Skip to main content

Drug Delivery: Polymers in the Development of Controlled Release Systems

  • Living reference work entry
  • First Online:
Functional Polymers

Abstract

This chapter comprises an overview of the basic elements that one must take into account when developing a new drug delivery system. It begins with an outline of traditional methods to deliver drugs, relating these to important considerations that must be taken into account when developing a drug delivery system, including the importance of controlling the drug concentration and location, and the properties of the device and the therapeutic. This chapter then continues by describing various types of polymeric delivery systems, including implants, hydrogels, and nanoparticles, microgels, and micelle nanomedicines. This chapter then concludes with a brief perspective on the potential of nanomedicine drug delivery systems; a much more thorough perspective can be found in a follow-up chapter “Drug Delivery: Localized and Systemic Therapeutic Strategies with Polymer Systems.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BA:

Bioavailability

BMA:

Butyl methacrylate

CLRP:

Controlled-living free radical polymerization

CMC:

Carboxymethyl cellulose

DP A :

Hydrophobic block

DP B :

Hydrophilic block

EPR:

Enhanced permeability and retention

FDA:

US Food and Drug Administration

GI:

Gastrointestinal

HA:

Hyaluronic acid

IM:

Intramuscular

IR:

Infrared

IV:

Intravenous

MPS:

Mononuclear phagocyte system

NIPAM:

N-isopropyl acrylamide

PBA:

Phenyl boronic acid

PEG:

Poly(ethylene glycol)

PGA:

Poly(glycolic acid)

PLA:

Poly(L-lactic acid)

PLGA:

Poly(lactic acid-co-glycolic acid)

PMMA:

Poly(methyl methacrylate)

PNIPAM:

Poly(N-isopropyl acrylamide)

POEGMA:

Poly(oligoethylene glycol methacrylate)

PVA:

Polyvinyl alcohol

RGD:

Arginine-glycine-aspartic acid

SC:

Subcutaneous

SPIONs:

Superparamagnetic iron oxide nanoparticles

Tg:

Glass transition temperature

Z:

Aggregation number

References

  1. N. Huebsch, C.J. Kearney, X. Zhao, J. Kim, C.A. Cezar, Z. Suo, D.J. Mooney, Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc. Natl. Acad. Sci. U. S. A. 111, 9762–9767 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. D. Maitland, S.B. Campbell, J. Chen, T. Hoare, Controlling the resolution and duration of pulsatile release from injectable magnetic “plum pudding” nanocomposite hydrogels. RSC Adv. 6, 15770–15781 (2016)

    Article  CAS  Google Scholar 

  3. L.T. Kuhn, Biomaterials, ed. By J. Enderle, S. Blanchard, J. Bronzino. Introduction to Biomedical Engineering, 4th edn (Elsevier Academic Press, Burlington, 2005)

    Google Scholar 

  4. S.L. Tao, T.A. Desai, Gastrointestinal patch systems for oral drug delivery. Drug Discov. Today 10, 909–915 (2005)

    Article  CAS  PubMed  Google Scholar 

  5. D.R. Friend, G. Sri, M. Park, Colon-specific drug delivery. Adv. Drug Deliv. Rev. 7, 149–199 (1991)

    Article  CAS  Google Scholar 

  6. R. Talukder, R. Fassihi, Gastroretentive delivery systems: A mini review. Drug Dev. Ind. Pharm. 30, 1019–1028 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. M. Gibaldi, R.N. Boyes, S. Feldman, Influence of first-pass effect on availability of drugs on oral administration. J. Pharm. Sci. 60, 1338–1340 (1971)

    Article  CAS  PubMed  Google Scholar 

  8. K. Park, I. Chan, K. Park, Oral protein delivery: Current status and future prospect. React. Funct. Polym. 71, 280–287 (2011)

    Article  CAS  Google Scholar 

  9. M.R. Prausnitz, R. Langer, Transdermal drug delivery. Nat. Biotechnol. 26, 1261–1268 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. N.R. Mathias, M.A. Hussain, Non-invasive systemic drug delivery: Developability considerations for alternate routes of administration. J. Pharm. Sci. 99, 1–20 (2010)

    Article  CAS  PubMed  Google Scholar 

  11. M.J. Rathbone, B.K. Drummond, I.G. Tucker, The oral cavity as a site for systemic drug delivery. Adv. Drug Deliv. Rev. 13, 1–22 (1994)

