Skip to main content

Polymer Blends

  • Living reference work entry
  • First Online:
Functional Polymers

Abstract

In this chapter, we have presented different aspects of polymer blends, from fundamentals to the synthesis, physical and chemical properties, and applications. Polymer blends are made from the combination of two or more polymer components, having staggering and incredible applications in numerous fields due to their advanced properties. A brief introduction of the polymer blends about its origination and development is presented in the first part of this chapter; then important polymer blend types and synthesis methods are summarized with a brief discussion about their thermodynamic properties. Different characterization techniques were also discussed which can be used to determine the morphological, structural, chemical, and mechanical properties of these materials. The thermal, mechanical, and electrical properties of different polymer blends are discussed considering some recent applications of polymer blends in different industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ABS:

Acrylonitrile butadiene styrene

ATRP:

Atom transfer radical polymerization

BHJ:

Bulk heterojunction

BSA:

Bovine serum albumin

CAB:

Cellulose butyrate

CAGR:

Compound annual growth rate

CMCA/CA:

Carboxymethyl cellulose acetate/cellulose acetate

CPs:

Conjugated polymers

DEC:

Diethylene carbonate

DIM:

Direct injection molding

DMA:

Dynamic mechanical analysis

DMC:

Dimethyl carbonate

DSC:

Differential scanning calorimetry

EBA:

Ethyl butyl acrylate

EC:

Ethylene carbonate

EDLC:

Electrochemical double-layer capacitor

EDX:

Energy-dispersive X-ray spectroscopy

ELSD:

Evaporative light scattering detector

EPDM:

Ethylene propylene diene

EVA/SAN:

Poly(ethylene-co-vinyl acetate)/poly(styrene-co-acrylonitrile)

GO:

Graphene oxide

GPC:

Gel permeation chromatography

HDPE:

High-density polyethylene

HPLC:

High-performance liquid chromatography

IPN:

Interpenetrating polymer network

LDPE:

Low-density polyethylene

LLDPE:

Linear low-density polyethylene

MMMs:

Mixed matrix membranes

MMT:

Montmorillonite

MW:

Molecular weight

NC:

Nitrocellulose

NMR:

Nuclear magnetic resonance spectroscopy

OCP:

Open circuit potential

P(VDF-co-HFP):

Poly(vinylidene fluoride-co-hexafluoropropene)

PA:

Phosphoric acid

PA 6,6:

Polyamide 6,6

PA12:

Polyamide-12

PANI-PVC:

Polyaniline-polyvinylchloride

PBI:

Polybenzimidazole

PBT:

Poly(butylene terephthalate)

PCE:

Power conversion efficiency

PCL/PLA:

Poly ε-caprolactone/poly lactic acid

PDA:

Photodiode array detector

PDMAEMA:

N,N-dimethylamino-2-ethylmethacrylate

PE:

Polyethylene

PEDOT:

Poly(3, 4-ethylenedioxythiophene)

PEGF:

Polyethylene glycol fumarate

PFCE:

Partially fluorinated copolyester

PIM-1:

Polymer of Intrinsic Microporosity-1

PIPN:

Pseudo-interpenetrating polymer networks

PL:

Photoluminescence

PLLA:

Poly(l-lactide)

PMMA:

Poly(methyl methacrylate)

PMMA/EVA:

Poly(methyl methacrylate)/ethylene-co-vinyl acetate

PNMPy:

Poly(N-methylpyrrole)

PS:

Polystyrene

PSCs:

Polymer solar cells

PSF:

Polysulfone

PSI:

Polydispersity index

PV:

Pervaporation

PVA:

Poly vinyl alcohol

PVB:

Polyvinylbutyral

PVC/EVA:

Poly(vinyl chloride)/ethylene-co-vinyl acetate

PVC/SAN:

Poly(vinyl chloride)/poly(styrene-co-acrylonitrile)

PVdC-AN:

Poly(vinylidene chloride-co-acrylonitrile)

PVDF:

Polyvinylidene fluoride

PVDF-HFP:

Poly(vinylidene fluoride-co-hexafluoro propylene)

PVOH:

Poly(vinyl alcohol)

PVPh:

Poly (4-vinylphenol)

SBR:

Styrene butadiene rubber

SDCDPS:

Disodium 3,30-disulfate-4,40-dichlorodiphenyl sulfone

SEM:

Scanning electron microscopy

SFPAE:

Sulfonated fluorinated poly(arylene ether)

SIPN:

Semi-interpenetrating polymer network

SPEEK:

Sulfonated poly(etherethereketone)

SPPU:

Sulfonated polyphenylene sulphone

SRNF:

Solvent resistance nanofiltration

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

THF:

Tetrahydrofuran

TMPC:

Tetramethyl bisphenol-A polycarbonate

UF:

Ultrafiltration

UTM:

Universal testing machine

VRFB:

Vanadium redox flow battery

XLPE:

Cross linked polyethylene

XRD:

X-ray diffraction

ZIF:

Zeolitic imidazolate framework

References

  1. P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953)

    Google Scholar 

  2. A.D. Jenkins, P. Kratochvíl, R.F.T. Stepto, U.W. Suter, Glossary of basic terms in polymer science (IUPAC recommendations, 1996). Pure Appl. Chem. 68, 2287–2311 (1996)

    Article  CAS  Google Scholar 

  3. L.A. Utracki, History of commercial polymer alloys and blends (from a perspective of the patent literature). Polym. Eng. Sci. 35, 352–417 (1995)

    Google Scholar 

  4. T. Kyu, H. Xu, T. Guo, G. Wang, Encyclopedia of Polymer Blends (Wiley-VCH, Weinheim, 2010)

    Google Scholar 

  5. L.A. Utracki, Commercial Polymer Blends (Springer, Boston, 1998)

    Book  Google Scholar 

  6. P. Freyburger: Improvement in kneading-eviachines, US Patent, 180568 A (1876)

    Google Scholar 

  7. E.M. Chaffee: Making rubber fabrics, US Patent 16 (1836)

    Google Scholar 

  8. J.L. White, Development of internal-mixer Technology for the Rubber Industry. Rubber Chem. Technol. 65, 527–579 (1992)

    Article  CAS  Google Scholar 

  9. BCC Research Report (2013) https://www.bccresearch.com/market-research/plastics/engineering-resins-polymer-alloys-blends-pls020c.html. Date retrieved 18 Aug 2015

  10. J. Li, G. Ma, J. Sheng, Linear viscoelastic characteristics of in situ compatibilized binary polymer blends with viscoelastic properties of components variable. J. Polym. Sci. B Polym. Phys. 48, 1349–1362 (2010)

    Article  CAS  Google Scholar 

  11. P.J. Flory, Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51 (1942)

    Article  CAS  Google Scholar 

  12. E. Manias, L.A. Utracki, Thermodynamics of polymer blends, in Polymer Blends Handbook, (Springer, Dordrecht, 2014), pp. 171–289

    Google Scholar 

  13. P.J. Sabu Thomas, Y. Grohens, Characterization of Polymer Blends: Miscibility, Morphology and Interfaces (Wiley-VCH, Weinheim, 2014), p. 994

    Google Scholar 

  14. I.C. Sanchez, Polymer Blends, vol 1 (Academic Press, New York, 1978)

    Google Scholar 

  15. J. Yang, L. An, T. Xu, The glass transition temperatures of PS/PPO blends: Couchman volume-based equation and its verification. Polymer 42, 7887–7892 (2001)

    Article  CAS  Google Scholar 

  16. K.R. Sharma: In: Polym. Blends Copolym. 214th ACS Natl. Meet, ACS, Dallas (1998)

    Google Scholar 

  17. P. Shi, R. Schach, E. Munch, H. Montes, F. Lequeux, Glass transition distribution in miscible polymer blends: From calorimetry to rheology. Macromolecules 46, 3611–3620 (2013)

    Article  CAS  Google Scholar 

  18. Y. Yu, K.J. Choi, Crystallization in blends of poly(ethylene terephthalate) and poly(butylene terephthalate). Polym. Eng. Sci. 37, 91–95 (1997)

    Article  CAS  Google Scholar 

  19. P. Maiti, A.K. Dikshit, A.K. Nandi, Glass-transition temperature of poly(vinylidene fluoride)-poly(methyl acrylate) blends: Influence of aging and chain structure. J. Appl. Polym. Sci. 79, 1541–1548 (2001)

    Article  CAS  Google Scholar 

  20. L. Messe, R.E. Prud’homme, Orientation and relaxation study of polystyrene: Polystyrene/poly(phenylene oxide) blends. J. Polym. Sci. B Polym. Phys. 38, 1405–1415 (2000)

    Article  CAS  Google Scholar 

  21. W. Dong, M. He, H. Wang, F. Ren, J. Zhang, X. Zhao, Y. Li, PLLA/ABS blends compatibilized by reactive comb polymers: Double Tg depression and significantly improved toughness. ACS Sustain. Chem. Eng. 3, 2542–2550 (2015)

    Article  CAS  Google Scholar 

  22. H. Wang, W. Dong, Y. Li, Compatibilization of immiscible polymer blends using in situ formed janus nanomicelles by reactive blending. ACS Macro Lett. 4, 1398–1403 (2015)

    Article  CAS  Google Scholar 

  23. W.N. Kim, C.M. Burns, Compatibility studies of polystyrene–polybutadiene blends by thermal analysis. J. Appl. Polym. Sci. 32, 2989–3004 (1986)

    Article  CAS  Google Scholar 

  24. Y. Shi, Phase behavior of polyamide 6/612 blends. SPE ANTEC™ Indianapolis 1, 76–80 (2016)

    Google Scholar 

  25. A.P. Azevedo De Carvalho, A. Da, S. Sirqueira, Effect of compatibilization in situ on PA/SEBS blends. Polimeros 26, 123–128 (2016)

    Google Scholar 

  26. A. Al-Jabareen, S. Illescas, M.L. Maspoch, O.O. Santana, Effects of composition and transesterification catalysts on the physico-chemical and dynamic properties of PC/PET blends rich in PC. J. Mater. Sci. 45, 6623–6633 (2010)

    Article  CAS  Google Scholar 

  27. R.D. Boyd, J.P.S. Badyal, Silent discharge treatment of immiscible polystyrene/polycarbonate polymer blend surfaces. Macromolecules 30, 3658–3663 (1997)

    Article  CAS  Google Scholar 

  28. D.R. Paul, J.W. Barlow, A binary interaction model for miscibility of copolymers in blends. Polymer 25, 487–494 (1984)

    Article  CAS  Google Scholar 

  29. K.R. Sharma, Mathematical modeling of partially miscible copolymers in blends. Polym. Mater. Sci. Eng. 78, 193–198 (1998)

    Google Scholar 

  30. P.R. Couchman, Compositional variation of glass-transition temperatures. 2. Application of the thermodynamic theory to compatible polymer blends. Macromolecules 11, 1156–1161 (1978)

    Article  CAS  Google Scholar 

  31. R.V. Sekharan, B.T. Abraham, E.T. Thachil, Utilization of waste expanded polystyrene: Blends with silica-filled natural rubber. Mater. Des. 40, 221–228 (2012)

    Article  CAS  Google Scholar 

  32. Z. Starý, T. Pemsel, J. Baldrian, H. Münstedt, Influence of a compatibilizer on the morphology development in polymer blends under elongation. Polymer 53, 1881–1889 (2012)

    Article  Google Scholar 

  33. B.M. Wood, S.R. Coles, S. Maggs, J. Meredith, K. Kirwan, Use of lignin as a compatibiliser in hemp/epoxy composites. Compos. Sci. Technol. 71, 1804–1810 (2011)

    Article  CAS  Google Scholar 

  34. A.I. Khalf, D.E.E. Nashar, N.A. Maziad, Effect of grafting cellulose acetate and methylmethacrylate as compatibilizer onto NBR/SBR blends. Mater. Des. 31, 2592–2598 (2010)

    Article  CAS  Google Scholar 

  35. B. Kouini, A. Serier, Properties of polypropylene/polyamide nanocomposites prepared by melt processing with a PP-g-MAH compatibilizer. Mater. Des. 34, 313–318 (2012)

    Article  CAS  Google Scholar 

  36. IUPAC, Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials. Pure Appl. Chem. 79(1801) (2007)

    Google Scholar 

  37. IUPAC, Polymer blend, in IUPAC Compend. Chem. Terminol, (IUPAC, Research Triangle Park, 1996)

    Google Scholar 

  38. F.W. Billmeyer, Textbook of Polymer Science, 2nd edn. (Wiley-Interscience, New York, 1971), p. 598

    Google Scholar 

  39. R. Casper, L. Morbitzer, Struktur und eigenschaften von mehrphasenkunststoffen I. Verträglichkeit von polymeren im festen zustand. Angew. Makromol. Chemie. 58, 1–35 (1977)

    Article  Google Scholar 

  40. M.L. Huggins, Thermodynamic properties of liquids, including solutions. IX. Thermodynamic properties of polymer solutions. Polym. J. 4, 502–514 (1973)

    Article  CAS  Google Scholar 

  41. E. Díez, G. Ovejero, M.D. Romero, I. Díaz, Polymer–solvent interaction parameters of SBS rubbers by inverse gas chromatography measurements. Fluid Phase Equilib. 308, 107–113 (2011)

    Article  Google Scholar 

  42. H. Patil, R.V. Tiwari, M.A. Repka, Hot-melt extrusion: From theory to application in pharmaceutical formulation. AAPS Pharm. Sci. Tech. 17, 20–42 (2016)

    Article  CAS  Google Scholar 

  43. J.L. White, S.H. Bumm, Polymer blend compounding and processing, in Encyclopedia of Polymer Blends, vol. 2, (Wiley-VCH, Weinheim, 2011), pp. 1–26

    Google Scholar 

  44. D.H. Killheffer, Banbury the Master Mixer, vol 6 (Palmerton, New York, 1962)

    Google Scholar 

  45. U. Siemann, Solvent Cast Technology – A Versatile Tool for Thin Film Production, vol 130 (Springer, Berlin/Heidelberg, 2005), pp. 1–14

    Google Scholar 

  46. G. Zhu, F. Wang, K. Xu, Q. Gao, Y. Liu, Study on properties of poly(vinyl alcohol)/polyacrylonitrile blend film. Polímeros Ciência E Tecnol. 23, 146–151 (2013)

    Article  CAS  Google Scholar 

  47. N. Ignjatović, V. Wu, Z. Ajduković, T. Mihajilov-Krstev, V. Uskoković, D. Uskoković, Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues. Mater. Sci. Eng. C Mater. Biol. Appl. 60, 357–364 (2016)

    Article  PubMed Central  Google Scholar 

  48. K. Guo, H. Qi, F. Wang, Y. Zhu, Fabrication of boron- and nitrogen-doped carbon nanoparticles by stress from pyrolysis of borazine-containing arylacetylene. RSC Adv. 4, 6330–6336 (2014)

    Article  CAS  Google Scholar 

  49. R.A.A. Muzzarelli, M. El Mehtedi, M. Mattioli-Belmonte, Emerging biomedical applications of nano-chitins and nano-chitosans obtained via advanced eco-friendly technologies from marine resources. Mar. Drugs 12, 5468–5502 (2014)

    Article  CAS  PubMed Central  Google Scholar 

  50. J.P. Tomba, X. Ye, F. Li, M.A. Winnik, W. Lau, Polymer blend latex films: Miscibility and polymer diffusion studied by energy transfer. Polymer 49, 2055–2064 (2008)

    Article  CAS  Google Scholar 

  51. J. Feng, M.A. Winnik, R.R. Shivers, B. Clubb, Polymer blend latex films: Morphology and transparency. Macromolecules 28, 7671–7682 (1995)

    Article  CAS  Google Scholar 

  52. M. Hajian, C. Sadrmohaghegh, G. Scott, Polymer blends—IV. Eur. Polym. J. 20, 135–138 (1984)

    Article  CAS  Google Scholar 

  53. A.L.B. Ramirez, Z.S. Kean, J.A. Orlicki, M. Champhekar, S.M. Elsakr, W.E. Krause, S.L. Craig, Mechanochemical strengthening of a synthetic polymer in response to typically destructive shear forces. Nat. Chem. 5, 757–761 (2013)

    Article  CAS  PubMed Central  Google Scholar 

  54. J.V. Alemán, A.V. Chadwick, J. He, M. Hess, K. Horie, R.G. Jones, P. Kratochvíl, I. Meisel, I. Mita, G. Moad, S. Penczek, R.F.T. Stepto, Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC recommendations 2007). Pure Appl. Chem. 79, 1801–1829 (2007)

    Article  Google Scholar 

  55. L.H. Sperling, Introduction to Physical Polymer Science, 2nd edn. (Wiley, New York, 2015)

    Google Scholar 

  56. S.F. Wang, X. Li, R.L. Agapov, C. Wesdemiotis, M.D. Foster, Probing surface concentration of cyclic/linear blend films using surface layer MALDI-TOF mass spectrometry. ACS Macro Lett. 1, 1024–1027 (2012)

    Article  CAS  Google Scholar 

  57. L. Dou, Y. Liu, Z. Hong, G. Li, Y. Yang, Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev. 115, 12633–12665 (2015)

    Article  CAS  PubMed Central  Google Scholar 

  58. J.F. Masson, R.S.J. Manley, Solid-state NMR of some cellulose/synthetic polymer blends. Macromolecules 25, 589–592 (1992)

    Article  CAS  Google Scholar 

  59. I. Kindgren, Compounding of Electrically Conductive Two Phase Polymer Blends (Chalmers University of Technology, Göteborg, 2012), pp. 1–52

    Google Scholar 

  60. Z. Wang, C.W. Macosko, F.S. Bates, Fluorine-enriched melt-blown fibers from polymer blends of poly(butylene terephthalate) and a fluorinated multiblock copolyester. ACS Appl. Mater. Interfaces 8, 754–761 (2015)

    Article  PubMed Central  Google Scholar 

  61. Q. Lv, D. Wu, H. Xie, H: Crystallization of poly(ε-caprolactone) in its immiscible blend with polylactide: Insight into the role of annealing histories. RSC Adv. 6, 37721–37730 (2016)

    Article  CAS  Google Scholar 

  62. T. Li, J. Zhang, D.K. Schneiderman, Toughening glassy poly(lactide) with block copolymer micelles. ACS Macro Lett. 5, 359–364 (2016)

    Article  CAS  Google Scholar 

  63. C.S. Moran, A. Barthelon, A. Pearsall, Biorenewable blends of polyamide-4,10 and polyamide-6,10. J. Appl. Polym. Sci. 43126, 1–9 (2016)

    Google Scholar 

  64. M. Rady, E. Arquis, A comparative study of phase changing characteristics of granular phase change materials using DSC and T-history methods. FDMP 6, 137–152 (2010)

    Google Scholar 

  65. T.M. Nair, M.G. Kumaran, G. Unnikrishna, V.B. Pillai, Dynamic mechanical analysis of ethylene-propylene-diene monomer rubber and styrene-butadiene rubber blends. J. Appl. Polym. Sci. 112, 72–81 (2009)

    Article  CAS  Google Scholar 

  66. A.W. Coats, J.P. Redfern, Thermogravimetric analysis. A review. Analyst 88, 906–924 (1963)

    Article  CAS  Google Scholar 

  67. G. Justin, A. Guiseppi-Elie, Characterization of electroconductive blends of poly(HEMA-co-PEGMA-co-HMMA-co-SPMA) and poly(Py-co-PyBA). Biomacromolecules 10, 2539–2549 (2009)

    Article  CAS  PubMed Central  Google Scholar 

  68. M.K. Daletou, M. Geormezi, E. Vogli, G.A. Voyiatzis, S.G. Neophytides, The interaction of H3PO4 and steam with PBI and TPS polymeric membranes. A TGA and Raman study. J. Mater. Chem. A 2, 1117–1127 (2014)

    Article  CAS  Google Scholar 

  69. Z. Yang, C.D. Han, Rheology of miscible polymer blends with hydrogen bonding. Macromolecules 41, 2104–2118 (2008)

    Article  CAS  Google Scholar 

  70. A.C. Badino, M.C.R. Facciotti, W. Schmidell, Construction and operation of an impeller rheometer for on-line rheological characterization of non-Newtonian fermentation broths. Braz. J. Chem. Eng. 14 (1997). https://doi.org/10.1590/S0104-66321997000400010

    Article  Google Scholar 

  71. Y.S. Lipatov, V.F. Shumsky, I.P. Getmanchuk, A.N. Gorbatenko, Rheology of polymer blends. Rheol. Acta 21, 270–279 (1982)

    Article  CAS  Google Scholar 

  72. C.M. Gómez, J.E. Figueruelo, A. Campos, Thermodynamics of a polymer blend solution system studied by gel permeation chromatography and viscosity. Macromol. Chem. Phys. 200, 246–255 (1999)

    Article  Google Scholar 

  73. S. Ameen, V. Ali, M. Zulfequar, M. Mazharul Haq, M. Husain, Synthesis and characterization of polyaniline-polyvinyl chloride blends doped with sulfamic acid in aqueous tetrahydrofuran. Open Chem. 4, 565–577 (2006)

    Article  CAS  Google Scholar 

  74. B. Pukánszky, F. Tüdõs, Miscibility and mechanical properties of polymer blends, Makromol. Chemie. Macromol. Symp. 38, 221–231 (1990)

    Article  Google Scholar 

  75. N. Aranburu, J.I. Eguiazábal, Improved mechanical properties of compatibilized polypropylene/polyamide-12 blends. Int. J. Polym. Sci. 2015, 1–8 (2015)

    Article  Google Scholar 

  76. P.C. Chung, P.F. Green, The elastic mechanical response of nanoscale thin films of miscible polymer/polymer blends. Macromolecules 48, 3991–3996 (2015)

    Article  CAS  Google Scholar 

  77. P.P. Lizymol, S. Thomas, Thermal behaviour of polymer blends: A comparison of the thermal properties of miscible and immiscible systems. Polym. Degrad. Stab. 41, 59–64 (1993)

    Article  CAS  Google Scholar 

  78. S. Takahashi, H. Okada, S. Nobukawa, M. Yamaguchi, Optical properties of polymer blends composed of poly(methyl methacrylate) and ethylene–vinyl acetate copolymer. Eur. Polym. J. 48, 974–980 (2012)

    Article  CAS  Google Scholar 

  79. G.H. Kim, D. Lee, A. Shanker, L. Shao, M.S. Kwon, D. Gidley, J. Kim, K.P. Pipe, High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 14, 295–300 (2015)

    Article  CAS  PubMed Central  Google Scholar 

  80. V.T. Magalad, G.S. Gokavi, C. Ranganathaiah, M.H. Burshe, C. Han, D.D. Dionysiou, M.N. Nadagouda, T.M. Aminabhavi, Polymeric blend nanocomposite membranes for ethanol dehydration—Effect of morphology and membrane–solvent interactions. J. Memb. Sci. 430, 321–329 (2013)

    Article  CAS  Google Scholar 

  81. M.F.Z. Kadir, S.R. Majid, A.K. Arof, Plasticized chitosan–PVA blend polymer electrolyte based proton battery. Electrochim. Acta 55, 1475–1482 (2010)

    Article  CAS  Google Scholar 

  82. J. Liu, W. Li, X. Zuo, S. Liu, Z. Li, Polyethylene-supported polyvinylidene fluoride–cellulose acetate butyrate blended polymer electrolyte for lithium ion battery. J. Power Sources 226, 101–106 (2013)

    Article  CAS  Google Scholar 

  83. C. Tao, M.H. Gao, B.H. Yin, B. Li, Y.P. Huang, G. Xu, J. J, Bao: A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Electrochim. Acta 257, 31–39 (2017)

    Article  CAS  Google Scholar 

  84. M. Hazarika, T. Jana, Novel proton exchange membrane for fuel cell developed from blends of polybenzimidazole with fluorinated polymer. Eur. Polym. J. 49, 1564–1576 (2013)

    Article  CAS  Google Scholar 

  85. S.M. Mathew, K. Kesavan, S. Rajendran, Structural and electrochemical analysis of PMMA based gel electrolyte membranes. Int. J. Electrochem. 2015, 1–7 (2015)

    Article  Google Scholar 

  86. S.Y. Jung, S.Y. Ko, J.O. Park, S. Park, Enhanced ionic polymer metal composite actuator with porous nafion membrane using zinc oxide particulate leaching method. Smart Mater. Struct. 24, 037007 (2015)

    Article  Google Scholar 

  87. M.R. Moghareh Abed, S.C. Kumbharkar, A.M. Groth, K. Li, Economical production of PVDF-g-POEM for use as a blend in preparation of PVDF based hydrophilic hollow fiber membranes. Sep. Purif. Technol. 106, 47–55 (2013)

    Article  CAS  Google Scholar 

  88. A.F. Bushell, M.P. Attfield, C.R. Mason, P.M. Budd, Y. Yampolskii, L. Starannikova, A. Rebrov, F. Bazzarelli, P. Bernardo, J. Carolus Jansen, M. Lanč, K. Friess, V. Shantarovich, V. Gustov, V. Isaeva, Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J. Memb. Sci. 427, 48–62 (2013)

    Article  CAS  Google Scholar 

  89. D. Chen, S. Kim, V. Sprenkle, M.A. Hickner, Composite blend polymer membranes with increased proton selectivity and lifetime for vanadium redox flow batteries. J. Power Sources 231, 301–306 (2013)

    Article  CAS  Google Scholar 

  90. B. Han, D. Zhang, Z. Shao, L. Kong, S. Lv, Preparation and characterization of cellulose acetate/carboxymethyl cellulose acetate blend ultrafiltration membranes. Desalination 311, 80–89 (2013)

    Article  CAS  Google Scholar 

  91. A. Hashemi Doulabi, H. Mirzadeh, M. Imani, N. Samadi, Chitosan/polyethylene glycol fumarate blend film: Physical and antibacterial properties. Carbohydr. Polym. 92, 48–56 (2013)

    Article  CAS  PubMed Central  Google Scholar 

  92. Y.F. Zhao, L.P. Zhu, Z. Yi, B.K. Zhu, Y.Y. Xu, Improving the hydrophilicity and fouling-resistance of polysulfone ultrafiltration membranes via surface zwitterionicalization mediated by polysulfone-based triblock copolymer additive. J. Memb. Sci. 440, 40–47 (2013)

    Article  CAS  Google Scholar 

  93. M.Z.A. Yahya, A.K. Arof, Effect of oleic acid plasticizer on chitosan–lithium acetate solid polymer electrolytes. Eur. Polym. J. 39, 897–902 (2003)

    Article  CAS  Google Scholar 

  94. A. Manuel Stephan, Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 42, 21–42 (2006)

    Article  CAS  Google Scholar 

  95. A. Burke, Ultracapacitors: Why, how, and where is the technology. J. Power Sources 91, 37–50 (2000)

    Article  CAS  Google Scholar 

  96. M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors. Chem. Rev. 104, 4245–4270 (2004)

    Article  CAS  Google Scholar 

  97. Q. Li, H. Wang, Q. Dai, J. Yang, Y. Zhong, Novel activated carbons as electrode materials for electrochemical capacitors from a series of starch. Solid State Ionics 179, 269–273 (2008)

    Article  CAS  Google Scholar 

  98. Y.N. Sudhakar, M. Selvakumar, Lithium perchlorate doped plasticized chitosan and starch blend as biodegradable polymer electrolyte for supercapacitors. Electrochim. Acta 78, 398–405 (2012)

    Article  CAS  Google Scholar 

  99. D. Aradilla, F. Estrany, C. Alemán, Symmetric supercapacitors based on multilayers of conducting polymers. J. Phys. Chem. C 115, 8430–8438 (2011)

    Article  CAS  Google Scholar 

  100. N. Widjojo, T.-S. Chung, M. Weber, C. Maletzko, V. Warzelhan, A sulfonated polyphenylenesulfone (sPPSU) as the supporting substrate in thin film composite (TFC) membranes with enhanced performance for forward osmosis (FO). Chem. Eng. J. 220, 15–23 (2013)

    Article  CAS  Google Scholar 

  101. S. Mollá, V. Compañ, Polymer blends of SPEEK for DMFC application at intermediate temperatures. Int. J. Hydrog. Energy 39, 5121–5136 (2014)

    Article  Google Scholar 

  102. B.M. Ganesh, A.M. Isloor, A.F. Ismail, Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination 313, 199–207 (2013)

    Article  CAS  Google Scholar 

  103. A.K. Hołda, M. De Roeck, K. Hendrix, I.F.J. Vankelecom, The influence of polymer purity and molecular weight on the synthesis of integrally skinned polysulfone membranes. J. Memb. Sci. 446, 113–120 (2013)

    Article  Google Scholar 

  104. J. Tong, P. Guo, H. Zhang, J. Li, P. Zhang, C. Yang, D. Chen, Y. Xia, Synthesis of modified benzothiadiazole-thiophene-cored acceptor and carbazole/indolocarbazole alternating conjugated polymers and their photovoltaic applications. Polym. Bull. 72, 565–581 (2015)

    Article  CAS  Google Scholar 

  105. N. Dzulkurnain, A. Ahmad, N. Mohamed, P(MMA-EMA) random copolymer electrolytes incorporating sodium iodide for potential application in a dye-sensitized solar cell. Polymers (Basel) 7, 266–280 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge King Fahd University of Petroleum & Minerals (KFUPM) for providing excellent research facilities, and Deanship of Scientific Research, KFUPM, Saudi Arabia for financial assistance to carry out this research through internal grant project No. IN161036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Abu Jafar Mazumder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Khan, I., Mansha, M., Mazumder, M.A.J. (2018). Polymer Blends. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-92067-2_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92067-2_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92067-2

  • Online ISBN: 978-3-319-92067-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics