R. Acosta Ortiz, Benzyl alcohols as accelerators in the photoinitiated cationic polymerization of epoxide monomers. J. Polym. Sci. Part A: Polym. Chem. 40, 2298–2309 (2002)

    Article  CAS  Google Scholar 

  113. S. Penczek, Cationic ring-opening polymerization (CROP) major mechanistic phenomena. J. Polym. Sci. Part A: Polym. Chem. 38, 1919–1933 (2000)

    Article  CAS  Google Scholar 

  114. P. Kubisa, Hyperbranched polyethers by ring-opening polymerization: Contribution of activated monomer mechanism. J. Polym. Sci. Part A: Polym. Chem. 41, 457–468 (2003)

    Article  CAS  Google Scholar 

  115. J.V. Crivello, J. Ma, F. Jiang, H. Hua, J. Ahn, R. Acosta Ortiz, Advances in the design of photoinitiators, photo-sensitizers and monomers for photoinitiated cationic polymerization. Macromol. Symp. 215, 165–178 (2004)

    Article  CAS  Google Scholar 

  116. Y. Hua, J.V. Crivello, Development of polymeric photosensitizers for photoinitiated cationic polymerization. Macromolecules 34, 2488–2494 (2001)

    Article  CAS  Google Scholar 

  117. J.V. Crivello, J.L. Lee, D.A. Conlon, Developments in the design and applications of novel thermal and photochemical initiators for cationic polymerization. Macromol. Symp. 13–14, 145–160 (1988)

    Article  Google Scholar 

  118. R.W. Lenz, in Polymer Syntheses, vol 1, ed. by S.R. Sandler, Wolf Karo, Monographs on Organic Chemistry, vol 29-l (Academic, New York, 1974)

    Google Scholar 

  119. K.S. Anseth, L.M. Kline, T.A. Walker, K.J. Anderson, C.N. Bowman, Reaction kinetics and volume relaxation during polymerizations of multiethylene glycol dimethacrylates. Macromolecules 28, 2491–2499 (1995)

    Article  CAS  Google Scholar 

  120. C.M. Chung, J.G. Kim, M.S. Kim, K.M. Kim, K.N. Kim, Development of a new photocurable composite resin with reduced curing shrinkage. Dent. Mater. 18, 174–178 (2002)

    Article  CAS  PubMed  Google Scholar 

  121. M. Atai, D.C. Watts, A new kinetic model for the photopolymerization shrinkage-strain of dental composites and resin-monomers. Dent. Mater. 22, 785–791 (2006)

    Article  CAS  PubMed  Google Scholar 

  122. A. del Campo, E. Arzt (eds.), Generating Micro-and Nanopatterns on Polymeric Materials (Wiley, Weinheim, 2011)

    Google Scholar 

  123. D. Nagai, M. Nishida, T. Nagasawa, B. Ochiai, K. Miyazaki, T. Endo, Non-shrinking networkedmaterials from the cross-linking copolymerization of spiroorthocarbonate with bifunctional oxetane. Macromol. Rapid Commun. 27, 921–925 (2006)

    Article  CAS  Google Scholar 

  124. S. Putzien, E. Louis, O. Nuyken, J.V. Crivello, F.E. Kühn, UV curing of epoxy functional hybrid silicones. J. Appl. Polym. Sci. 126, 1188–1197 (2012)

    Article  CAS  Google Scholar 

  125. Y. Fukuchi, T. Takahashi, H. Noguchi, M. Saburi, Y. Uchida, Photoinitiated anionic coordination polymerization of epoxides, a novel polymerization process. Macromolecules 20, 2316–2317 (1987)

    Article  CAS  Google Scholar 

  126. D.B. Yang, C. Kutal, Radiation curing, in Inorganic and Organometallic Photoinitiators, ed. by S. P. Pappas (Springer, Heidelberg, 1992), pp. 21–55

    Google Scholar 

  127. C. Kutal, P.A. Grutsch, D.B. Yang, A novel strategy for photoinitiated anionic polymerization. Macromolecules 24, 6872–6873 (1991)

