Skip to main content

Unraveling Plant-Endophyte Interactions: An Omics Insight

  • Reference work entry
  • First Online:

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Plants are home to a wide assemblage of nonpathogenic microbial community belonging to different phyla, bacteria, fungi, actinomycetes and viruses, the collective term for which is called endophyte. These endosymbiotic individuals exhibit endophytism principally by assisting in vigor and endurance to host plant and protect them from biotic (pathogenic infections) and abiotic stress (water, heat, nutrient, salinity, and herbivory). In return, these endosymbionts receive energy in the form of carbon from the host tissue. Colonization of endophyte in the internal tissues has been reported almost in every plant examined so far either in intercellular or intracellular mode. The form of relationships established with the host plant may be mutualistic, symbiotic, commensalistic, and trophobiotic. These are either rhizospheric or phyllospheric in origin. To establish such mutualistic relationships between plants and endophytes, certain chemical signals play important role in inducing production of the enhanced amount of secondary metabolites in host plant tissues. These novel metabolites act as a very good source of stress relievers to host and protect from grazing animals. The renewed interest in endophyte is due to the biotechnological relevance of these signal molecules as these have been used as a good source for production of biochemical compounds of industrial importance more specifically in agriculture and medicine. Additionally, their capacity to decontaminate soil bacteria and bring in soil fertility invites huge application in phytoremediation. However, the physiology, biochemistry, and genetics behind such complex interactions, exchange of chemical signals, and their production (the endophytism of plan-microbiome) are still half-understood. With the advent of new efficient analytical technology in molecular biology and genomics, the basic information on the existing diversity, phylogenetic lineage, evolution, and ecophysiological information about these endophytes has been tried to understand. However, the functional gene expression, posttranslational modifications, and protein turnover under various environmental circumstances are only revealed through transcriptome and proteomics analysis. Soon, high-throughput next-generation sequencing technology has remarkably changed the whole scenario of solving the intricate issues entangled with the complexity underlying endophytism. Sequencing of the whole genome of individuals following cultivable method (genomics), multiple host plants and their microbiome (comparative genomics), non-cultivable methods (metagenomics and metatranscriptomics), and microarray has been proved to be potential approaches to unravel the truth behind the plant-endophyte interactions. The present script deals with scopes, prospects, and outcomes of use of these “omics tools” to understand the deep insight into the mechanism of plant host infestation, biological reason behind the mutualism between host and endophytes, exchange of biochemical compounds, enhanced production of secondary metabolite, and host plant ecology.

This is a preview of subscription content, log in via an institution.

Abbreviations

BLAST:

Basic local alignment search tool

BLAT:

BLAST-like alignment tool

Bp:

Base pairs

Brenda:

Braunschweig enzyme database

CAMERA:

Community cyberinfrastructure for advanced microbial ecology research and analysis

COGs:

Clusters of orthologous groups

DGGE:

Denaturing gradient gel electrophoresis

Gbp:

Giga base pairs

ITS:

Intertranscribing regions

KEGG:

Kyoto encyclopedia of genes and genomes

LSU:

Large subunit

LTQ:

Linear trap quadrupole

MALDI:

Matrix-assisted laser desorption/ionization

MALDI ToF:

Matrix-assisted laser desorption/ionization time of flight

Mbp:

Mega base pair

MEGAN:

MEtaGenome ANalyzer

MetAMOS:

Open source and modular metagenomic assembly and analysis pipeline

MG-RAST:

Metagenomic rapid annotations using subsystems technology

MS:

Mass spectroscopy

NCBI:

National center for biotechnology information

NGS:

Next-generation sequencing

NOGs:

Non-supervised orthologous groups

NR:

Negative regulatory domain

Pfam:

Protein families

PICRUSt:

Phylogenetic investigation of communities by reconstruction of unobserved states

PRINTS:

Protein fingerprints

Q-ToF:

Quadruple time-of-flight mass spectrometer

RDP:

Ribosomal database project

SMART:

Simple modular architecture research tool

SRTINGS:

Search tool for the retrieval of interacting genes/proteins

SSU:

Small subunit

References

  1. Premjanu N, Jayanthy C (2012) Endophytic fungi a repository of bioactive compounds-a review. Int J Inst Pharm Life Sci 2:135–162

    Google Scholar 

  2. Mousa WK, Raizada MN (2013) The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol. https://doi.org/10.3389/fmicb.2013.00065

  3. Johnson LJ, Johnson RD, Schardl CL, Panaccione DG (2003) Identification of differentially expressed genes in the mutualistic association of tall fescue with Neotyphodium coenophialum. Physiol Mol Plant Pathol 63:305–317. https://doi.org/10.1016/j.pmpp.2004.04.001

    Article  CAS  Google Scholar 

  4. Rodriguez RJ, Henson J, Van Volkenburgh E et al (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416. https://doi.org/10.1038/ismej.2007.106

    Article  PubMed  Google Scholar 

  5. Suryanarayanan TS (2013) Endophyte research: going beyond isolation and metabolite documentation. Fungal Ecol 6:561–568. https://doi.org/10.1016/j.funeco.2013.09.007

    Article  Google Scholar 

  6. Deckert RJ, Melville LH, Peterson RL (2001) Structural features of a Lophodermium endophyte during the cryptic life-cycle phase in the foliage of Pinus strobus. Mycol Res 105:991–997. https://doi.org/10.1016/S0953-7562(08)61957-7

    Article  Google Scholar 

  7. Lucero ME, Unc A, Cooke P et al (2011) Endophyte microbiome diversity in micropropagated Atriplex canescens and Atriplex torreyi var griffithsii. PLoS One. https://doi.org/10.1371/journal.pone.0017693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hallmann J, Berg G, Schulz B (2006) Isolation procedures for endophytic microorganisms. Soil Biol 9:299–319. https://doi.org/10.1007/3-540-33526-9_17

    Article  Google Scholar 

  9. Wang Y, Guo L (2007) A comparative study of endophytic fungi in needles, bark, and xylem of Pinus tabulaeformis. Can J Bot 85:911–917. https://doi.org/10.1139/B07-084

    Article  Google Scholar 

  10. Li W, Guo JZS, Guo L (2007) Endophytic fungi associated with lichens in Baihua mountain of Beijing, China. Fungal Divers 25:69–80

    Google Scholar 

  11. Guo LD, Huang GR, Wang Y (2008) Seasonal and tissue age influences on endophytic fungi of Pinus tabulaeformis (Pinaceae) in the Dongling Mountains, Beijing. J Integr Plant Biol 50:997–1003. https://doi.org/10.1111/j.1744-7909.2008.00394.x

    Article  PubMed  Google Scholar 

  12. Su YY, Guo LD, Hyde KD (2010) Response of endophytic fungi of Stipa grandis to experimental plant function group removal in Inner Mongolia steppe, China. Fungal Divers 43:93–101. https://doi.org/10.1007/s13225-010-0040-6

    Article  Google Scholar 

  13. Sun X, Guo LD, Hyde KD (2011) Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Divers 47:85–95. https://doi.org/10.1007/s13225-010-0086-5

    Article  Google Scholar 

  14. Petrini O, Stone J, Carroll FE (1982) Endophytic fungi in evergreen shrubs in Western Oregon: a preliminary study. Can J Bot 60:789–796. https://doi.org/10.1139/b82-102

    Article  Google Scholar 

  15. Rodrigues KF, Samuels GJ (1990) Preliminary study of endophytic fungi in a tropical palm. Mycol Res 94:827–830. https://doi.org/10.1016/S0953-7562(09)81386-5

    Article  Google Scholar 

  16. Guo LD, Hyde KDLE (2000) Identification of endophytic fungi from Livistona chinensis (Palmae) using morphological and molecular techniques. New Phytol 147:617–630

    Article  CAS  PubMed  Google Scholar 

  17. de Souza Vieira PD, de Souza Motta CM, Lima D et al (2011) Endophytic fungi associated with transgenic and non-transgenic cotton. Mycology 2:91–97. https://doi.org/10.1080/21501203.2011.584390

    Article  Google Scholar 

  18. Ding G, Zheng Z, Liu S et al (2009) Photinides A-F, cytotoxic benzofuranone-derived γ-lactones from the plant endophytic fungus Pestalotiopsis photiniae. J Nat Prod 72:942–945. https://doi.org/10.1021/np900084d

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Zheng Z, Liu S et al (2010) Oxepinochromenones, furochromenone, and their putative precursors from the endolichenic fungus Coniochaeta sp. J Nat Prod 73:920–924. https://doi.org/10.1021/np100071z

    Article  CAS  PubMed  Google Scholar 

  20. Li J, Li L, Si Y et al (2011) Virgatolides A – C, benzannulated spiroketals from the plant endophytic fungus Pestalotiopsis virgatula. Org Lett 13:2670–2673. https://doi.org/10.1021/ol200770k

    Article  CAS  PubMed  Google Scholar 

  21. Tejesvi MV, Kajula M, Mattila S, Pirttilä AM (2011) Bioactivity and genetic diversity of endophytic fungi in Rhododendron tomentosum Harmaja. Fungal Divers 47:97–107. https://doi.org/10.1007/s13225-010-0087-4

    Article  Google Scholar 

  22. Gamboa MA, Laureano S, Bayman P (2003) Measuring diversity of endophytic fungi in leaf fragments: does size matter? Mycopathologia 156:41–45. https://doi.org/10.1023/A:1021362217723.

    Article  Google Scholar 

  23. Petrini O, Sieber TN, Toti L, Viret O (1993) Ecology, metabolite production, and substrate utilization in endophytic fungi. Nat Toxins 1:185–196. https://doi.org/10.1002/nt.2620010306

    Article  Google Scholar 

  24. Guo L, Hyde KD, Liew E (1998) A method to promote sporulation in palm endophytic fungi. Fungal Divers 1:109–113

    Google Scholar 

  25. Wang Y, Ohara Y, Nakayashiki H et al (2005) Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting Rhizobacteria, Pseudomonas fluorescens FPT 9601-T 5 in Arabidopsis. Mol Plant-Microbe Interact 18:385–396

    Article  CAS  PubMed  Google Scholar 

  26. Guo LD, Huang GR, Wang Y, He WH, Zheng WH, Hyde KD (2003) Molecular identification of white morphotype strains of endophytic fungi from Pinus tabulaeformis. Mycol Res 107:680–688

    Article  CAS  PubMed  Google Scholar 

  27. González V, Tello ML (2011) The endophytic mycota associated with Vitis vinifera in Central Spain. Fungal Divers 47:29–42. https://doi.org/10.1007/s13225-010-0073-x

    Article  Google Scholar 

  28. Hoff JA, Klopfenstein NB, McDonald GI et al (2004) Fungal endophytes in woody roots of Douglas-fir(Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa). Forest Pathology 34(4):255–271

    Article  Google Scholar 

  29. Ghimire SR, Charlton ND, Bell JD et al (2011) Biodiversity of fungal endophyte communities inhabiting switchgrass (Panicum virgatum L.) growing in the native tallgrass prairie of northern Oklahoma. Fungal Divers 47:19–27. https://doi.org/10.1007/s13225-010-0085-6

    Article  Google Scholar 

  30. Morakotkarn D, Kawasaki H, Seki T (2007) Molecular diversity of bamboo-associated fungi isolated from Japan. FEMS Microbiol Lett 266:10–19. https://doi.org/10.1111/j.1574-6968.2006.00489.x

    Article  CAS  PubMed  Google Scholar 

  31. Crozier J, Thomas SE, Aime MC et al (2006) Molecular characterization of fungal endophytic morphospecies isolated from stems and pods of Theobroma cacao. Plant Pathol 55:783–791. https://doi.org/10.1111/j.1365-3059.2006.01446.x

    Article  CAS  Google Scholar 

  32. Botella L, Javier Diez J (2011) Phylogenic diversity of fungal endophytes in Spanish stands of Pinus halepensis. Fungal Divers 47:9–18. https://doi.org/10.1007/s13225-010-0061-1

    Article  Google Scholar 

  33. Dinsdale EA, Edwards RA, Hall D et al (2008) Functional metagenomic profiling of nine biomes. Nature 452:629–632. https://doi.org/10.1038/nature06810

    Article  CAS  PubMed  Google Scholar 

  34. Liang Y, Guo LD, Ma KP (2005) Population genetic structure of an ectomycorrhizal fungus Amanita manginiana in a subtropical forest over two years. Mycorrhiza 15:137–142

    Article  PubMed  Google Scholar 

  35. Guo LD, Hyde KD, Liew ECY (2001) Detection and taxonomic placement of endophytic fungi within frond tissues of Livistona chinensis based on rDNA sequences. Mol Phylogenet Evol 20:1–13. https://doi.org/10.1006/mpev.2001.0942

    Article  CAS  PubMed  Google Scholar 

  36. Duong LM, Jeewon R, Lumyong S, Kevin D (2006) DGGE coupled with ribosomal DNA gene phylogenies reveal uncharacterized fungal phylotypes. Fungal Divers 23:121–138

    Google Scholar 

  37. Thomas T, Gilbert J, Meyer F (2012) Metagenomics – a guide from sampling to data analysis. Microb Inform Exp 2:3. https://doi.org/10.1186/2042-5783-2-3

    Article  PubMed  PubMed Central  Google Scholar 

  38. Markowitz VM, Ivanova NN, Szeto E et al (2008) IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res. https://doi.org/10.1093/nar/gkm869

    Article  PubMed  PubMed Central  Google Scholar 

  39. Meyer F, Paarmann D, D’Souza M et al (2008) The metagenomics RAST server – a public resource for the automatic phylo- genetic and functional analysis of metagenomes. BMC Bioinformatics 9:386. https://doi.org/10.1186/1471-2105-9-386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Blankenberg D, Kuster GV, Coraor N et al (2010) Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol. https://doi.org/10.1002/0471142727.mb1910s89

  41. Treangen TJ, Koren S, Sommer DD et al (2013) MetAMOS: a modular and open source metagenomic assembly and analysis pipeline. Genome Biol. https://doi.org/10.1186/gb-2013-14-1-r2

    Article  PubMed  PubMed Central  Google Scholar 

  42. Langille MG, Zaneveld J, JG C et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Aßhauer KP, Wemheuer B, Daniel R, Meinicke P (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31:2882–2884. https://doi.org/10.1093/bioinformatics/btv287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zuccaro A, Lahrmann U, Güldener U et al (2011) Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Frias-Lopez J, Shi Y, Tyson GW et al (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA 105:3805–3810. https://doi.org/10.1073/pnas.0708897105

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sessitsch A, Hardoim P, Döring J et al (2012) Functional characteristics of an endophyte community colonizing Rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25:28–36. https://doi.org/10.1094/MPMI-08-11-0204

    Article  CAS  PubMed  Google Scholar 

  47. Knapp DG, Németh JB, Barry K et al (2018) Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Sci Rep. https://doi.org/10.1038/s41598-018-24686-4

  48. Toju H, Yamamoto S, Sato H, Tanabe AS, Gilbert GS, Kadowaki K (2013) Community composition of root-associated fungi in a Quercus dominated temperate forest:“codominance”of mycorrhizal and root- endophytic fungi. Ecol Evol 3:1281–1293

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jumpponen A, Jones KL, Mattox JD, Yaege C (2010) Massively parallel 454-sequencing of fungal communities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Mol Ecol 19(Suppl 1):41–53. https://doi.org/10.1111/j.1365-294X.2009.04483.x.

    Article  PubMed  Google Scholar 

  50. Ambrose KV, Belanger FC (2012) SOLiD-SAGE of endophyte-infected red fescue reveals numerous effects on host transcriptome and an abundance of highly expressed fungal secreted proteins. PLoS One. https://doi.org/10.1371/journal.pone.0053214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Camilios-Neto D, Bonato P, Wassem R et al (2014) Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes. BMC Genomics. https://doi.org/10.1186/1471-2164-15-378

    Article  PubMed  PubMed Central  Google Scholar 

  52. Molina LG, da Fonseca GC, de Morais GL et al (2012) Metatranscriptomic analysis of small RNAs present in soybean deep sequencing libraries. Genet Mol Biol 35:292–303. https://doi.org/10.1590/S1415-47572012000200010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gilbert JA, Meyer F, Bailey MJ (2011) The future of microbial metagenomics (or is ignorance bliss). ISME J 5:777–779. https://doi.org/10.1038/ismej.2010.178

    Article  PubMed  Google Scholar 

  54. Schneider T, Riedel K (2009) Environmental proteomics: analysis of structure and function of microbial communities. Proteomics 10:785–798. https://doi.org/10.1002/pmic.200900450.

    Article  Google Scholar 

  55. Maron PA, Ranjard L, Mougel C, Lemanceau P (2007) Metaproteomics: a new approach for studying functional microbial ecology. Microb Ecol 53:486–493. https://doi.org/10.1007/s00248-006-9196-8

    Article  CAS  PubMed  Google Scholar 

  56. Ram RJ, Verberkmoes NC, Thelen MP et al (2013) Community proteomics of a natural microbial biofilm. Science 308:1915–1920. https://doi.org/10.1126/science

    Article  Google Scholar 

  57. Yadava P, Bhuyan SK, Bandyopadhyay P, Yadava PK (2015) Extraction of proteins for two-dimensional gel electrophoresis and proteomic analysis from an endophytic fungus. Protoc Exch. https://doi.org/10.1038/protex.2015.084

  58. Knief C, Delmotte N, Chaffron S et al (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390. https://doi.org/10.1038/ismej.2011.192

    Article  CAS  PubMed  Google Scholar 

  59. Delmotte N, Knief C, Chaffron S et al (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci 106:16428–16433. https://doi.org/10.1073/pnas.0905240106

    Article  PubMed  PubMed Central  Google Scholar 

  60. Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34:150–170. https://doi.org/10.1111/j.1574-6976.2009.00205.x

    Article  CAS  PubMed  Google Scholar 

  61. Uszkoreit J, Plohnke N, Rexroth S et al (2014) The bacterial proteogenomic pipeline. BMC Genomics. https://doi.org/10.1186/1471-2164-15-S9-S19

  62. Barnett MJ, Toman CJ, Fisher RF, Long SR (2004) A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote-host interaction. Proc Natl Acad Sci 101:16636–16641. https://doi.org/10.1073/pnas.0407269101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dong Y, Glasner JD, Blattner FR, Triplett EW (2001) Genomic interspecies microarray hybridization: rapid discovery of three thousand genes in the maize endophyte, Klebsiella pneumoniae 342, by microarray hybridization with Escherichia coli K-12 open reading frames. Appl Environ Microbiol 67:1911–1921. https://doi.org/10.1128/AEM.67.4.1911-1921.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Felitti S, Shields K, Ramsperger M et al (2006) Transcriptome analysis of Neotyphodium and Epichloe grass endophytes. Fungal Genet Biol 43:465–475. https://doi.org/10.1016/j.fgb.2006.01.013

    Article  CAS  PubMed  Google Scholar 

  65. Sahoo RK, Gaur M, Subudhi E (2017) Function profiling of microbial community, published in New and Future Development in Microbial Biotechnology and Bioengineering-Microbial genes, Elsevier (In press)

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the infrastructure and support provided by Siksha O Anusandhan University, deemed to be university located at Bhubaneswar, for completing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enketeswara Subudhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Subudhi, E., Sahoo, R.K., Dey, S., Das, A., Sahoo, K. (2019). Unraveling Plant-Endophyte Interactions: An Omics Insight. In: Jha, S. (eds) Endophytes and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-90484-9_2

Download citation

Publish with us

Policies and ethics