    Article  CAS  Google Scholar 

  12. L. Illum, Nasal drug delivery – Possibilities, problems and solutions. J. Control. Release 87, 187–198 (2003)

    Article  CAS  PubMed  Google Scholar 

  13. J.S. Patton, C.S. Fishburn, J.G. Weers, The lungs as a portal of entry for systemic drug delivery. Proc. Am. Thorac. Soc. 1, 338–344 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. J. Kost, R. Langer, Responsive polymeric delivery systems. Adv. Drug Deliv. Rev. 46, 125–148 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. S.B. Campbell, M. Patenaude, T. Hoare, Injectable Superparamagnets: Highly elastic and degradable poly(N-isopropylacrylamide)-superparamagnetic iron oxide nanoparticle (SPION) composite hydrogels. Biomacromolecules 14, 644–653 (2013)

    Article  CAS  PubMed  Google Scholar 

  16. J. Kost, R. Langer, Responsive polymeric delivery systems. Adv. Drug Deliv. Rev. 64, 327–341 (2012)

    Article  Google Scholar 

  17. S. Merino, C. Martin, K. Kostarelos, M. Prato, E. Vázquez, Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery. ACS Nano 9, 4686–4697 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. S.B. Campbell, T. Hoare, Externally addressable hydrogel nanocomposites for biomedical applications. Curr. Opin. Chem. Eng. 4, 1–10 (2014)

    Article  Google Scholar 

  19. H. Bechgaard, G.H. Nielsen, Controlled-release multiple-units and single-unit doses a literature review. Drug Dev. Ind. Pharm. 4, 53–67 (2008)

    Article  Google Scholar 

  20. E. Caló, V.V. Khutoryanskiy, Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 65, 252–267 (2015)

    Article  CAS  Google Scholar 

  21. M. Elsabahy, K.L. Wooley, Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 41, 2545–2561 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. T.R. Hoare, D.S. Kohane, Hydrogels in drug delivery: Progress and challenges. Polymer 49, 1993–2007 (2008)

    Article  CAS  Google Scholar 

  24. J.H. Brauker, V.E. Carr-Brendel, L.A. Martinson, J. Crudele, W.D. Johnston, R.C. Johnson, B.H. Corp, B.T. Park, R. Lake, Neovascularization of synthetic membranes directed by membrane microarchitecture. J. Biomed. Mater. Res. 29, 1517–1524 (1995)

    Article  CAS  PubMed  Google Scholar 

  25. O. Veiseh, J.C. Dolo, M. Ma, A.J. Vegas, H.H. Tam, A.R. Bader, J. Li, E. Langan, J. Wycko, W.S. Loo, S. Jhunjhunwala, A. Chiu, S. Siebert, K. Tang, J. Hollister-lock, S. Aresta-dasilva, M. Bochenek, J. Mendoza-Elias, Y. Wang, M. Qi, D.M. Lavin, M. Chen, N. Dholakia, R. Thakrar, I. Lacík, G.C. Weir, J. Oberholzer, D.L. Greiner, R. Langer, Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–652 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. J. Nicolas, S. Mura, D. Brambilla, N. Mackiewicz, P. Couvreur, Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem. Soc. Rev. 42, 1147–1235 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. M.K. Nguyen, E. Alsberg, Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog. Polym. Sci. 39, 1235–1265 (2014)

    Article  CAS  Google Scholar 

  28. Y. Zhao, F. Fay, S. Hak, J.M. Perez-aguilar, B.L. Sanchez-Gaytan, C.D.L. Davies, A. Bjørkøy, H. Weinstein, B. Goode, W.J.M. Mulder, Z.A. Fayad, C. Perez-Medina, W.J.M. Mulder, Augmenting drug-carrier compatibility improves tumour nanotherapy efficacy. Nat. Commun. 1–11 (2016)

    Google Scholar 

  29. T. Hoare, R. Pelton, Impact of microgel morphology on functionalized microgel-drug interactions. Langmuir 24, 1005–1012 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. E.A. Appel, R.A. Forster, M.J. Rowland, O.A. Scherman, The control of cargo release from physically crosslinked hydrogels by crosslink dynamics. Biomaterials 35, 9897–9903 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50, 27–46 (2000)

    Article  CAS  PubMed  Google Scholar 

  32. P.R. Lockman, R.J. Mumper, M.A. Khan, D.D. Allen, Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev. Ind. Pharm. 28, 1–13 (2002)

    Article  CAS  PubMed  Google Scholar 

  33. D.A. LaVan, T. McGuire, R. Langer, Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 21, 1184–1191 (2003)

    Article  CAS  PubMed  Google Scholar 

  34. A.C. Anselmo, S. Mitragotri, An overview of clinical and commercial impact of drug delivery systems. J. Control. Release 190, 15–28 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. I.M. Carvalho, C.S. Marques, R.S. Oliveira, P.B. Coelho, P.C. Costa, D.C. Ferreira, Sustained drug release by contact lenses for glaucoma treatment – A review. J. Control. Release 202, 76–82 (2015)

    Article  CAS  PubMed  Google Scholar 

  36. G. Acharya, K. Park, Mechanisms of controlled drug release from drug-eluting stents. Adv. Drug Deliv. Rev. 58, 387–401 (2006)

    Article  CAS  PubMed  Google Scholar 

  37. M. Staples, K. Daniel, M.J. Cima, R. Langer, Application of micro- and nano-electromechanical devices to drug delivery. Pharm. Res. 23, 847–863 (2006)

    Article  CAS  PubMed  Google Scholar 

  38. L.C. Bengani, K.-H. Hsu, S. Gause, A. Chauhan, Contact lenses as a platform for ocular drug delivery. Expert Opin. Drug Deliv. 10, 1483–1496 (2013)

    Article  CAS  PubMed  Google Scholar 

  39. H.K. Makadia, S.J. Siegel, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377–1397 (2011)

    Article  CAS  PubMed  Google Scholar 

  40. B.G. Amsden, Biodegradable elastomers in drug delivery. Expert Opin. Drug Deliv. 5, 175–187 (2008)

    Article  CAS  PubMed  Google Scholar 

  41. S.A. Rovers, R. Hoogenboom, M.F. Kemmere, J.T.F. Keurentjes, Repetitive on-demand drug release by magnetic heating of iron oxide containing polymeric implants. Soft Matter 8, 1623–1627 (2012)

    Article  CAS  Google Scholar 

  42. J.T.F. Keurentjes, M.F. Kemmere, H. Bruinewoud, M.A.M.E. Vertommen, S.A. Rovers, R. Hoogenboom, L.F.S. Stemkens, F.L.A.M.A. Péters, N.J.C. Tielen, D.T.A. van Asseldonk, A.F. Gabriel, E.A. Joosten, M.A.E. Marcus, Externally triggered glass transition switch for localized on-demand drug delivery. Angew. Chem. Int. Ed. 48, 9867–9870 (2009)

    Article  CAS  Google Scholar 

  43. T. Hoare, J. Santamaria, G.F. Goya, S. Irusta, D. Lin, S. Lau, R. Padera, R. Langer, D.S. Kohane, A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett. 9, 3651–3657 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. E. Renard, G. Costalat, J. Bringer, From external to implantable insulin pump, can we close the loop? Diabetes Metab. 28, 2519–2525 (2002)

    Google Scholar 

  45. T. Aye, J. Block, B. Buckingham, Toward closing the loop: an update on insulin pumps and continuous glucose monitoring systems. Endocrinol. Metab. Clin. N. Am. 39, 609–624 (2010)

    Article  Google Scholar 

  46. S. Van Vlierberghe, P. Dubruel, E. Schacht, Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review. Biomacromolecules 12, 1387–1408 (2011)

    Article  PubMed  CAS  Google Scholar 

  47. M.W. Tibbitt, K.S. Anseth, Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103, 655–663 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. N.A. Peppas, J.Z. Hilt, A. Khademhosseini, R. Langer, Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006)

    Article  CAS  Google Scholar 

  49. C. Maldonado-Codina, N. Efron, Hydrogel lenses – Materials and manufacture: A review. Optom. Pract. 4, 101–115 (2003)

    Google Scholar 

  50. H. Hiratani, C. Alvarez-Lorenzo, Timolol uptake and release by imprinted soft contact lenses made of N,N-diethylacrylamide and methacrylic acid. J. Control. Release 83, 223–230 (2002)

    Article  CAS  PubMed  Google Scholar 

  51. J.S. Boateng, K.H. Matthews, H.N.E. Stevens, G.M. Eccleston, Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci. 97, 2892–2923 (2008)

    Article  CAS  PubMed  Google Scholar 

  52. C.-C. Lin, K.S. Anseth, PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm. Res. 26, 631–643 (2009)

    Article  CAS  PubMed  Google Scholar 

  53. D.J. Overstreet, D. Dutta, S.E. Stabenfeldt, B.L. Vernon, Injectable hydrogels. J. Polym. Sci. Part B Polym. Phys. 50, 881–903 (2012)