    Article  CAS  Google Scholar 

  128. Y. Yamaguchi, B.J. Palmer, C. Kutal, T. Wakamatsu, D.B. Yang, Ferrocenes as anionic photoinitiators. Macromolecules 31, 5155–5157 (1998)

    Article  CAS  PubMed  Google Scholar 

  129. V.V. Jarikov, D.C. Neckers, Anionic photopolymerization of methyl 2-cyanoacrylate and simultaneous color formation. Macromolecules 33, 7761–7764 (2000)

    Article  CAS  Google Scholar 

  130. R.B. Paul, J.M. Kelly, D.C. Pepper, C. Long, Photoinduced anionic polymerization of cyanoacrylates using substituted pyridine pentacarbonyl complexes of tungsten or chromium. Polymer 38, 2011–2014 (1997)

    Article  CAS  Google Scholar 

  131. Y. Yamaguchi, C. Kutal, Benzoyl-substituted ferrocenes: An attractive new class of anionic photoinitiators. Macromolecules 33, 1152–1156 (2000)

    Article  CAS  Google Scholar 

  132. Y. Watanabe, T. Aida, S. Inoue, First example of photoinduced copolymerizability enhancement: copolymerization of epoxide and episulfide initiated with zinc N-substituted porphyrin under visible light irradiation. Macromolecules 24, 3970–3972 (1991)

    Article  CAS  Google Scholar 

  133. W. Schnabel, Polymers and Light (Wiley-VCH, Weinheim, 2007), pp. 273–304

    Book  Google Scholar 

  134. C.T. Sanderson, B.J. Palmer, A. Morgan, M. Murphy, R.A. Dluhy, T. Mize, I.J. Amster, C. Kutal, Classical metallocenes as photoinitiators for the anionic polymerization of an alkyl 2-cyanoacrylate. Macromolecules 35, 9648–9652 (2002)

    Article  CAS  Google Scholar 

  135. B.J. Palmer, C. Kutal, R. Billing, H. Hennig, A new photoinitiator for anionic polymerization. Macromolecules 28, 1328–1329 (1995)

    Article  CAS  Google Scholar 

  136. R.J. Lavallee, B.J. Palmer, R. Billing, H. Hennig, G. Ferraudi, C. Kutal, Efficient substitutional photochemistry of a third-row transition metal β-diketonate complex. Inorg. Chem. 36, 5552–5558 (1997)

    Article  CAS  Google Scholar 

  137. Y.-H. Wang, P. Wan, Ketoprofen as a photoinitiator for anionic polymerization. Photochem. Photobiol. 14, 1120–1126 (2015)

    Article  CAS  Google Scholar 

  138. M. Tanabe, I. Manners, Photolytic living anionic ring-opening polymerization (ROP) of silicon-bridged [1] ferrocenophanes via an iron-cyclopentadienyl bond cleavage mechanism. J. Am. Chem. Soc. 126, 11434–11435 (2004)

    Article  CAS  PubMed  Google Scholar 

  139. W.Y. Chan, A.J. Lough, I. Manners, Synthesis, characterization, and photocontrolled ring-opening polymerization of sila[1]ferrocenophanes with multiple alkyne substituents. Organometallics 26, 1217–1225 (2007)

    Article  CAS  Google Scholar 

  140. R.L.N. Hailes, A.M. Oliver, J. Gwyther, G.R. Whittell, I. Manners, Polyferrocenylsilanes: Synthesis, properties, and applications. Chem. Soc. Rev. 45, 5358–5407 (2016)

    Article  CAS  PubMed  Google Scholar 

  141. M. Tanabe, G.W.M. Vandermeulen, W.Y. Chan, P.W. Cyr, L. Vanderark, D.A. Rider, I. Manners, Photocontrolled living polymerizations. Nat. Mater. 5, 467–470 (2006)

    Article  CAS  PubMed  Google Scholar 

  142. G.S. Smith, S.K. Patra, L. Vanderark, S. Saithong, J.P. Charmant, I. Manners, Photocontrolled living anionic polymerization of silicon-bridged [1] ferrocenophanes with fluorinated substituents: Synthesis and characterization of fluorinated polyferrocenylsilane (PFS) homopolymers and block copolymers. Macromol. Chem. Phys. 211, 303–312 (2010)

    Article  CAS  Google Scholar 

  143. Z. Wang, G. Masson, F.C. Peiris, G.A. Ozin, I. Manners, Living photolytic ring-opening polymerization of amino-functionalized [1] ferrocenophanes: Synthesis and layer-by-layer self-assembly of well-defined water-soluble polyferrocenylsilane polyelectrolytes. Chem. Eur. J. 13, 9372–9383 (2007)

    Article  CAS  PubMed  Google Scholar 

  144. X. Wang, M.A. Winnik, I. Manners, Synthesis, self-assembly, and applications of polyferrocenylsilane block copolymers, in ACS Symposium Series, vol 928 (American Chemical Society, Washington, DC, 2006), pp. 274–291

    Google Scholar 

  145. F. Wurm, S. Hilf, H. Frey, Electroactive linear–hyperbranched block copolymers based on linear poly(ferrocenylsilane)s and hyperbranched poly(carbosilane)s. Chem. Eur. J. 15, 9068–9077 (2009)

    Article  CAS  PubMed  Google Scholar 

  146. I. Hamley, Nanostructure fabrication using block copolymers. Nanotechnology 14, R39 (2003)

    Article  CAS  Google Scholar 

  147. M.P. Stoykovich, P.F. Nealey, Block copolymers and conventional lithography. Mater. Today 9, 20–29 (2006)

    Article  CAS  Google Scholar 

  148. J.Y. Cheng, C.A. Ross, H.I. Smith, E.L. Thomas, Templated self-assembly of block copolymers: Top-down helps bottom-up. Adv. Mater. 18, 2505–2521 (2006)

    Article  CAS  Google Scholar 

  149. J. Bang, U. Jeong, D.Y. Ryu, T.P. Russell, C.J. Hawker, Block copolymer nanolithography: Translation of molecular level control to nanoscale patterns. Adv. Mater. 21, 4769–4792 (2009)

    Article  CAS  PubMed  Google Scholar 

  150. C. Hinderling, Y. Keles, T. Stöckli, H.F. Knapp, T. De los Arcos, P. Oelhafen, I. Korczagin, M.A. Hempenius, G.J. Vancso, R. Pugin, Organometallic block copolymers as catalyst precursors for templated carbon nanotube growth. Adv. Mater. 16, 876–879 (2004)

    Article  CAS  Google Scholar 

  151. C. Acikgoz, B. Vratzov, M.A. Hempenius, G.J. Vancso, J. Huskens, Nanoscale patterning by UV nanoimprint lithography using an organometallic resist. ACS Appl. Mater. Interfaces 1, 2645–2650 (2009)

    Article  CAS  PubMed  Google Scholar 

  152. C. Acikgoz, X.Y. Ling, I.Y. Phang, M.A. Hempenius, D.N. Reinhoudt, J. Huskens, G.J. Vancso, Fabrication of free-standing nanoporous polyethersulfone membranes using organometallic polymer resists patterned by nanosphere lithography. Adv. Mater. 21, 2064–2067 (2009)

    Article  CAS  Google Scholar 

  153. X.Y. Ling, C. Acikgoz, I.Y. Phang, M.A. Hempenius, D.N. Reinhoudt, G.J. Vancso, J. Huskens, 3D ordered nanostructures fabricated by nanosphere lithography using an organometallic etch mask. Nanoscale 2, 1455–1460 (2010)

    Article  CAS  PubMed  Google Scholar 

  154. R.G. Lammertink, M.A. Hempenius, V.Z.-H. Chan, E.L. Thomas, G.J. Vancso, Poly (ferrocenyldimethylsilanes) for reactive ion etch barrier applications. Chem. Mater. 13, 429–434 (2001)

    Article  CAS  Google Scholar 

  155. K.Y. Suh, Y.S. Kim, H.H. Lee, Capillary force lithography. Adv. Mater. 13, 1386–1389 (2001)

    Article  CAS  Google Scholar 

  156. I. Korczagin, H. Xu, M.A. Hempenius, G.J. Vancso, Pattern transfer fidelity in capillary force lithography with poly (ferrocenylsilane) plasma etch resists. Eur. Polym. J. 44, 2523–2528 (2008)

    Article  CAS  Google Scholar 

  157. K. Suyama, M. Shirai, Photobase generators: Recent progress and application trend in polymer systems. Prog. Polym. Sci. 34, 194–209 (2009)

    Article  CAS  Google Scholar 

  158. A. Chemtob, F. Courtecuisse, C. Croutxe-Barghorn, S. Rigolet, Simultaneous sol-gel and anionic photopolymerization of 3-(glycidyloxypropyl)trimethoxysilanevia photobase catalysis. New J. Chem. 35, 1803–1808 (2011)

    Article  CAS  Google Scholar 

  159. K.-S. Lee, R.H. Kim, D.-Y. Yang, S.H. Park, Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog. Polym. Sci. 33, 631–681 (2008)

    Article  CAS  Google Scholar 

  160. P. Prabhakaran, T.D. Kim, K.S. Lee, in Polymer Science: A Comprehensive Reference, ed. by M. Möller (Elsevier, Amsterdam, 2012), pp. 211–260

    Google Scholar 

  161. M. Albota, D. Beljonne, J.-L. Brédas, J.E. Ehrlich, J.-Y. Fu, A.A. Heikal, S.E. Hess, T. Kogej, M.D. Levine, S.R. Marder, D. McCord-Maughon, Design of organic molecules with large two-photon absorption cross sections. Science 281, 1653–1656 (1998)

    Article  CAS  PubMed  Google Scholar 

  162. H.-K. Yang, M.-S. Kim, S.-W. Kang, K.-S. Kim, K.-S. Lee, S.H. Park, D.-Y. Yang, H.J. Kong, H.-B. Sun, S. Kawata, Recent progress of lithographic microfabrication by the TPA-induced photopolymerization. J. Photopolym. Sci. Technol. 17, 385–392 (2004)

    Article  CAS  Google Scholar 

  163. O.-K. Kim, K.-S. Lee, H.Y. Woo, K.-S. Kim, G.S. He, J. Swiatkiewicz, P.N. Prasad, New class of two-photon-absorbing chromophores based on dithienothiophene. Chem. Mater. 12, 284–286 (2000)

    Article  CAS  Google Scholar 

  164. S.J. Pond, O. Tsutsumi, M. Rumi, O. Kwon, E. Zojer, J.-L. Brédas, S.R. Marder, J.W. Perry, Metal-ion sensing fluorophores with large two-photon absorption cross sections: aza-crown ether substituted donor-acceptor-donor distyrylbenzenes. J. Am. Chem. Soc. 126, 9291–9306 (2004)

    Article  CAS  PubMed  Google Scholar 

  165. J.-G. Lim, P. Prabhakaran, J.S. Park, Y. Son, T.-D. Kim, D.-Y. Yang, K.-S. Lee, Synthesis and photophysical properties of two-photon absorbing spirofluorene derivatives. J. Nanosci. Nanotechnol. 12, 4403–4408 (2012)

    Article  CAS  PubMed  Google Scholar 

  166. N. Cho, P.L. Baldeck, G.S. He, D.-H. Hwang, P.N. Prasad, P. Prabhakaran, T.-D. Kim, K.-S. Lee, Degenerate multi-photon properties of spirofluorene derivatives. J. Nanosci. Nanotechnol. 10, 6958–6961 (2010)

    Article  CAS  PubMed  Google Scholar 

  167. N. Cho, G. Zhou, K. Kamada, R.H. Kim, K. Ohta, S.-H. Jin, K. Müllen, K.-S. Lee, The impact of charge defects and resonance enhancement on the two-photon absorption activity of spirofluorene and ladder-type pentaphenylene derivatives. J. Mater. Chem. 22, 185–191 (2012)

    Article  CAS  Google Scholar 

  168. M. Albota, D. Beljonne, J.L. Breas, J.E. Ehrlich, J.Y. Fu, A.A. Heikal, S.E. Hess, T. Kogej, M.D. Levin, S.R. Marder, Design of organic molecules with large two-photon absorption cross sections. Science 281, 1653 (1998)

    Article  CAS  PubMed  Google Scholar 

  169. M. Barzoukas, M. Blanchard-Desce, Molecular engineering of push–pull dipolar and quadrupolar molecules for two-photon absorption: A multivalence-bond states approach. J. Chem. Phys. 113, 3951–3959 (2000)

    Article  CAS  Google Scholar 

  170. B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.Y.S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S.R. Marder, J.W. Perry, Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51–54 (1999)

    Article  CAS  Google Scholar 

  171. O. Mongin, L. Porrès, L. Moreaux, J. Mertz, M. Blanchard-Desce, Synthesis and photophysical properties of new conjugated fluorophores designed for two-photon-excited fluorescence. Org. Lett. 4, 719–722 (2002)

    Article  CAS  PubMed  Google Scholar 

  172. S.L. Oliveira, D.S. Correa, L. Misoguti, C.J.L. Constantino, R.F. Aroca, S.C. Zilio, C.R. Mendonca, Perylene derivatives with large two-photon-absorption cross-sections for application in optical limiting and upconversion lasing. Adv. Mater. 17, 1890–1893 (2005)

    Article  CAS  Google Scholar 

  173. D. Beljonne, W. Wenseleers, E. Zojer, Z. Shuai, H. Vogel, S.J.K. Pond, J.W. Perry, S.R. Marder, J.L. Bredas, Role of dimensionality on the two-photon absorption response of conjugated molecules: The case of octupolar compounds. Adv. Funct. Mater. 12, 631–641 (2002)

    Article  CAS  Google Scholar 

  174. A. Bhaskar, G. Ramakrishna, Z. Lu, R. Twieg, J.M. Hales, D.J. Hagan, E. Van Stryland, T. Goodson, Investigation of two-photon absorption properties in branched alkene and alkyne chromophores. J. Am. Chem. Soc. 128, 11840–11849 (2006)

    Article  CAS  PubMed  Google Scholar 

  175. B.R. Cho, J.P. Ming, K.H. Son, S.H. Lee, S.J. Yoon, S.-J. Jeon, M. Cho, Nonlinear optical and two-photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene-containing octupolar oligomers. Chem. Eur. J. 8, 3907–3916 (2002)

    Article  CAS  PubMed  Google Scholar 

  176. S.J. Chung, K.S. Kim, T.C. Lin, G.S. He, J. Swiatkiewicz, P.N. Prasad, Cooperative enhancement of two-photon absorption in multi-branched structures. J. Phys. Chem. B 103, 10741–10745 (1999)

    Article  CAS  Google Scholar 

  177. G.S. He, T.C. Lin, J. Dai, P.N. Prasad, R. Kannan, A.G. Dombroskie, R.A. Vaia, L.S. Tan, Degenerate two-photon-absorption spectral studies of highly two-photon active organic chromophores. J. Chem. Phys. 120, 5275 (2004)

    Article  CAS  PubMed  Google Scholar 

  178. S.J. Chung, T.C. Lin, K.S. Kim, G.S. He, J. Swiatkiewicz, P.N. Prasad, G.A. Baker, F.V. Bright, Two-photon absorption and excited-state energy-transfer properties of a new multibranched molecule. Chem. Mater. 13, 4071–4076 (2001)

    Article  CAS  Google Scholar 

  179. F. Meng, B. Li, S. Qian, K. Chen, H. Tian, Enhanced two-photon properties of tri-branched styryl derivatives based on 1,3,5-triazine. Chem. Lett. 33, 470–471 (2004)

    Article  CAS  Google Scholar 

  180. M. Drobizhev, A. Karotki, Y. Dzenis, A. Rebane, Z. Suo, C.W. Spangler, Strong cooperative enhancement of two-photon absorption in dendrimers. J. Phys. Chem. B 107, 7540–7543 (2003)

    Article  CAS  Google Scholar 

  181. O. Mongin, J. Brunel, L. Porr, M. Blanchard-Desce, Synthesis and two-photon absorption of triphenylbenzene-cored dendritic chromophores. Tetrahedron Lett. 44, 2813–2816 (2003)

    Article  CAS  Google Scholar 

  182. Q. Zheng, G.S. He, P.N. Prasad, π-Conjugated dendritic nanosized chromophore with enhanced two-photon absorption. Chem. Mater. 17, 6004–6011 (2005)

    Article  CAS  Google Scholar 

  183. J.M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J.W. Perry, S.R. Marder, Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit. Science 327, 1485–1488 (2010)

    Article  CAS  PubMed  Google Scholar 

  184. M.J. Piao, B.R. Cho, K.H. Son, S.H.L. Soo, J.Y. Seung-Joon, J.M. Cho, Nonlinear optical and two-photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene-containing octupolar oligomers. Chem. Eur. J. 8, 3907–3916 (2002)

    Article  PubMed  Google Scholar 

  185. A. Hohenau, C. Cagran, G. Kranzelbinder, U. Scherf, G. Leising, Efficient continuous-wave two-photon absorption in para-phenylene-type polymers. Adv. Mater. 13, 1303 (2001)

    Article  CAS  Google Scholar 

  186. J. Hua, B. Li, F. Meng, F. Ding, S. Qian, H. Tian, Two-photon absorption properties of hyperbranched conjugated polymers with triphenylamine as the core. Polymer 45, 7143–7149 (2004)

    Article  CAS  Google Scholar 

  187. S.L. Oliveira, D.S. Correa, L. De Boni, L. Misoguti, S.C. Zilio, C.R. Mendonca, Two-photon absorption cross-section spectrum of a pi-conjugated polymer obtained using the white-light continuum Z-scan technique. Appl. Phys. Lett. 88, 021911–021913 (2006)

    Article  CAS  Google Scholar 

  188. W.J. Yang, C.H. Kim, M.Y. Jeong, Synthesis and two-photon absorption properties of 9, 10-bis(arylethynyl) anthracene derivatives. Chem. Mater. 16, 2783–2789 (2004)

    Article  CAS  Google Scholar 

  189. W. Zhou, S.M. Kuebler, K.L. Braun, T. Yu, J.K. Cammack, C.K. Ober, J.W. Perry, S.R. Marder, An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication. Science 296, 1106–1109 (2002)

    Article  CAS  PubMed  Google Scholar 

  190. C.O. Yanez, C.D. Andrade, K.D. Belfield, Characterization of novel sulfonium photoacid generators and their microwave-assisted synthesis. Chem. Commun. (7), 827–829 (2009)

    Google Scholar 

  191. R. Xia, J.-P. Malval, M. Jin, A. Spangenberg, D. Wan, H. Pu, T. Vergote, F. Morlet-Savary, H. Chaumeil, P. Baldeck, O. Poizat, O. Soppera, Enhancement of acid photogeneration through a para-to-meta substitution strategy in a sulfonium-based alkoxystilbene designed for two-photon polymerization. Chem. Mater. 24, 237–244 (2011)

    Article  CAS  Google Scholar 

  192. P. Prabhakaran, K.-S. Lee, Two-photon sensitized cationic polymerization for 3D nano/micro patterning. Display Imag. 1, 25–45 (2013)

    Google Scholar 

  193. C.N. LaFratta, J.T. Fourkas, T. Baldacchini, R.A. Farrer, Multiphoton fabrication. Angew. Chem. Int. Ed. 46, 6238–6258 (2007)

    Article  CAS  Google Scholar 

  194. I. Toshiro, K. Takahiro, Resist materials and processes for extreme ultraviolet lithography. Jpn. J. Appl. Phys. 52, 010002 (2013)

    Article  CAS  Google Scholar 

  195. K. Takahiro, O. Hiroaki, I. Toshiro, T. Seiichi, Relationship between chemical gradient and line edge roughness of chemically amplified extreme ultraviolet resist. Appl. Phys. Exp. 3, 036501 (2010)

    Article  CAS  Google Scholar 

  196. P.D. Ashby, D.L. Olynick, D.F. Ogletree, P.P. Naulleau, Resist materials for extreme ultraviolet lithography: Toward low-cost single-digit-nanometer patterning. Adv. Mater. 27, 5813–5819 (2015)

    Article  CAS  PubMed  Google Scholar 

  197. T. Kozawa, H. Oizumi, T. Itani, S. Tagawa, Assessment and extendibility of chemically amplified resists for extreme ultraviolet lithography: consideration of nanolithography beyond 22 nm half-pitch, Japanese J. Appl. Phys. 50(7R), 076503 (2011)

    Article  Google Scholar 

  198. N. Mojarad, M. Hojeij, L. Wang, J. Gobrecht, Y. Ekinci, Single-digit-resolution nanopatterning with extreme ultraviolet light for the 2.5 nm technology node and beyond. Nanoscale 7, 4031–4037 (2015)

    Article  CAS  PubMed  Google Scholar 

  199. M. Kryask, M. Trikeriotis, C. Ouyang, S. Chakrabarty, E.P. Giannelis, C.K. Ober, Nanoparticle photoresists: Ligand exchange as a new, sensitive EUV patterning mechanism. J. Photopolym. Sci. Technol. 26, 659–664 (2013)

    Article  CAS  Google Scholar 

  200. S. Chakrabarty, C. Sarma, L. Li, E.P. Giannelis, C.K. Ober, Increasing sensitivity of oxide nanoparticle photoresists, in Proc. SPIE, vol 9048 (SPIE, Bellingham, 2014), pp. 90481C–90485C

    Google Scholar 

  201. L. Li, S. Chakrabarty, K. Spyrou, C.K. Ober, E.P. Giannelis, Studying the mechanism of hybrid nanoparticle photoresists: Effect of particle size on photopatterning. Chem. Mater. 27, 5027–5031 (2015)

    Article  CAS  Google Scholar 

  202. S.K. Sharma, S.P. Pal, P.G. Reddy, P. Kumar, S. Ghosh, K.E. Gonsalves, Design and development of low activation energy based nonchemically amplified resists (n-CARs) for next generation EUV lithography. Microelectron. Eng. 164, 115–122 (2016)

    Article  CAS  Google Scholar 

  203. L. Li, S. Chakrabarty, J. Jiang, B. Zhang, C. Ober, E.P. Giannelis, Solubility studies of inorganic-organic hybrid nanoparticle photoresists with different surface functional groups. Nanoscale 8, 1338–1343 (2016)

    Article  CAS  PubMed  Google Scholar 

  204. J.R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A.R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J.P. Rolland, A. Ermoshkin, Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015)

    Article  CAS  PubMed  Google Scholar 

  205. C.N. Lafratta, L. Li, Making two-photon polymerization faster, in Three-Dimensional Microfabrication Using Two-Photon Polymerization Fundamentals, Technology and Applications, ed. by T. Baldacchini (William Andrew, Oxford, 2016), pp. 221–240

    Chapter  Google Scholar 

  206. L. Dhar, M.G. Schnoes, H.E. Katz, A. Hale, M.L. Schilling, A.L. Harris, Photopolymers for digital holographic data storage, in Holographic Data Storage, ed. by A. Glass, M. Cardillo, H.J. Coufal, D. Psaltis, G.T. Sincerbox (Springer, Heidelberg, 2012), pp. 199–208

    Chapter  Google Scholar 

  207. F. Karasu, C. Croutxé-Barghorn, X. Allonas, L.G. Ven, Free radical photopolymerization initiated by UV and LED: Towards UV stabilized, tack free coatings. J. Polym. Sci. Part A: Polym. Chem. 52, 3597–3607 (2014)

    CAS  Google Scholar 

  208. T. Nardi, L.P. Canal, M. Hausmann, F. Dujonc, V. Michaud, J.-A.E. Månson, Y. Leterrier, Stress reduction mechanisms during photopolymerization of functionally graded polymer nanocomposite coatings. Prog. Org. Coat. 87, 204–212 (2015)

    Article  CAS  Google Scholar 

  209. S. Beke, R. Barenghi, B. Farkas, I. Romano, L. Kőrösi, S. Scaglione, F. Brandi, Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings. Mater. Sci. Eng. C 44, 38–43 (2014)

    Article  CAS  Google Scholar 

  210. K.D. Jandt, R.W. Mills, A brief history of LED photopolymerization. Dent. Mater. 29, 605–617 (2013)

    Article  CAS  PubMed  Google Scholar 

  211. R. Gauvin, Y.-C. Chen, J.W. Lee, P. Soman, P. Zorlutuna, J.W. Nichol, H. Bae, S. Chen, A. Khademhosseini, Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33, 3824–3834 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. D.L. Elbert, Bottom-up tissue engineering. Curr. Opin. Biotechnol. 22, 674–680 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. S. Beke, F. Anjum, H. Tsushima, L. Ceseracciu, E. Chieregatti, A. Diaspro, A. Athanassiou, F. Brandi, Towards excimer-laser-based stereolithography: A rapid process to fabricate rigid biodegradable photopolymer scaffolds. J. R. Soc. Interface 9, 3017 (2012). rsif20120300

    Article  CAS  PubMed Central  Google Scholar 

  214. M. Gonen-Wadmany, L. Oss-Ronen, D. Seliktar, Protein–polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering. Biomaterials 28, 3876–3886 (2007)

    Article  CAS  PubMed  Google Scholar 

  215. S. Suri, L.-H. Han, W. Zhang, A. Singh, S. Chen, C.E. Schmidt, Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering. Biomed. Microdevices 13, 983–993 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. K. Kojima, M. Ito, H. Morishita, N. Hayashi, A novel water-soluble photoinitiator for the acrylic photopolymerization type resist system. Chem. Mater. 10, 3429–3433 (1998)

    Article  CAS  Google Scholar 

  217. M. Hasegawa, A. Tominaga, Environmentally friendly positive-and negative-tone photo-patterning systems of low-K and low-CTE polyimides. J. Photopolym. Sci. Technol. 18, 307–312 (2005)

    Article  CAS  Google Scholar 

  218. A. Drizo, J. Pegna, Environmental impacts of rapid prototyping: An overview of research to date. Rapid Prototyping J. 12, 64–71 (2006)

    Article  Google Scholar 

  219. S.H. Huang, P. Liu, A. Mokasdar, L. Hou, Additive manufacturing and its societal impact: A literature review. Int. J. Adv. Manuf. Technol. 67, 1191–1203 (2013)

    Article  Google Scholar 

  220. L. Ionov, S. Diez, Environment-friendly photolithography using poly (N-isopropylacrylamide)-based thermoresponsive photoresists. J. Am. Chem. Soc. 131, 13315–13319 (2009)

    Article  CAS  PubMed  Google Scholar 

  221. D. Cody, I. Naydenova, E. Mihaylova, New non-toxic holographic photopolymer material. J. Opt. 14, 015601 (2011)

    Article  CAS  Google Scholar 

  222. S. Chatani, T. Gong, B.A. Earle, M. Podgorski, C.N. Bowman, Visible-light initiated thiol-Michael addition photopolymerization reactions. ACS Macro Lett. 3, 315–318 (2014)

    Article  CAS  Google Scholar 

  223. G. Bai, S. Ma, R. Qie, Z. Liu, Y. Shi, C. Li, R. Wang, X. Guo, F. Zhou, X. Jia, UV-Triggered surface-initiated polymerization from colorless green tea polyphenol-coated surfaces. Macromol. Rapid Commun. 37, 1256–1261 (2016)

    Article  CAS  PubMed  Google Scholar 

  224. E. Sharmin, F. Zafar, D. Akram, M. Alam, S. Ahmad, Recent advances in vegetable oils based environment friendly coatings: A review. Ind. Crops Prod. 76, 215–229 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Sup Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Prabhakaran, P., Lee, KS. (2019). Photo-polymerization. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95987-0_1

Download citation

Publish with us

Policies and ethics