Skip to main content

Application of Lipid Nanocarriers for the Food Industry

  • Reference work entry
  • First Online:

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Bioactive compounds effectively contribute to human health, and hence, they have recently attracted great attention in order to fortify food products and develop novel functional foods. However, employment of bioactive compounds in food matrices has some limitations. Most of the bioactive substances are readily decomposed in food as well as within the gastrointestinal tract that cause remarkable losses in their efficiency. Furthermore, they display low water solubility, poor bioavailability, and insufficient dispersibility. Other problems are related to their interaction with food ingredients and unfavorable effects on sensory attributes of food products. Lipid-formulation nanoencapsulation technologies including nanoliposomes, nanoemulsions, lipid nanoparticles (SLNs, solid lipid nanoparticles, and NLCs, nanostructured lipid carriers), and nano-phytosomes potentially help to solve these issues. These nanodelivery systems provide more stability, solubility in different media, functionality, bioavailability, targeting properties, and the ability of controlled release in food and pharmaceutical practices. This chapter reviews lipid-based nanocarriers in terms of production methods, types, characteristics, and composition for incorporation of different bioactive compounds. Also, food applications of various bioactive compounds incorporated in the commonly used lipid-based nanocarriers are highlighted. In this sense, the relevant recent studies have been discussed.

This is a preview of subscription content, log in via an institution.

References

  1. Abaee A, Mohammadian M, Jafari SM (2017) Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends Food Sci Technol 70:69–81

    CAS  Google Scholar 

  2. Aditya N, Macedo AS, Doktorovova S, Souto EB, Kim S, Chang P-S, Ko S (2014) Development and evaluation of lipid nanocarriers for quercetin delivery: a comparative study of solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoemulsions (LNE). LWT Food Sci Technol 59:115–121

    CAS  Google Scholar 

  3. Aditya N, Shim M, Lee I, Lee Y, Im M-H, Ko S (2013) Curcumin and genistein coloaded nanostructured lipid carriers: in vitro digestion and antiprostate cancer activity. J Agric Food Chem 61:1878–1883

    CAS  PubMed  Google Scholar 

  4. Akbarzadeh A et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:102

    PubMed  PubMed Central  Google Scholar 

  5. Akhavan S, Jafari SM (2017) Chapter 6: Nanoencapsulation of natural food colorants. In: Nanoencapsulation of food bioactive ingredients. Academic Press, London, pp 223–260

    Google Scholar 

  6. Akhavan S, Assadpour E, Katouzian I, Jafari SM (2018) Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends Food Sci Technol 74:132–146

    CAS  Google Scholar 

  7. Alexander A, Patel RJ, Saraf S, Saraf S (2016) Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J Control Release 241:110–124

    CAS  PubMed  Google Scholar 

  8. Alexander M, Lopez AA, Fang Y, Corredig M (2012) Incorporation of phytosterols in soy phospholipids nanoliposomes: encapsulation efficiency and stability. LWT Food Sci Technol 47:427–436

    CAS  Google Scholar 

  9. Anton N, Benoit J-P, Saulnier P (2008) Design and production of nanoparticles formulated from nano-emulsion templates – a review. J Control Release 128:185–199

    CAS  PubMed  Google Scholar 

  10. Artiga-Artigas M, Guerra-Rosas M, Morales-Castro J, Salvia-Trujillo L, Martín-Belloso O (2018) Influence of essential oils and pectin on nanoemulsion formulation: a ternary phase experimental approach. Food Hydrocoll 81:209–219

    CAS  Google Scholar 

  11. Assadpour E, Maghsoudlou Y, Jafari S-M, Ghorbani M, Aalami M (2016a) Evaluation of folic acid Nano-encapsulation by double emulsions. Food Bioprocess Technol 9:2024–2032

    CAS  Google Scholar 

  12. Assadpour E, Maghsoudlou Y, Jafari S-M, Ghorbani M, Aalami M (2016b) Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions. Int J Biol Macromol 86:197–207

    CAS  PubMed  Google Scholar 

  13. Assadpour E, Jafari SM, Esfanjani AF (2017) Protection of phenolic compounds within nanocarriers. CAB Rev 12:1–8

    Google Scholar 

  14. Assadpour E, Jafari SM (2018) A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit Rev Food Sci Nutr:1–47. https://doi.org/10.1080/10408398.2018.1484687

  15. Babazadeh A, Ghanbarzadeh B, Hamishehkar H (2016) Novel nanostructured lipid carriers as a promising food grade delivery system for rutin. J Funct Foods 26:167–175

    CAS  Google Scholar 

  16. Babazadeh A, Ghanbarzadeh B, Hamishehkar H (2017) Phosphatidylcholine-rutin complex as a potential nanocarrier for food applications. J Funct Foods 33:134–141

    CAS  Google Scholar 

  17. Bagherpour S, Alizadeh A, Ghanbarzadeh S, Mohammadi M, Hamishehkar H (2017) Preparation and characterization of Betasitosterol-loaded nanostructured lipid carriers for butter enrichment. Food Biosci 20:51–55

    CAS  Google Scholar 

  18. Balta I, Brinzan L, Stratakos AC, Linton M, Kelly C, Pinkerton L, Corcionivoschi N (2017) Geraniol and linalool loaded Nanoemulsions and their antimicrobial activity bulletin UASVM. Animal Sci Biotechnol 74:2

    Google Scholar 

  19. Bhosale AP, Patil A, Swami M (2015) Herbosomes as a novel drug delivery system for absorption enhancement. World J Pharmacy Pharmaceut Sci 5:345–355

    Google Scholar 

  20. Bochicchio S, Barba AA, Grassi G, Lamberti G (2016) Vitamin delivery: carriers based on nanoliposomes produced via ultrasonic irradiation. LWT Food Sci Technol 69:9–16

    CAS  Google Scholar 

  21. Bose S, Du Y, Takhistov P, Michniak-Kohn B (2013) Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems. Int J Pharm 441:56–66

    CAS  PubMed  Google Scholar 

  22. Bou R, Cofrades S, Jiménez-Colmenero F (2014) Physicochemical properties and riboflavin encapsulation in double emulsions with different lipid sources. LWT Food Sci Technol 59:621–628

    CAS  Google Scholar 

  23. Bouksaim M, Lacroix C, Audet P, Simard R (2000) Effects of mixed starter composition on nisin Z production by Lactococcus lactis subsp. lactis biovar. Diacetylactis UL 719 during production and ripening of gouda cheese. Int J Food Microbiol 59:141–156

    CAS  PubMed  Google Scholar 

  24. Caddeo C, Teskač K, Sinico C, Kristl J (2008) Effect of resveratrol incorporated in liposomes on proliferation and UV-B protection of cells. Int J Pharm 363:183–191

    CAS  PubMed  Google Scholar 

  25. Cadena PG et al (2013) Nanoencapsulation of quercetin and resveratrol into elastic liposomes. Biochimica et Biophysica Acta (BBA)-Biomembranes 1828:309–316

    CAS  PubMed  Google Scholar 

  26. Campani V, Biondi M, Mayol L, Cilurzo F, Pitaro M, De Rosa G (2016) Development of nanoemulsions for topical delivery of vitamin K1. Int J Pharm 511:170–177

    CAS  PubMed  Google Scholar 

  27. Cavazos-Garduño A, Flores AO, Serrano-Niño J, Martínez-Sanchez C, Beristain C, García H (2015) Preparation of betulinic acid nanoemulsions stabilized by ω-3 enriched phosphatidylcholine. Ultrason Sonochem 24:204–213

    PubMed  Google Scholar 

  28. Chen C, Han D, Cai C, Tang X (2010) An overview of liposome lyophilization and its future potential. J Control Release 142:299–311

    CAS  PubMed  Google Scholar 

  29. Chen F, Liang L, Zhang Z, Deng Z, Decker EA, McClements DJ (2017) Inhibition of lipid oxidation in nanoemulsions and filled microgels fortified with omega-3 fatty acids using casein as a natural antioxidant. Food Hydrocoll 63:240–248

    CAS  Google Scholar 

  30. Chen H, Weiss J, Shahidi F (2006) Nanotechnology in nutraceuticals and functional foods. Food Technol 03.06(3):30–36

    Google Scholar 

  31. Chen X, Zou L-Q, Niu J, Liu W, Peng S-F, Liu C-M (2015) The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules 20:14293–14311

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cho JS, Seo YC, Yim TB, Lee HY (2013) Effect of nanoencapsulated vitamin B1 derivative on inhibition of both mycelial growth and spore germination of fusarium oxysporum f. Sp.raphani. Int J Mol Sci 14:4283–4297

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chuesiang P, Siripatrawan U, Sanguandeekul R, McLandsborough L, McClements DJ (2018) Optimization of cinnamon oil nanoemulsions using phase inversion temperature method: impact of oil phase composition and surfactant concentration. J Colloid Interface Sci 514:208–216

    CAS  PubMed  Google Scholar 

  34. Colas J-C, Shi W, Rao VM, Omri A, Mozafari MR, Singh H (2007) Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron 38:841–847

    CAS  PubMed  Google Scholar 

  35. Couto R, Alvarez V, Temelli F (2017) Encapsulation of vitamin B2 in solid lipid nanoparticles using supercritical CO2. J Supercrit Fluids 120:432–442

    CAS  Google Scholar 

  36. Cui H, Zhao C, Lin L (2015) The specific antibacterial activity of liposome-encapsulated clove oil and its application in tofu. Food Control 56:128–134

    CAS  Google Scholar 

  37. Cuomo F, Cofelice M, Venditti F, Ceglie A, Miguel M, Lindman B, Lopez F (2018) In-vitro digestion of curcumin loaded chitosan-coated liposomes. Colloids Surf B: Biointerfaces 168:29–34

    Google Scholar 

  38. Cuomo J et al (2011) Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. J Nat Prod 74:664–669

    CAS  PubMed  Google Scholar 

  39. da Silva BV, Barreira JC, Oliveira MBP (2016) Natural phytochemicals and probiotics as bioactive ingredients for functional foods: extraction, biochemistry and protected-delivery technologies. Trends Food Sci Technol 50:144–158

    Google Scholar 

  40. Das S, Chaudhury A (2011) Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 12:62–76

    CAS  PubMed  Google Scholar 

  41. Dasgupta N, Ranjan S, Mundra S, Ramalingam C, Kumar A (2016) Fabrication of food grade vitamin E nanoemulsion by low energy approach, characterization and its application. Int J Food Prop 19:700–708

    CAS  Google Scholar 

  42. Davidov-Pardo G, McClements DJ (2015) Nutraceutical delivery systems: resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification. Food Chem 167:205–212

    CAS  PubMed  Google Scholar 

  43. de Souza Simões L, Madalena DA, Pinheiro AC, Teixeira JA, Vicente AA, Ramos ÓL (2017) Micro-and nano bio-based delivery systems for food applications: in vitro behavior. Adv Colloid Interf Sci 243:23–45

    Google Scholar 

  44. DiNicolantonio JJ, Lucan SC, O’Keefe JH (2016) The evidence for saturated fat and for sugar related to coronary heart disease. Prog Cardiovasc Dis 58:464–472

    PubMed  Google Scholar 

  45. Donsì F, Ferrari G (2016) Essential oil nanoemulsions as antimicrobial agents in food. J Biotechnol 233:106–120

    PubMed  Google Scholar 

  46. Donsì F, Sessa M, Mediouni H, Mgaidi A, Ferrari G (2011) Encapsulation of bioactive compounds in nanoemulsion-based delivery systems. Procedia Food Sci 1:1666–1671

    Google Scholar 

  47. Emami S, Azadmard-Damirchi S, Peighambardoust SH, Valizadeh H, Hesari J (2016) Liposomes as carrier vehicles for functional compounds in food sector. J Exp Nanosci 11:737–759

    CAS  Google Scholar 

  48. Ezhilarasi P, Karthik P, Chhanwal N, Anandharamakrishnan C (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6:628–647

    CAS  Google Scholar 

  49. Fang C-L, Al-Suwayeh S, Fang J-Y (2013) Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat Nanotechnol 7:41–55

    CAS  PubMed  Google Scholar 

  50. Fang J-Y, Fang C-L, Liu C-H, Su Y-H (2008) Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm 70:633–640

    CAS  PubMed  Google Scholar 

  51. Fang Z, Bhandari B (2010) Encapsulation of polyphenols–a review. Trends Food Sci Technol 21:510–523

    CAS  Google Scholar 

  52. Faridi Esfanjani A, Jafari SM (2016) Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf B: Biointerfaces 146:532–543

    CAS  PubMed  Google Scholar 

  53. Faridi Esfanjani A, Assadpour E, Jafari SM (2018) Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends Food Sci Technol 76:56–66

    CAS  Google Scholar 

  54. Fathi M, Mozafari M-R, Mohebbi M (2012) Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol 23:13–27

    CAS  Google Scholar 

  55. Fathi M, Varshosaz J (2013) Novel hesperetin loaded nanocarriers for food fortification: production and characterization. J Funct Foods 5:1382–1391

    CAS  Google Scholar 

  56. Fathima SJ, Fathima I, Abhishek V, Khanum F (2016) Phosphatidylcholine, an edible carrier for nanoencapsulation of unstable thiamine. Food Chem 197:562–570

    PubMed  Google Scholar 

  57. Frenzel M, Krolak E, Wagner A, Steffen-Heins A (2015) Physicochemical properties of WPI coated liposomes serving as stable transporters in a real food matrix. LWT Food Sci Technol 63:527–534

    CAS  Google Scholar 

  58. Gaber DM, Nafee N, Abdallah OY (2017) Myricetin solid lipid nanoparticles: stability assurance from system preparation to site of action European. J Pharm Sci 109:569–580

    CAS  Google Scholar 

  59. Gandhi A, Dutta A, Pal A, Bakshi P (2012) Recent trends of phytosomes for delivering herbal extract with improved bioavailability. J Pharmacog Phytochem 1:6–14

    Google Scholar 

  60. Ganesan P, Narayanasamy D (2017) Lipid nanoparticles: different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain Chem Pharmacy 6:37–56

    Google Scholar 

  61. García-Márquez E, Higuera-Ciapara I, Espinosa-Andrews H (2017) Design of fish oil-in-water nanoemulsion by microfluidization. Innovative Food Sci Emerg Technol 40:87–91

    Google Scholar 

  62. Genç L, Kutlu HM, Güney G (2015) Vitamin B12-loaded solid lipid nanoparticles as a drug carrier in cancer therapy. Pharm Dev Technol 20:337–344

    PubMed  Google Scholar 

  63. Geszke-Moritz M, Moritz M (2016) Solid lipid nanoparticles as attractive drug vehicles: composition, properties and therapeutic strategies. Mater Sci Eng C 68:982–994

    CAS  Google Scholar 

  64. Ghanbarzadeh B, Babazadeh A, Hamishehkar H (2016) Nano-phytosome as a potential food-grade delivery system. Food Biosci 15:126–135

    CAS  Google Scholar 

  65. Ghorbanzade T, Jafari SM, Akhavan S, Hadavi R (2017) Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chem 216:146–152

    CAS  PubMed  Google Scholar 

  66. Gleeson JP, Ryan SM, Brayden DJ (2016) Oral delivery strategies for nutraceuticals: delivery vehicles and absorption enhancers. Trends Food Sci Technol 53:90–101

    CAS  Google Scholar 

  67. Gokce EH, Korkmaz E, Dellera E, Sandri G, Bonferoni MC, Ozer O (2012) Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications. Int J Nanomedicine 7:1841

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gómez-Hens A, Fernández-Romero JM (2005) The role of liposomes in analytical processes. TrAC Trends Anal Chem 24:9–19

    Google Scholar 

  69. Gulotta A, Saberi AH, Nicoli MC, McClements DJ (2014) Nanoemulsion-based delivery systems for polyunsaturated (ω-3) oils: formation using a spontaneous emulsification method. J Agric Food Chem 62:1720–1725

    CAS  PubMed  Google Scholar 

  70. Gutiérrez FJ et al (2013) Methods for the nanoencapsulation of β-carotene in the food sector. Trends Food Sci Technol 32:73–83

    Google Scholar 

  71. Guttoff M, Saberi AH, McClements DJ (2015) Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability. Food Chem 171:117–122

    CAS  PubMed  Google Scholar 

  72. Hadian Z, Sahari MA, Moghimi HR, Barzegar M (2014) Formulation, characterization and optimization of liposomes containing eicosapentaenoic and docosahexaenoic acids; a methodology approach. IJPR 13:393

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R (2018) Ferulic acid-loaded nanostructured lipid carriers: a promising nanoformulation against the ischemic neural injuries. Life Sci 193:64–76

    CAS  PubMed  Google Scholar 

  74. Hategekimana J, Chamba MV, Shoemaker CF, Majeed H, Zhong F (2015) Vitamin E nanoemulsions by emulsion phase inversion: effect of environmental stress and long-term storage on stability and degradation in different carrier oil types. Colloids Surf A Physicochem Eng Asp 483:70–80

    CAS  Google Scholar 

  75. Huang J, Wang Q, Li T, Xia N, Xia Q (2017) Nanostructured lipid carrier (NLC) as a strategy for encapsulation of quercetin and linseed oil: preparation and in vitro characterization studies. J Food Eng 215:1–12

    CAS  Google Scholar 

  76. Huang Z, Li X, Zhang T, Song Y, She Z, Li J, Deng Y (2014) Progress involving new techniques for liposome preparation. Asian J Pharmaceut Sci 9:176–182

    Google Scholar 

  77. Isailović BD, Kostić IT, Zvonar A, Đorđević VB, Gašperlin M, Nedović VA, Bugarski BM (2013) Resveratrol loaded liposomes produced by different techniques. Innovative Food Sci Emerg Technol 19:181–189

    Google Scholar 

  78. Jafari S, McClements D (2017) Nanotechnology approaches for increasing nutrient bioavailability. In: Advances in food and nutrition research, vol 81. Elsevier, Cambridge, MA, pp 1–30

    Google Scholar 

  79. Jafari SM (2017) Nanoencapsulation of food bioactive ingredients: principles and applications. Academic Press, San Diego

    Google Scholar 

  80. Jafari SM, Assadpoor E, He Y, Bhandari B (2008) Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocoll 22:1191–1202

    CAS  Google Scholar 

  81. Jafari SM, He Y, Bhandari B (2007a) Production of sub-micron emulsions by ultrasound and microfluidization techniques. J Food Eng 82:478–488

    Google Scholar 

  82. Jafari SM, He Y, Bhandari B (2007b) Optimization of nano-emulsions production by microfluidization. Eur Food Res Technol 225:733–741. https://doi.org/10.1007/s00217-006-0476-9

    Article  CAS  Google Scholar 

  83. Jafari SM, Paximada P, Mandala I, Assadpour E, Mehrnia MA (2017) Chapter 2: encapsulation by nanoemulsions. In: Nanoencapsulation technologies for the food and nutraceutical industries. Academic Press, London, pp 36–73

    Google Scholar 

  84. Jafari SM, McClements DJ (2018) Nanoemulsions. Academic Press

    Google Scholar 

  85. Jahadi M, Khosravi-Darani K (2017) Liposomal encapsulation enzymes: from medical applications to kinetic characteristics. Mini Rev Med Chem 17:366–370

    CAS  PubMed  Google Scholar 

  86. Jahadi M, Khosravi-Darani K, Ehsani M-R, Saboury A, Zoghi A, Egbaltab K, Mozafari M-R (2015) Effect of protease-loaded Nanoliposome produced by heating method on yield and composition of whey and curd during the production of Iranian brined cheese. Nut Food Sci Res 2:49–53

    CAS  Google Scholar 

  87. Jahadi M, Khosravi-Darani K, Ehsani MR, Mozafari MR, Saboury AA, Zoghi A, Mohammadi M (2016) Modelling of proteolysis in Iranian brined cheese using proteinase-loaded nanoliposome. Int J Dairy Technol 69:57–62

    CAS  Google Scholar 

  88. Jay JM, Loessner M, Golden D (2005) Modern food microbiology, 7th edn. Springer, New York

    Google Scholar 

  89. Jenning V, Gysler A, Schäfer-Korting M, Gohla SH (2000) Vitamin a loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur J Pharm Biopharm 49:211–218

    CAS  PubMed  Google Scholar 

  90. Ji H, Tang J, Li M, Ren J, Zheng N, Wu L (2016) Curcumin-loaded solid lipid nanoparticles with Brij78 and TPGS improved in vivo oral bioavailability and in situ intestinal absorption of curcumin. Drug Deliv 23:459–470

    CAS  PubMed  Google Scholar 

  91. Johnson EJ (2002) The role of carotenoids in human health. Nutr Clin Care 5:56–65

    PubMed  Google Scholar 

  92. Karadag A, Yang X, Ozcelik B, Huang Q (2013) Optimization of preparation conditions for quercetin nanoemulsions using response surface methodology. J Agric Food Chem 61:2130–2139

    CAS  PubMed  Google Scholar 

  93. Karami MA, Zadeh BSM, Koochak M, Moghimipur E (2016) Superoxide dismutase-loaded solid lipid nanoparticles prepared by cold homogenization method: characterization and permeation study through burned rat skin. Jundishapur J Nat Pharmaceutical Product 11:e33968 (https://doi.org/10.17795/jjnpp-33968)

  94. Kareparamban JA, Nikam PH, Jadhav AP, Kadam VJ (2012) Phytosome: a novel revolution in herbal drugs. IJRPC 2:299–310

    CAS  Google Scholar 

  95. Karimi N, Ghanbarzadeh B, Hamishehkar H, Keivani F, Pezeshki A, Gholian MM (2015) Phytosome and liposome: the beneficial encapsulation systems in drug delivery and food application. Applied Food Biotechnol 2:17–27

    CAS  Google Scholar 

  96. Karthik P, Anandharamakrishnan C (2016) Enhancing omega-3 fatty acids nanoemulsion stability and in-vitro digestibility through emulsifiers. J Food Eng 187:92–105

    CAS  Google Scholar 

  97. Katouzian I, Esfanjani AF, Jafari SM, Akhavan S (2017) Formulation and application of a new generation of lipid nano-carriers for the food bioactive ingredients. Trends Food Sci Technol 68:14–25

    CAS  Google Scholar 

  98. Katouzian I, Jafari SM (2016) Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends Food Sci Technol 53:34–48

    CAS  Google Scholar 

  99. Katouzian I, Jafari SM (2017) Chapter 4: Nanoencapsulation of vitamins. In: Nanoencapsulation of food bioactive ingredients. Academic Press, London, pp 145–181

    Google Scholar 

  100. Keivani Nahr F, Ghanbarzadeh B, Hamishehkar H, Kafil HS (2018) Food grade nanostructured lipid carrier for cardamom essential oil: preparation, characterization and antimicrobial activity. J Funct Foods 40:1–8

    CAS  Google Scholar 

  101. Khan J, Alexander A, Saraf S, Saraf S (2013) Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. J Control Release 168:50–60

    CAS  PubMed  Google Scholar 

  102. Ko S, Lee S-C (2010) Effect of nanoliposomes on the stabilization of incorporated retinol. Afr J Biotechnol 9:6158–6161

    CAS  Google Scholar 

  103. Komaiko J, Sastrosubroto A, McClements DJ (2016) Encapsulation of ω-3 fatty acids in nanoemulsion-based delivery systems fabricated from natural emulsifiers: sunflower phospholipids. Food Chem 203:331–339

    CAS  PubMed  Google Scholar 

  104. Lacatusu I, Badea N, Stan R, Meghea A (2012) Novel bio-active lipid nanocarriers for the stabilization and sustained release of sitosterol. Nanotechnology 23:455702

    CAS  PubMed  Google Scholar 

  105. Lane KE, Li W, Smith CJ, Derbyshire EJ (2016) The development of vegetarian omega-3 oil in water nanoemulsions suitable for integration into functional food products. J Funct Foods 23:306–314

    CAS  Google Scholar 

  106. Lee H, Yildiz G, Dos Santos L, Jiang S, Andrade J, Engeseth N, Feng H (2016) Soy protein nano-aggregates with improved functional properties prepared by sequential pH treatment and ultrasonication. Food Hydrocoll 55:200–209

    CAS  Google Scholar 

  107. Li H, Zhao X, Ma Y, Zhai G, Li L, Lou H (2009) Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release 133:238–244

    CAS  PubMed  Google Scholar 

  108. Li M, Zahi MR, Yuan Q, Tian F, Liang H (2016) Preparation and stability of astaxanthin solid lipid nanoparticles based on stearic acid. Eur J Lipid Sci Technol 118:592–602

    CAS  Google Scholar 

  109. Li T et al (2015) Preparation and characterization of nanoscale complex liposomes containing medium-chain fatty acids and vitamin C. Int J Food Prop 18:113–124

    CAS  Google Scholar 

  110. Lin C-H, Chen C-H, Lin Z-C, Fang J-Y (2017) Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 25:219–234

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Lin Q, Liang R, Williams PA, Zhong F (2018) Factors affecting the bioaccessibility of β-carotene in lipid-based microcapsules: digestive conditions, the composition, structure and physical state of microcapsules. Food Hydrocoll 77:187–203

    Google Scholar 

  112. Liu L et al (2014) Characterization and biodistribution in vivo of quercetin-loaded cationic nanostructured lipid carriers colloids and surfaces B. Biointerfaces 115:125–131

    CAS  PubMed  Google Scholar 

  113. Liu W, Tian M, Kong Y, Lu J, Li N, Han J (2017) Multilayered vitamin C nanoliposomes by self-assembly of alginate and chitosan: long-term stability and feasibility application in mandarin juice. LWT Food Sci Technol 75:608–615

    CAS  Google Scholar 

  114. Livney YD (2015) Nanostructured delivery systems in food: latest developments and potential future directions. Curr Opin Food Sci 3:125–135

    Google Scholar 

  115. López-Rubio A, Lagaron JM (2012) Whey protein capsules obtained through electrospraying for the encapsulation of bioactives. Innovative Food Sci Emerg Technol 13:200–206

    Google Scholar 

  116. Lu W-C, Huang D-W, Wang C-C, Yeh C-H, Tsai J-C, Huang Y-T, Li P-H (2018) Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. J Food Drug Anal 26(1):82–89

    Google Scholar 

  117. Lu W, Kelly AL, Miao S (2016) Emulsion-based encapsulation and delivery systems for polyphenols. Trends Food Sci Technol 47:1–9

    Google Scholar 

  118. Madrigal-Carballo S, Lim S, Rodriguez G, Vila AO, Krueger CG, Gunasekaran S, Reed JD (2010) Biopolymer coating of soybean lecithin liposomes via layer-by-layer self-assembly as novel delivery system for ellagic acid. J Funct Foods 2:99–106

    CAS  Google Scholar 

  119. Mahdavi SA, Jafari SM, Ghorbani M, Assadpoor E (2014) Spray-drying microencapsulation of anthocyanins by natural biopolymers: a review. Dry Technol 32:509–518

    CAS  Google Scholar 

  120. Mahdavee Khazaei K, Jafari SM, Ghorbani M, Hemmati Kakhki A (2014) Application of maltodextrin and gum Arabic in microencapsulation of saffron petal's anthocyanins and evaluating their storage stability and color. Carbohydr Polym 105:57–62

    CAS  PubMed  Google Scholar 

  121. Maherani B, Arab-Tehrany E, Mozafari MR, Gaiani C, Linder M (2011) Liposomes: a review of manufacturing techniques and targeting strategies. Curr Nanosci 7:436–452

    CAS  Google Scholar 

  122. Marczylo TH, Verschoyle RD, Cooke DN, Morazzoni P, Steward WP, Gescher AJ (2007) Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemother Pharmacol 60:171–177

    CAS  PubMed  Google Scholar 

  123. Marsanasco M, Márquez AL, Wagner JR, Alonso SV, Chiaramoni NS (2011) Liposomes as vehicles for vitamins E and C: an alternative to fortify orange juice and offer vitamin C protection after heat treatment. Food Res Int 44:3039–3046

    CAS  Google Scholar 

  124. Martins N, Roriz CL, Morales P, Barros L, Ferreira IC (2016) Food colorants: challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends Food Sci Technol 52:1–15

    CAS  Google Scholar 

  125. Maruyama K et al (2004) Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT). J Control Release 98:195–207

    CAS  PubMed  Google Scholar 

  126. Maté J, Periago PM, Palop A (2016) Combined effect of a nanoemulsion of D-limonene and nisin on Listeria monocytogenes growth and viability in culture media and foods. Food Sci Technol Int 22:146–152

    PubMed  Google Scholar 

  127. McClements DJ (2012) Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter 8:1719–1729

    CAS  Google Scholar 

  128. McClements DJ, Rao J (2011) Food-grade Nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 51:285–330. https://doi.org/10.1080/10408398.2011.559558

    Article  CAS  PubMed  Google Scholar 

  129. Mehmood T (2015) Optimization of the canola oil based vitamin E nanoemulsions stabilized by food grade mixed surfactants using response surface methodology. Food Chem 183:1–7

    CAS  PubMed  Google Scholar 

  130. Mehrad B, Ravanfar R, Licker J, Regenstein JM, Abbaspourrad A (2018) Enhancing the physicochemical stability of β-carotene solid lipid nanoparticle (SLNP) using whey protein isolate. Food Res Int 105:962–969

    CAS  PubMed  Google Scholar 

  131. Mehrnia MA, Jafari SM, Makhmal-Zadeh BS, Maghsoudlou Y (2016) Crocin loaded nano-emulsions: factors affecting emulsion properties in spontaneous emulsification. Int J Biol Macromol 84:261–267

    CAS  PubMed  Google Scholar 

  132. Mehrnia M-A, Jafari S-M, Makhmal-Zadeh BS, Maghsoudlou Y (2017) Rheological and release properties of double nano-emulsions containing crocin prepared with Angum gum, Arabic gum and whey protein. Food Hydrocoll 66:259–267

    CAS  Google Scholar 

  133. Mendes J et al (2018) Chemical composition and antibacterial activity of Eugenia brejoensis essential oil nanoemulsions against Pseudomonas fluorescens. LWT 93:659–664

    CAS  Google Scholar 

  134. Mirzaei H, Shakeri A, Rashidi B, Jalili A, Banikazemi Z, Sahebkar A (2017) Phytosomal curcumin: a review of pharmacokinetic, experimental and clinical studies. Biomed Pharmacother 85:102–112

    CAS  PubMed  Google Scholar 

  135. Mohammadi M, Pezeshki A, Abbasi MM, Ghanbarzadeh B, Hamishehkar H (2017) Vitamin D3-loaded nanostructured lipid carriers as a potential approach for fortifying food beverages; in vitro and in vivo evaluation. Adv Pharmaceutical Bulletin 7:61

    CAS  Google Scholar 

  136. Mohammadi R, Mahmoudzade M, Atefi M, Khosravi-Darani K, Mozafari M (2015) Applications of nanoliposomes in cheese technology. Int J Dairy Technol 68:11–23

    CAS  Google Scholar 

  137. Mohammadi A, Jafari SM, Esfanjani AF, Akhavan S (2016a) Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food Chem 190:513–519

    CAS  PubMed  Google Scholar 

  138. Mohammadi A, Jafari SM, Assadpour E, Faridi Esfanjani A (2016b) Nano-encapsulation of olive leaf phenolic compounds through WPC-pectin complexes and evaluating their release rate. Int J Biol Macromol 82:816–822

    CAS  PubMed  Google Scholar 

  139. Mokhtari S, Jafari SM, Assadpour E (2017) Development of a nutraceutical nano-delivery system through emulsification/internal gelation of alginate. Food Chem 229:286–295

    CAS  PubMed  Google Scholar 

  140. Morais JM, Burgess DJ (2014) In vitro release testing methods for vitamin E nanoemulsions. Int J Pharm 475:393–400

    CAS  PubMed  Google Scholar 

  141. Mozafari RM (2005) Nanoliposomes: from fundamentals to recent developments. Trafford

    Google Scholar 

  142. Mukherjee K, Maiti K, Venkatesh M, Mukherjee P (2008) Phytosome of hesperetin, a value added formulation with phytomolecules. In: 60th Indian Pharmaceutical Congress

    Google Scholar 

  143. Müller R, Radtke M, Wissing S (2002a) Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 242:121–128

    PubMed  Google Scholar 

  144. Müller RH, Radtke M, Wissing SA (2002b) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54:S131–S155

    PubMed  Google Scholar 

  145. Munin A, Edwards-Lévy F (2011) Encapsulation of natural polyphenolic compounds: a review. Pharmaceutics 3:793–829

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Nejadmansouri M, Hosseini SMH, Niakosari M, Yousefi GH, Golmakani MT (2016) Physicochemical properties and storage stability of ultrasound-mediated WPI-stabilized fish oil nanoemulsions. Food Hydrocoll 61:801–811

    CAS  Google Scholar 

  147. Ni S, Hu C, Sun R, Zhao G, Xia Q (2017) Nanoemulsions-based delivery Systems for Encapsulation of quercetin: preparation, characterization, and cytotoxicity studies. J Food Process Eng 40:e12374 (https://doi.org/10.1111/jfpe.12374)

  148. Nunes S, Madureira AR, Campos D, Sarmento B, Gomes AM, Pintado M, Reis F (2017) Solid lipid nanoparticles as oral delivery systems of phenolic compounds: overcoming pharmacokinetic limitations for nutraceutical applications. Crit Rev Food Sci Nutr 57:1863–1873

    CAS  PubMed  Google Scholar 

  149. Ojagh SM, Hasani S (2018) Characteristics and oxidative stability of fish oil nano-liposomes and its application in functional bread. J Food Measur Characterization 12(2):1084–1092

    Google Scholar 

  150. Oliveira DRB, Michelon M, de Figueiredo FG, Sinigaglia-Coimbra R, Cunha RL (2016) β-Carotene-loaded nanostructured lipid carriers produced by solvent displacement method. Food Res Int 90:139–146

    CAS  PubMed  Google Scholar 

  151. Öztürk B (2017) Nanoemulsions for food fortification with lipophilic vitamins: production challenges, stability, and bioavailability. Eur J Lipid Sci Technol 119:1500539 (https://doi.org/10.1002/ejlt.201500539)

  152. Ozturk B, Argin S, Ozilgen M, McClements DJ (2014) Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural surfactants: Quillaja saponin and lecithin. J Food Eng 142:57–63

    CAS  Google Scholar 

  153. Pandita D, Kumar S, Poonia N, Lather V (2014) Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res Int 62:1165–1174

    CAS  Google Scholar 

  154. Panpipat W, Dong M, Xu X, Guo Z (2013) Thermal properties and nanodispersion behavior of synthesized β-sitosteryl acyl esters: a structure–activity relationship study. J Colloid Interface Sci 407:177–186

    CAS  PubMed  Google Scholar 

  155. Park SJ, Garcia CV, Shin GH, Kim JT (2017) Development of nanostructured lipid carriers for the encapsulation and controlled release of vitamin D3. Food Chem 225:213–219

    CAS  PubMed  Google Scholar 

  156. Park SJ, Garcia CV, Shin GH, Kim JT (2018) Improvement of curcuminoid bioaccessbility from turmeric by a nanostructured lipid carrier system. Food Chem 251(15):51–57

    Google Scholar 

  157. Patel AR, Bhandari B (2014) Nano-and microencapsulation of vitamins. In: Nano-and microencapsulation for foods. Wiley, Chichester, pp 223–248

    Google Scholar 

  158. Patel MR, Martin-Gonzalez S, Fernanda M (2012) Characterization of ergocalciferol loaded solid lipid nanoparticles. J Food Sci 77(1):N8–13

    Google Scholar 

  159. Pezeshki A, Ghanbarzadeh B, Mohammadi M, Fathollahi I, Hamishehkar H (2014) Encapsulation of vitamin a palmitate in nanostructured lipid carrier (NLC)-effect of surfactant concentration on the formulation properties. Adv Pharmaceutical Bulletin 4:563

    Google Scholar 

  160. Pezeshky A, Ghanbarzadeh B, Hamishehkar H, Moghadam M, Babazadeh A (2016) Vitamin A palmitate-bearing nanoliposomes: preparation and characterization. Food Biosci 13:49–55

    CAS  Google Scholar 

  161. Pinheiro AC, Coimbra MA, Vicente AA (2016) In vitro behaviour of curcumin nanoemulsions stabilized by biopolymer emulsifiers–effect of interfacial composition. Food Hydrocoll 52:460–467

    CAS  Google Scholar 

  162. Pinilla CMB, Brandelli A (2016) Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against gram-positive and gram-negative bacteria in milk. Innovative Food Sci Emerg Technol 36:287–293

    CAS  Google Scholar 

  163. Pinto F, de Barros DP, Fonseca LP (2018) Design of multifunctional nanostructured lipid carriers enriched with α-tocopherol using vegetable oils. Ind Crop Prod 118:149–159

    CAS  Google Scholar 

  164. Porter CJ, Trevaskis NL, Charman WN (2007) Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 6:231

    CAS  PubMed  Google Scholar 

  165. Pourashouri P, Shabanpour B, Razavi SH, Jafari SM, Shabani A, Aubourg SP (2014) Impact of wall materials on physicochemical properties of microencapsulated fish oil by spray drying. Food Bioprocess Technol 7:2354–2365

    CAS  Google Scholar 

  166. Prombutara P, Kulwatthanasal Y, Supaka N, Sramala I, Chareonpornwattana S (2012) Production of nisin-loaded solid lipid nanoparticles for sustained antimicrobial activity. Food Control 24:184–190

    CAS  Google Scholar 

  167. Pyo S-M, Müller RH, Keck CM (2017) Encapsulation by nanostructured lipid carriers. In: Nanoencapsulation technologies for the food and nutraceutical industries. Elsevier, London, pp 114–137

    Google Scholar 

  168. Qi C, Chen Y, Huang JH, Jin QZ, Wang XG (2012) Preparation and characterization of catalase-loaded solid lipid nanoparticles based on soybean phosphatidylcholine. J Sci Food Agric 92:787–793

    CAS  PubMed  Google Scholar 

  169. Rabelo CA, Taarji N, Khalid N, Kobayashi I, Nakajima M, Neves MA (2018) Formulation and characterization of water-in-oil nanoemulsions loaded with açaí berry anthocyanins: insights of degradation kinetics and stability evaluation of anthocyanins and nanoemulsions. Food Res Int 106:542–548

    Google Scholar 

  170. Radhakrishnan R, Kulhari H, Pooja D, Gudem S, Bhargava S, Shukla R, Sistla R (2016) Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer. Chem Phys Lipids 198:51–60

    CAS  PubMed  Google Scholar 

  171. Rafiee Z, Barzegar M, Sahari MA, Maherani B (2017) Nanoliposomal carriers for improvement the bioavailability of high–valued phenolic compounds of pistachio green hull extract. Food Chem 220:115–122

    CAS  PubMed  Google Scholar 

  172. Rao J, McClements DJ (2011) Food-grade microemulsions, nanoemulsions and emulsions: fabrication from sucrose monopalmitate & lemon oil. Food Hydrocoll 25:1413–1423

    CAS  Google Scholar 

  173. Rashidinejad A, Birch EJ, Sun-Waterhouse D, Everett DW (2014) Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. Food Chem 156:176–183

    CAS  PubMed  Google Scholar 

  174. Rashidinejad A, Birch EJ, Sun-Waterhouse D, Everett DW (2016) Effect of liposomal encapsulation on the recovery and antioxidant properties of green tea catechins incorporated into a hard low-fat cheese following in vitro simulated gastrointestinal digestion. Food Bioprod Process 100:238–245

    CAS  Google Scholar 

  175. Rasti B, Erfanian A, Selamat J (2017) Novel nanoliposomal encapsulated omega-3 fatty acids and their applications in food. Food Chem 230:690–696

    CAS  PubMed  Google Scholar 

  176. Ravanfar R, Tamaddon AM, Niakousari M, Moein MR (2016) Preservation of anthocyanins in solid lipid nanoparticles: optimization of a microemulsion dilution method using the placket–Burman and box–Behnken designs. Food Chem 199:573–580

    CAS  PubMed  Google Scholar 

  177. Ribeiro H, Gupta R, Smith K, van Malssen K, Popp A, Velikov K (2016) Super-cooled and amorphous lipid-based colloidal dispersions for the delivery of phytosterols. Soft Matter 12:5835–5846

    CAS  PubMed  Google Scholar 

  178. Righeschi C, Bergonzi MC, Isacchi B, Bazzicalupi C, Gratteri P, Bilia AR (2016) Enhanced curcumin permeability by SLN formulation: the PAMPA approach. LWT Food Sci Technol 66:475–483

    CAS  Google Scholar 

  179. Saberi AH, Fang Y, McClements DJ (2013) Fabrication of vitamin E-enriched nanoemulsions by spontaneous emulsification: effect of propylene glycol and ethanol on formation, stability, and properties. Food Res Int 54:812–820

    CAS  Google Scholar 

  180. Salminen H, Aulbach S, Leuenberger BH, Tedeschi C, Weiss J (2014) Influence of surfactant composition on physical and oxidative stability of Quillaja saponin-stabilized lipid particles with encapsulated ω-3 fish oil. Colloids Surf B: Biointerfaces 122:46–55

    CAS  PubMed  Google Scholar 

  181. Salminen H, Gömmel C, Leuenberger BH, Weiss J (2016) Influence of encapsulated functional lipids on crystal structure and chemical stability in solid lipid nanoparticles: towards bioactive-based design of delivery systems. Food Chem 190:928–937

    CAS  PubMed  Google Scholar 

  182. Salvia-Trujillo L, Soliva-Fortuny R, Rojas-Graü MA, McClements DJ, Martín-Belloso O (2017) Edible nanoemulsions as carriers of active ingredients: a review. Annu Rev Food Sci Technol 8:439–466

    CAS  PubMed  Google Scholar 

  183. Santana R, Perrechil F, Cunha R (2013) High-and low-energy emulsifications for food applications: a focus on process parameters. Food Eng Rev 5:107–122

    CAS  Google Scholar 

  184. Saraf S (2010) Applications of novel drug delivery system for herbal formulations. Fitoterapia 81:680–689

    PubMed  Google Scholar 

  185. Sari TP, Mann B, Kumar R, Singh RRB, Sharma R, Bhardwaj M, Athira S (2015) Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocoll 43:540–546

    CAS  Google Scholar 

  186. Saxena V, Hasan A, Sharma S, Pandey LM (2018) Edible oil nanoemulsion: an organic nanoantibiotic as a potential biomolecule delivery vehicle. Int J Polym Mater Polym Biomater 67:410–419

    CAS  Google Scholar 

  187. Sebaaly C, Jraij A, Fessi H, Charcosset C, Greige-Gerges H (2015) Preparation and characterization of clove essential oil-loaded liposomes. Food Chem 178:52–62

    CAS  PubMed  Google Scholar 

  188. Semalty A, Semalty M, Rawat MSM, Franceschi F (2010) Supramolecular phospholipids–polyphenolics interactions: the PHYTOSOME® strategy to improve the bioavailability of phytochemicals. Fitoterapia 81:306–314

    CAS  PubMed  Google Scholar 

  189. Sessa M et al (2014) Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems. Food Chem 147:42–50

    CAS  PubMed  Google Scholar 

  190. Shah R, Eldridge D, Palombo E, Harding I (2015) Lipid nanoparticles: production, characterization and stability. Springer, Berlin

    Google Scholar 

  191. Shin GH, Chung SK, Kim JT, Joung HJ, Park HJ (2013) Preparation of chitosan-coated nanoliposomes for improving the mucoadhesive property of curcumin using the ethanol injection method. J Agric Food Chem 61:11119–11126

    CAS  PubMed  Google Scholar 

  192. Shin GH, Kim JT, Park HJ (2015) Recent developments in nanoformulations of lipophilic functional foods. Trends Food Sci Technol 46:144–157

    CAS  Google Scholar 

  193. Sindhumol P, Thomas M, Mohanachandran P (2010) Phytosomes: a novel dosage form for enhancement of bioavailability of botanicals and neutraceuticals. Int J Pharm Pharm Sci 2:10–14

    CAS  Google Scholar 

  194. Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma M (2005) Nano-emulsions. Curr Opin Colloid Interface Sci 10:102–110

    CAS  Google Scholar 

  195. Soleimanian Y, Goli SAH, Varshosaz J, Sahafi SM (2018) Formulation and characterization of novel nanostructured lipid carriers made from beeswax, propolis wax and pomegranate seed oil. Food Chem 244:83–92

    CAS  PubMed  Google Scholar 

  196. Soukoulis C, Bohn T (2018) A comprehensive overview on the micro-and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids. Crit Rev Food Sci Nutr 58:1–36

    CAS  PubMed  Google Scholar 

  197. Sun J, Bi C, Chan HM, Sun S, Zhang Q, Zheng Y (2013) Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability. Colloids Surf B: Biointerfaces 111:367–375

    PubMed  Google Scholar 

  198. Takahashi M, Uechi S, Takara K, Asikin Y, Wada K (2009) Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. J Agric Food Chem 57:9141–9146

    CAS  PubMed  Google Scholar 

  199. Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A (2013) Nanostructured lipid carriers (NLC): a potential delivery system for bioactive food molecules. Innovative Food Sci Emerg Technol 19:29–43

    CAS  Google Scholar 

  200. Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A (2014) Design and characterization of astaxanthin-loaded nanostructured lipid carriers. Innovative Food Sci Emerg Technol 26:366–374

    CAS  Google Scholar 

  201. Tan C, Feng B, Zhang X, Xia W, Xia S (2016) Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food Hydrocoll 52:774–784

    CAS  Google Scholar 

  202. Tan C, Zhang Y, Abbas S, Feng B, Zhang X, Xia S (2014) Modulation of the carotenoid bioaccessibility through liposomal encapsulation. Colloids Surf B: Biointerfaces 123:692–700

    CAS  PubMed  Google Scholar 

  203. Taylor TM, Weiss J, Davidson PM, Bruce BD (2005) Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci Nutr 45:587–605

    CAS  PubMed  Google Scholar 

  204. Tian H, Lu Z, Li D, Hu J (2018) Preparation and characterization of citral-loaded solid lipid nanoparticles. Food Chem 248:78–85

    CAS  PubMed  Google Scholar 

  205. Ting Y, Jiang Y, Ho C-T, Huang Q (2014) Common delivery systems for enhancing in vivo bioavailability and biological efficacy of nutraceuticals. J Funct Foods 7:112–128

    CAS  Google Scholar 

  206. Tripathy S, Patel DK, Barob L, Naira SK (2013) A review on phytosomes, their characterization, advancement & potential for transdermal application. J Drug Del Therapeutics 3:147–152

    CAS  Google Scholar 

  207. Tsai W-C, Rizvi SS (2016) Liposomal microencapsulation using the conventional methods and novel supercritical fluid processes. Trends Food Sci Technol 55:61–71

    CAS  Google Scholar 

  208. Uraiwan K, Satirapipathkul C (2016) The entrapment of vitamin E in nanostructured lipid carriers of rambutan seed fat for cosmeceutical uses. In: Key engineering materials. Trans Tech, Pfaffikon, pp 77–80

    Google Scholar 

  209. Walia N, Dasgupta N, Ranjan S, Chen L, Ramalingam C (2017) Fish oil based vitamin D nanoencapsulation by ultrasonication and bioaccessibility analysis in simulated gastro-intestinal tract. Ultrason Sonochem 39:623–635

    CAS  PubMed  Google Scholar 

  210. Walker RM, Decker EA, McClements DJ (2015) Physical and oxidative stability of fish oil nanoemulsions produced by spontaneous emulsification: effect of surfactant concentration and particle size. J Food Eng 164:10–20

    CAS  Google Scholar 

  211. Wang JL et al (2014) Preparation and characterization of novel lipid carriers containing microalgae oil for food applications. J Food Sci 79(2):E169–177

    Google Scholar 

  212. Weiss J, Decker EA, McClements DJ, Kristbergsson K, Helgason T, Awad T (2008) Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophysics 3:146–154

    Google Scholar 

  213. Wu G, Li J, Yue J, Zhang S, Yunusi K (2018) Liposome encapsulated luteolin showed enhanced antitumor efficacy to colorectal carcinoma. Mol Med Rep 17:2456–2464

    CAS  PubMed  Google Scholar 

  214. Yadav P, Soni G, Mahor A, Alok S, Singh PP, Verma A (2014) Solid lipid nanoparticles: an effective and promising drug delivery system-a review. Int J Pharm Sci Res 5:1152

    CAS  Google Scholar 

  215. Yang S, Liu W, Liu C, Liu W, Tong G, Zheng H, Zhou W (2012) Characterization and bioavailability of vitamin C nanoliposomes prepared by film evaporation-dynamic high pressure microfluidization. J Dispers Sci Technol 33:1608–1614

    CAS  Google Scholar 

  216. Yang Y, McClements DJ (2013) Encapsulation of vitamin E in edible emulsions fabricated using a natural surfactant. Food Hydrocoll 30:712–720

    Google Scholar 

  217. Zhang J, Tang Q, Xu X, Li N (2013) Development and evaluation of a novel phytosome-loaded chitosan microsphere system for curcumin delivery. Int J Pharm 448:168–174

    CAS  PubMed  Google Scholar 

  218. Zhu J, Zhuang P, Luan L, Sun Q, Cao F (2015) Preparation and characterization of novel nanocarriers containing krill oil for food application. J Funct Foods 19:902–912

    CAS  Google Scholar 

  219. Zhuang C-Y et al (2010) Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int J Pharm 394:179–185

    CAS  PubMed  Google Scholar 

  220. Zou L-q et al (2014) Improved in vitro digestion stability of (−)-epigallocatechin gallate through nanoliposome encapsulation. Food Res Int 64:492–499

    CAS  PubMed  Google Scholar 

  221. Radtke M, Müller, RH (2001) Nanostructured lipid drug carriers. New Drugs 2:48–52

    Google Scholar 

  222. Nazemiyeh E, Eskandani M, Sheikhloie H, Nazemiyeh H (2016) Formulation and physicochemical characterization of lycopene-loaded solid lipid nanoparticles. Adv Pharm Bull 6(2):235–241

    Google Scholar 

  223. Esquerdo V, Dotto G, Pinto L (2015) Preparation of nanoemulsions containing unsaturated fatty acid concentrate–chitosan capsules. J Colloid Interf Sci 445:137–142

    Google Scholar 

  224. Zhao Y, Chang Y-X, Hu X, Liu C-Y, Quan L-H, Liao Y-H (2017) Solid lipid nanoparticles for sustained pulmonary delivery of Yuxingcao essential oil: preparation, characterization and in vivo evaluation. Int J Pharmaceut 516:364–371

    Google Scholar 

  225. Lewies A, Wentzel JF, Jordaan A, Bezuidenhout C, Du Plessis LH (2017) Interactions of the antimicrobial peptide nisin Z with conventional antibiotics and the use of nanostructured lipid carriers to enhance antimicrobial activity. Int J Pharmaceut 526:244–253

    Google Scholar 

  226. Qi C, Chen Y, Huang JH, Jin QZ, Wang XG (2012) Preparation and characterization of catalase-loaded solid lipid nanoparticles based on soybean phosphatidylcholine. J Sci Food Agric. 92:787–793

    Google Scholar 

  227. Chanburee S, Tiyaboonchai W (2018) Enhanced intestinal absorption of curcumin in Caco-2 cell monolayer using mucoadhesive nanostructured lipid carriers. J Biomed Mater Res B Appl Biomater. 106(2):734–741

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seid Mahdi Jafari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rafiee, Z., Jafari, S.M. (2019). Application of Lipid Nanocarriers for the Food Industry. In: Mérillon, JM., Ramawat, K.G. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-78030-6_93

Download citation

Publish with us

Policies and ethics