    Article  CAS  Google Scholar 

  54. Y. Li, J. Rodrigues, H. Tomás, Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 41, 2193–2221 (2012)

    Article  CAS  PubMed  Google Scholar 

  55. M. Patenaude, N.M.B. Smeets, T. Hoare, Designing injectable, covalently cross-linked hydrogels for biomedical applications. Macromol. Rapid Commun. 35, 598–617 (2014)

    Article  CAS  PubMed  Google Scholar 

  56. M.A. Azagarsamy, K.S. Anseth, Bioorthogonal click chemistry: An indispensable tool to create multifaceted cell structure scaffolds. ACS Macro Lett. 2, 5–9 (2013)

    Article  CAS  PubMed  Google Scholar 

  57. N.M.B. Smeets, E. Bakaic, M. Patenaude, T. Hoare, Injectable and tunable poly(ethylene glycol) analogue hydrogels based on poly(oligoethylene glycol methacrylate). Chem. Commun. 50, 3306–3309 (2014)

    Article  CAS  Google Scholar 

  58. N.M.B. Smeets, E. Bakaic, M. Patenaude, T. Hoare, Injectable poly(oligoethylene glycol methacrylate)-based hydrogels with tunable phase transition behaviours: Physicochemical and biological responses. Acta Biomater. 10, 4143–4155 (2014)

    Article  CAS  PubMed  Google Scholar 

  59. E. Bakaic, N.M.B. Smeets, T. Hoare, Injectable hydrogels based on poly(ethylene glycol) and derivatives as functional biomaterials. RSC Adv. 5, 35469–35486 (2015)

    Article  CAS  Google Scholar 

  60. E. Bakaic, N.M.B. Smeets, H. Dorrington, T.R. Hoare, “Off-the-shelf” thermoresponsive hydrogel design: Tuning hydrogel properties by mixing precursor polymers with different lower-critical solution temperatures. RSC Adv. 5, 33364–33376 (2015)

    Article  CAS  Google Scholar 

  61. S.P. Hudson, R. Langer, G.R. Fink, D.S. Kohane, Injectable in situ cross-linking hydrogels for local antifungal therapy. Biomaterials 31, 1444–1452 (2010)

    Article  CAS  PubMed  Google Scholar 

  62. A.W. Jackson, D.A. Fulton, Making polymeric nanoparticles stimuli-responsive with dynamic covalent bonds. Polym. Chem. 4, 31–45 (2013)

    Article  CAS  Google Scholar 

  63. N.M.B. Smeets, M. Patenaude, D. Kinio, F.M. Yavitt, E. Bakaic, F.-C. Yang, M. Rheinstädter, T. Hoare, Injectable hydrogels with in situ-forming hydrophobic domains: oligo(d ,l-lactide) modified poly(oligoethylene glycol methacrylate) hydrogels. Polym. Chem. 5, 6811–6823 (2014)

    Article  CAS  Google Scholar 

  64. D.A. Ossipov, J. Hilborn, Poly(vinyl alcohol)-based hydrogels formed by “click chemistry”. Macromolecules 39, 1709–1718 (2006)

    Article  CAS  Google Scholar 

  65. G.N. Grover, J. Lam, T.H. Nguyen, T. Segura, H.D. Maynard, Biocompatible hydrogels by oxime click chemistry. Biomacromolecules 13, 3013–3017 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. G.N. Grover, R.L. Braden, K.L. Christman, Oxime cross-linked injectable hydrogels for catheter delivery. Adv. Mater. 25, 2937–2942 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. H.W. Ooi, K.S. Jack, H. Peng, A.K. Whittaker, “Click” PNIPAAm hydrogels – A comprehensive study of structure and properties. Polym. Chem. 4, 4788–4800 (2013)

    Article  CAS  Google Scholar 

  68. J.A. Yoon, T. Kowalewski, K. Matyjaszewski, Comparison of thermoresponsive deswelling kinetics of poly(oligo(ethylene oxide) methacrylate)-based thermoresponsive hydrogels prepared by “graft-from” ATRP. Macromolecules 44, 2261–2268 (2011)

    Article  CAS  Google Scholar 

  69. Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 64, 49–60 (2012)

    Article  Google Scholar 

  70. S. Cheon, I. Keun, K. Park, Hydrogels for delivery of bioactive agents: A historical perspective. Adv. Drug Deliv. Rev. 65, 17–20 (2013)

    Article  CAS  Google Scholar 

  71. A. Matsumoto, T. Ishii, J. Nishida, H. Matsumoto, K. Kataoka, Y. Miyahara, A synthetic approach toward a self-regulated insulin delivery system. Angew. Chem. Int. Ed. 51, 2124–2128 (2012)

    Article  CAS  Google Scholar 

  72. W. Wu, S. Zhou, Responsive materials for self-regulated insulin delivery. Macromol. Biosci. 13, 1464–1477 (2013)

    Article  CAS  PubMed  Google Scholar 

  73. D. Beebe, J. Moore, J. Bauer, Q. Yu, R. Liu, C. Devadoss, B. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404, 588–590 (2000)

    Article  CAS  PubMed  Google Scholar 

  74. D. Guarnieri, A. De Capua, M. Ventre, A. Borzacchiello, C. Pedone, D. Marasco, M. Ruvo, P.A. Netti, Covalently immobilized RGD gradient on PEG hydrogel scaffold influences cell migration parameters. Acta Biomater. 6, 2532–2539 (2010)

    Article  CAS  PubMed  Google Scholar 

  75. K.C. Koehler, K.S. Anseth, C.N. Bowman, Diels-Alder mediated controlled release from a poly(ethylene glycol) based hydrogel. Biomacromolecules 14, 538–547 (2013)

    Article  CAS  PubMed  Google Scholar 

  76. G.D. Nicodemus, S.J. Bryant, Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B Rev. 14, 149–165 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. V. Wagner, A. Dullaart, A.-K. Bock, A. Zweck, The emerging nanomedicine landscape. Nat. Biotechnol. 24, 1211–1217 (2006)

    Article  CAS  PubMed  Google Scholar 

  78. T.L. Doane, C. Burda, The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 41, 2885–2911 (2012)

    Article  CAS  PubMed  Google Scholar 

  79. R. Shenhar, V.M. Rotello, Nanoparticles: Scaffolds and building blocks. Acc. Chem. Res. 36, 549–561 (2003)

    Article  CAS  PubMed  Google Scholar 

  80. M.R. Jones, K.D. Osberg, R.J. Macfarlane, M.R. Langille, C.A. Mirkin, Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 111, 3736–3827 (2011)

    Article  CAS  PubMed  Google Scholar 

  81. B.D. Chithrani, W.C.W. Chan, Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7, 1542–1550 (2007)

    Article  CAS  PubMed  Google Scholar 

  82. B.D. Chithrani, A.A. Ghazani, W.C.W. Chan, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662–668 (2006)

    Article  CAS  PubMed  Google Scholar 

  83. S.E.A. Gratton, P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier, J.M. DeSimone, The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. U. S. A. 105, 11613–11618 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res. 46, 6387–6392 (1986)

    CAS  PubMed  Google Scholar 

  85. A. Albanese, E.A. Sykes, W.C.W. Chan, Rough around the edges: The inflammatory response of microglial cells to spiky nanoparticles. ACS Nano 4, 2490–2493 (2010)

    Article  CAS  PubMed  Google Scholar 

  86. A.R. Kirtane, Strategies to improve plasma circulation of nanoparticles. Nirma Univ J Pharm Sci 1, 1–18 (2014)

    Google Scholar 

  87. M.J. Ernsting, M. Murakami, A. Roy, S.-D. Li, Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J. Control. Release 172, 782–794 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. C. Rippe, A. Rippe, O. Torffvit, B. Rippe, Size and charge selectivity of the glomerular filter in early experimental diabetes in rats. Am. J. Physiol. Renal Physiol. 293, F1533–F1538 (2007)

    Article  CAS  PubMed  Google Scholar 

  89. D. Asgeirsson, D. Venturoli, B. Rippe, C. Rippe, Increased glomerular permeability to negatively charged Ficoll relative to neutral Ficoll in rats. Am. J. Physiol. Renal Physiol. 291, F1083–F1089 (2006)

    Article  CAS  PubMed  Google Scholar 

  90. J. Rejman, V. Oberle, I.S. Zuhorn, D. Hoekstra, Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377, 159–169 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. R. May, L. Machesky, Phagocytosis and the actin cytoskeleton. J. Cell Sci. 114, 1061–1077 (2001)

    CAS  PubMed  Google Scholar 

  92. C. Fang, B. Shi, Y.-Y. Pei, M.-H. Hong, J. Wu, H.-Z. Chen, In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur. J. Pharm. Sci. 27, 27–36 (2006)

    Article  CAS  PubMed  Google Scholar 

  93. S.M. Ryan, G. Mantovani, X. Wang, D.M. Haddleton, D.J. Brayden, Advances in PEGylation of important biotech molecules: delivery aspects. Expert Opin. Drug Deliv. 5, 371–383 (2008)

    Article  CAS  PubMed  Google Scholar 

  94. G. Pasut, F.M. Veronese, State of the art in PEGylation: The great versatility achieved after forty years of research. J. Control. Release 161, 461–472 (2012)

    Article  CAS  PubMed  Google Scholar 

  95. U. Wattendorf, H.P. Merkle, PEGylation as a tool for the biomedical engineering of surface modified microparticles. J. Pharm. Sci. 97, 4655–4669 (2008)

    Article  CAS  PubMed  Google Scholar 

  96. V.P. Torchilin, M.I. Shtilman, V.S. Trubetskoy, K. Whiteman, A.M. Milstein, Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo. Biochim. Biophys. Acta Biomembr. 1195, 181–184 (1994)

    Article  CAS  Google Scholar 

  97. A. Moore, E. Marecos, A. Bogdanov, R. Weissleder, Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 214, 568–574 (2000)

    Article  CAS  PubMed  Google Scholar 

  98. V.P. Chauhan, T. Stylianopoulos, J.D. Martin, Z. Popović, O. Chen, W.S. Kamoun, M.G. Bawendi, D. Fukumura, R.K. Jain, Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 7, 383–388 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. R. Liu, B.K. Kay, S. Jiang, S. Chen, Nanoparticle delivery: Targeting and nonspecific binding. MRS Bull. 34, 432–440 (2011)

    Article  CAS  Google Scholar 

  100. A.D. Friedman, S.E. Claypool, R. Liu, The smart targeting of nanoparticles. Curr. Pharm. Des. 19, 6315–6329 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. P. Couvreur, Nanoparticles in drug delivery: Past, present and future. Adv. Drug Deliv. Rev. 65, 21–23 (2013)

    Article  CAS  PubMed  Google Scholar 

  102. G. Birrenbach, P.P. Speiser, Polymerized micelles and their use as adjuvants in immunology. J. Pharm. Sci. 65, 1763–1766 (1976)

    Article  CAS  PubMed  Google Scholar 

  103. F. Tiarks, K. Landfester, M. Antonietti, Preparation of polymeric nanocapsules by miniemulsion polymerization. Langmuir 17, 908–918 (2001)

    Article  CAS  Google Scholar 

  104. J. Nicolas, P. Couvreur, Synthesis of poly(alkyl cyanoacrylate)-based colloidal nanomedicines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 111–127 (2009)

    Article  CAS  PubMed  Google Scholar 

  105. C. Vauthier, C. Dubernet, C. Chauvierre, I. Brigger, P. Couvreur, Drug delivery to resistant tumors: The potential of poly(alkyl cyanoacrylate) nanoparticles. J. Control. Release 93, 151–160 (2003)

    Article  CAS  PubMed  Google Scholar 

  106. F. Danhier, E. Ansorena, J.M. Silva, R. Coco, A. Le Breton, V. Préat, PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release 161, 505–522 (2012)

    Article  CAS  PubMed  Google Scholar 

  107. J.S. Chawla, M.M. Amiji, Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int. J. Pharm. 249, 127–138 (2002)

    Article  CAS  PubMed  Google Scholar 

  108. T.K. Dash, V.B. Konkimalla, Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J. Control. Release 158, 15–33 (2012)

    Article  CAS  PubMed  Google Scholar 

  109. C. Chauvierre, D. Labarre, P. Couvreur, C. Vauthier, Novel polysaccharide-decorated poly(isobutyl cyanoacrylate) nanoparticles. Pharm. Res. 20, 1786–1793 (2003)

    Article  CAS  PubMed  Google Scholar 

  110. M. Tobío, R. Gref, A. Sánchez, R. Langer, M.J. Alonso, Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm. Res. 15, 270–275 (1998)

    Article  PubMed  Google Scholar 

  111. J. Piazza, T. Hoare, L. Molinaro, K. Terpstra, J. Bhandari, P.R. Selvaganapathy, B. Gupta, R.K. Mishra, Haloperidol-loaded intranasally administered lectin functionalized poly(ethylene glycol)–block-poly (D,L)-lactic-co-glycolic acid (PEG-PLGA) nanoparticles for the treatment of schizophrenia. Eur. J. Pharm. Biopharm. 87, 30–39 (2014)

    Article  CAS  PubMed  Google Scholar 

  112. H.S. Yoo, T.G. Park, Folate receptor targeted biodegradable polymeric doxorubicin micelles. J. Control. Release 96, 273–283 (2004)

    Article  CAS  PubMed  Google Scholar 

  113. Z. He, J. Huang, Y. Xu, X. Zhang, Y. Teng, C. Huang, Y. Wu, X. Zhang, H. Zhang, W. Sun, Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer. Oncotarget 6, 42150–42168 (2015)

    PubMed  PubMed Central  Google Scholar 

  114. J. Wackerlig, R. Schirhagl, Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use: A review. Anal. Chem. 88, 250–261 (2015)

    Article  PubMed  CAS  Google Scholar 

  115. F.A. Ishkuh, M. Javanbakht, M. Esfandyari-Manesh, R. Dinarvand, F. Atyabi, Synthesis and characterization of paclitaxel-imprinted nanoparticles for recognition and controlled release of an anticancer drug. J. Mater. Sci. 49, 6343–6352 (2014)

    Article  CAS  Google Scholar 

  116. A. Musyanovych, K. Landfester, Polymer micro- and nanocapsules as biological carriers with multifunctional properties. Macromol. Biosci. 14, 458–477 (2014)

    Article  CAS  PubMed  Google Scholar 

  117. A.R. Pohlmann, F.N. Fonseca, K. Paese, C.B. Detoni, K. Coradini, R.C. Beck, S.S. Guterres, Poly(ϵ-caprolactone) microcapsules and nanocapsules in drug delivery. Expert Opin. Drug Deliv. 10, 623–638 (2013)

    Article  CAS  PubMed  Google Scholar 

  118. M. Aboubakar, F. Puisieux, P. Couvreur, C. Vauthier, Physico-chemical characterization of insulin-loaded poly(isobutylcyanoacrylate) nanocapsules obtained by interfacial polymerization. Int. J. Pharm. 183, 63–66 (1999)

    Article  CAS  PubMed  Google Scholar 

  119. R.H. Pelton, P. Chibante, Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surf. 20, 247–256 (1986)

    Article  CAS  Google Scholar 

  120. N.M.B. Smeets, T. Hoare, Designing responsive microgels for drug delivery applications. J. Polym. Sci. Part A: Polym. Chem. 51, 3027–3043 (2013)

    Article  CAS  Google Scholar 

  121. D. Klinger, K. Landfester, Stimuli-responsive microgels for the loading and release of functional compounds: Fundamental concepts and applications. Polymer 53, 5209–5231 (2012)

    Article  CAS  Google Scholar 

  122. J. Kwon, R. Drumright, D.J. Siegwart, K. Matyjaszewski, The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 33, 448–477 (2008)

    Article  CAS  Google Scholar 

  123. A. Pich, W. Richtering, Microgels by precipitation polymerization: Synthesis, characterization, and functionalization. Adv. Polym. Sci. 234, 1–37 (2010)

    Article  CAS  Google Scholar 

  124. K. Landfester, M. Willert, M. Antonietti, Preparation of polymer particles in nonaqueous direct and inverse miniemulsions. Macromolecules 33, 2370–2376 (2000)

    Article  CAS  Google Scholar 

  125. Z. An, Q. Shi, W. Tang, C. Tsung, C.J. Hawker, G.D. Stucky, Facile RAFT precipitation polymerization for the microwave-assisted synthesis of well-defined, double hydrophilic block copolymers and nanostructured hydrogels. J. Am. Chem. Soc. 129, 14493–14499 (2007)

    Article  CAS  PubMed  Google Scholar 

  126. D. Sivakumaran, E. Mueller, T. Hoare, Temperature-induced assembly of monodisperse, covalently cross-linked, and degradable poly(n-isopropylacrylamide) microgels based on oligomeric precursors. Langmuir 31, 5767–5778 (2015)

    Article  CAS  PubMed  Google Scholar 

  127. T. Hoare, R. Pelton, Charge-switching, amphoteric glucose-responsive microgels with physiological swelling activity. Biomacromolecules 9, 733–740 (2008)

    Article  CAS  PubMed  Google Scholar 

  128. T. Hoare, R. Pelton, Functional group distributions in carboxylic acid containing poly(N-isopropylacrylamide) microgels. Langmuir 20, 2123–2133 (2004)

    Article  CAS  PubMed  Google Scholar 

  129. G.R. Hendrickson, L.A. Lyon, Microgel translocation through pores under confinement. Angew. Chem. Int. Ed. 49, 2193–2197 (2010)

    Article  CAS  Google Scholar 

  130. K. Gries, K. Bubel, M. Wohlfahrt, S. Agarwal, U. Koert, A. Greiner, Preparation of gold nanoparticle-poly(L-menthyl methacrylate) conjugates via ATRP polymerization. Macromol. Chem. Phys. 212, 2551–2557 (2011)

    Article  CAS  Google Scholar 

  131. H. Kirsebom, I.Y. Galaev, B. Mattiasson, Stimuli-responsive polymers in the 21st century: Elaborated architecture to achieve high sensitivity, fast response, and robust behavior. J. Polym. Sci. Part B: Polym. Phys. 49, 173–178 (2011)

    Article  CAS  Google Scholar 

  132. K. Matyjaszewski, J. Spanswick, Controlled/living radical polymerization. Mater. Today 8, 26–33 (2005)

    Article  CAS  Google Scholar 

  133. S. Förster, M. Zisenis, E. Wenz, M. Antonietti, Micellization of strongly segregated block copolymers. J. Chem. Phys. 104, 9956–9970 (1996)

    Article  Google Scholar 

  134. M. Yokoyama, Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin. Drug Deliv. 7, 145–158 (2010)

    Article  CAS  PubMed  Google Scholar 

  135. K. Kataoka, A. Harada, Y. Nagasaki, Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev. 64, 37–48 (2012)

    Article  Google Scholar 

  136. K.E. Uhrich, S.M. Cannizzaro, R.S. Langer, K.M. Shakesheff, Polymeric systems for controlled drug release. Chem. Rev. 99, 3181–3198 (1999)

    Article  CAS  PubMed  Google Scholar 

  137. A.W. York, S.E. Kirkland, C.L. McCormick, Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: Stimuli-responsive drug and gene delivery. Adv. Drug Deliv. Rev. 60, 1018–1036 (2008)

    Article  CAS  PubMed  Google Scholar 

  138. D.J. Siegwart, J.K. Oh, K. Matyjaszewski, ATRP in the design of functional materials for biomedical applications. Prog. Polym. Sci. 37, 18–37 (2012)

    Article  CAS  PubMed  Google Scholar 

  139. Y. Wu, K. Sefah, H. Liu, R. Wang, W. Tan, DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells. Proc. Natl. Acad. Sci. U. S. A. 107, 5–10 (2010)

    Article  CAS  PubMed  Google Scholar 

  140. S. Dhar, F.X. Gu, R. Langer, O.C. Farokhzad, S.J. Lippard, Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 105, 17356–17361 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. D. Sutton, N. Nasongkla, E. Blanco, J. Gao, Functionalized micellar systems for cancer targeted drug delivery. Pharm. Res. 24, 1029–1046 (2007)

    Article  CAS  PubMed  Google Scholar 

  142. N. Rapoport, Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci. 32, 962–990 (2007)

    Article  CAS  Google Scholar 

  143. S. Ganta, H. Devalapally, A. Shahiwala, M. Amiji, A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 126, 187–204 (2008)

    Article  CAS  PubMed  Google Scholar 

  144. Z. Ge, S. Liu, Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev. 42, 7289–7325 (2013)

    Article  CAS  PubMed  Google Scholar 

  145. O. Veiseh, B.C. Tang, K.A. Whitehead, D.G. Anderson, R. Langer, Managing diabetes with nanomedicine: Challenges and opportunities. Nat. Rev. Drug Discov. 14, 45–57 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. G. Liu, R. Ma, J. Ren, Z. Li, H. Zhang, Z. Zhang, Y. An, L. Shi, A glucose-responsive complex polymeric micelle enabling repeated on–off release and insulin protection. Soft Matter 9, 1636–1644 (2013)

    Article  CAS  Google Scholar 

  147. Q. Zhang, N.R. Ko, J.K. Oh, Recent advances in stimuli-responsive degradable block copolymer micelles: Synthesis and controlled drug delivery applications. Chem. Commun. 48, 7542–7552 (2012)

    Article  CAS  Google Scholar 

  148. B. Khorsand, G. Lapointe, C. Brett, J.K. Oh, Intracellular drug delivery nanocarriers of glutathione-responsive degradable block copolymers having pendant disulfide linkages. Biomacromolecules 14, 2103–2111 (2013)

    Article  CAS  PubMed  Google Scholar 

  149. L. Zhang, W. Liu, L. Lin, D. Chen, M.H. Stenzel, Degradable disulfide core-cross-linked micelles as a drug delivery system prepared from vinyl functionalized nucleosides via the RAFT process. Biomacromolecules 9, 3321–3331 (2008)

    Article  CAS  PubMed  Google Scholar 

  150. C.F. van Nostrum, Covalently cross-linked amphiphilic block copolymer micelles. Soft Matter 7, 3246–3259 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Campbell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Campbell, S., Smeets, N. (2019). Drug Delivery: Polymers in the Development of Controlled Release Systems. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-92067-2_20-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92067-2_20-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92067-2

  • Online ISBN: 978-3-319-92067-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics