Skip to main content

Nutraceutical Potential of Apiaceae

  • Reference work entry
  • First Online:
Book cover Bioactive Molecules in Food

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Apiaceae family is large, with over 3.000 species worldwide cultivated for many purposes. Some plants in this family such as carrots, parsley, parsnip and celery are common vegetable crops, while other members like anise, caraway, coriander, cumin, fennel, lovage, angelica and dill are famous for their medicinal and aromatic properties. Usage of these plants is very popular in everyday diet because of their documented health benefits. Apiaceae are a very important source of phytochemicals – chemicals with biological activity. However, phytochemicals are non-nutritive plant chemicals, also called nutraceuticals. They are widely used for prevention, treatment or cure of conditions or diseases. Bioactive compounds with nutraceutical potential are polyphenolic compounds, polyacetylenes and terpenoids. The aim of this review is to represent selected plants of Apiaceae family currently used as nutraceuticals and describe their nutritional benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CAE:

Caffeic acid equivalent

CE:

Catechine equivalent

DW:

Dry weight

FW:

Fresh weight

GAE:

Gallic acid equivalents

QE:

Quercetin equivalent

TFC:

Total flavanoids content

TPC:

Total phenolic contents

References

  1. Tunçtürk M, Özgökçe F (2015) Chemical composition of some Apiaceae plants commonly used in herby cheese in eastern Anatolia. Turk J Agric For 39:55–62

    Google Scholar 

  2. Aćimović M, Milić N (2017) Perspectives of the Apiaceae hepatoprotective effects – a review. Nat Prod Commun 12:309–317

    Google Scholar 

  3. Huang WY, Cai YZ, Zhang Y (2010) Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer 62:1–20

    Google Scholar 

  4. Siró I, Kápolna E, Kápolna B, Lugasi A (2008) Functional food. Product development, marketing and consumer acceptance – a review. Appetite 51:456–467

    Google Scholar 

  5. Jain N, Ramawat K (2013) Nutraceuticals and antioxidants in prevention of diseases. In: Ramawat KG, Mérillon JM (eds) Natural products, Phytochemistry, botany and metabolism of alkaloids, Phenolics and terpenes. Springer, Berlin/Heidelberg

    Google Scholar 

  6. Wang J, Guleria S, Koffas M, Yan Y (2016) Microbial production of value-added nutraceuticals. Curr Opin Biotechnol 37:97–104

    Google Scholar 

  7. Cornelli U (2009) Antioxidant use in nutraceuticals. Clin Dermatol 27:175–194

    Google Scholar 

  8. Tapas AR, Sakarkar DM, Kakde RB (2008) Flavonoids as nutraceuticals: a review. Trop J Pharm Res 7:1089–1099

    Google Scholar 

  9. Dillard C, German B (2000) Review phytochemicals: nutraceuticals and human health. J Sci Food Agric 80:1744–1756

    CAS  Google Scholar 

  10. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2:270–278

    Google Scholar 

  11. Ghanem M, Radwan H, Mahdy ES, Elkholy Y, Hassanein H, Shahat A (2012) Phenolic compounds from Foeniculum vulgare (Subsp. piperitum) (Apiaceae) herb and evaluation of hepatoprotective antioxidant activity. Pharm Res 4:104–108

    CAS  Google Scholar 

  12. Martins N, Barros L, Santos-Buelgac C, Ferreira I (2016) Antioxidant potential of two Apiaceae plant extracts: a comparative study focused on the phenolic composition. Ind Crop Prod 79:188–194

    CAS  Google Scholar 

  13. Ereifej KI, Feng H, Rababah TM, Tashtoush SH, Al-U’datt MH, Gammoh S, Al-Rabadi GJ (2016) Effect of extractant and temperature on phenolic compounds and antioxidant activity of selected spices. Food Nutr Sci 7:362–370

    CAS  Google Scholar 

  14. Saleem F, Sarkar D, Ankolekar C, Shetty K (2017) Phenolic bioactives and associated antioxidant and anti-hyperglycemic functions of select species of Apiaceae Family targeting for type 2 diabetes relevant nutraceuticals. Ind Crop Prod. https://doi.org/10.1016/j.indcrop.2017.06.023

  15. Bystrická J, Kavalcová P, Musilová J, Vollmannová A, Tóth T, Lenková M (2015) Carrot (Daucus carota L. ssp. sativus (Hoffm.) Arcang.) as source of antioxidants. Acta Agri Slovenica 105:303–311

    Google Scholar 

  16. Nagy M, Tofană M, Socaci SA, Pop AV, Bors MD, Farcas A, Moldovan O (2014) Total phenolic, flavonoids and antioxidant capacity of some medicinal and aromatic plants. Bull UASVM Food Sci Technol 71:209–210

    Google Scholar 

  17. Świeca M, Gawlik-Dziki U (2008) Influence of thermal processing on phenolics compounds level and antiradical activity of dill (Anethum graveolens L.) Herba Polonica 54:59–69

    Google Scholar 

  18. Isbilir SS, Sagiroglu A (2011) Antioxidant potential of different dill (Anethum graveolens L.) leaf extracts. Int J Food Prop 14:894–902

    Google Scholar 

  19. Molnar M, Jerković I, Suknović D, Bilić-Rajs B, Aladić K, Šubarić D, Jokić S (2017) Screening of six medicinal plant extracts obtained by two conventional methods and supercritical CO2 extraction targeted on coumarin content, 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity and total phenols content. Molecules 22:348. https://doi.org/10.3390/molecules22030348

    Article  CAS  PubMed Central  Google Scholar 

  20. Harmala P, Vuorela H (1990) Optimization of the high-performance liquid chromatography of coumarins in Angelica archangelica with reference to molecular structure. J Chromatogr 507:367–380

    CAS  Google Scholar 

  21. Kumar D, Bhat ZA, Kumar V, Shah MY (2013) Coumarins from Angelica archangelica Linn. And their effects on anxiety-like behavior. Prog Neuro-Psychopharmacol Biol Psychiatry 40:180–186

    CAS  Google Scholar 

  22. Dellal A, Benali FT, Hamel A, Dif MM, Bouazza S, Douaoui A, Rahmani H (2016) Optimization of the extraction conditions of phenolic compounds from (Apium graveolens) seeds by response surface methodology. Adv Environ Biol 10:155–163

    CAS  Google Scholar 

  23. Yao Y, Sang W, Zhou M, Ren G (2010) Phenolic composition and antioxidant activities of 11 celery cultivars. J Food Sci 75:C9–13

    CAS  Google Scholar 

  24. Vallverdú-Queralt A, Regueiro J, Alvarenga JFR, Martinez-Huelamo M, Leal LN, Lamuela-Raventos RM (2015) Characterization of the phenolic and antioxidant profiles of selected culinary herbs and spices: caraway, turmeric, dill, marjoram and nutmeg. Food Sci Technol Campinas 35:189–195

    Google Scholar 

  25. Kunzemann J, Herrmann K (1977) Isolation and identification of flavon(ol)-O-glycosides in caraway (Carum carvi L.), fennel (Foeniculum vulgare mill.), anise (Pimpinella anisum L.), and coriander (Coriandrum sativum L.), and of flavon-C-glycosides in anise. I. Phenolics of spices. Z Lebensm Unters Forsch 164:194–200

    CAS  Google Scholar 

  26. Al-Juhaimi F, Ghafoor K (2011) Total phenols and antioxidant activities of leaf and stem extracts from coriander, mint and parsley grown in Saudi Arabia. Pak J Bot 43:2235–2237

    CAS  Google Scholar 

  27. Nambiar VS, Daniel M, Guin P (2010) Characterization of polyphenols from coriander leaves (Coriandrum sativum), red amaranthus (A. paniculatus) and green amaranthus (A. frumentaceus) using paper chromatography: and their health implications. J Herb Med Toxicol 4:173–177

    Google Scholar 

  28. Barros L, Dueñas M, Dias MI, Sousa MJ, Santos-Buelga C, ICFR F (2012) Phenolic profiles of in vivo and in vitro grown Coriandrum sativum L. Food Chem 132:841–848

    CAS  Google Scholar 

  29. Farah H, Elbadrawy E, Al-Atoom AA (2015) Evaluation of antioxidant and antimicrobial activities of ethanolic extracts of parsley (Petroselinum crispum) and coriander (Coriandrum sativum) plants grown in Saudi Arabia. Int J Adv Res 3:1244–1255

    CAS  Google Scholar 

  30. Rajeshwari U, Andallu B (2011) Isolation and simultaneous detection of flavonoids in the methanolic and ethanolic extracts of Coriandrum sativum L. seeds by RP-HPLC. Pak J Food Sci 21:13–21

    Google Scholar 

  31. Bettaieb-Rebey I, Bourgou S, Debez IBS, Jabri-Karoui I, Sellami IH, Msaada K, Limam F, Marzouk B (2012) Effects of extraction solvents and provenances on phenolic contents and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Food Bioprocess Technol 5:2827–2836

    CAS  Google Scholar 

  32. Bettaieb I, Bourgou S, Wannes WA, Hamrouni I, Limam F, Marzouk B (2010) Essential oils, phenolics, and antioxidant activities of different parts of cumin (Cuminum cyminum L.) J Agric Food Chem 58:10410–10418

    CAS  Google Scholar 

  33. Leja M, Kamińska I, Kramer M, Maksylewicz-Kaul A, Kammerer D, Carle R, Baranski R (2013) The content of phenolic compounds and radical scavenging activity varies with carrot origin and root color. Plant Foods Hum Nutr 68:163–170

    CAS  PubMed Central  Google Scholar 

  34. Faisal NA, Chatha SAS, Hussain AI, Ikram M, Bukhari SA (2016) Liaison of phenolic acids and biological activity of escalating cultivars of Daucus carota. Int J Food Prop. https://doi.org/10.1080/10942912.2016.1252390

  35. Dua A, Garg G, Mahajan R (2013) Polyphenols, flavonoids and antimicrobial properties of methanolic extract of fennel (Foeniculum vulgare miller). Eur J Exp Biol 3:203–208

    Google Scholar 

  36. Tomsone L, Kruma Z, Talou T, Zhao TM (2015) Natural antioxidants of horseradish and lovage extracted by accelerated solvent extraction. J Hyg Eng Desig 10:16–24

    Google Scholar 

  37. Kaushik P, Andújar I, Vilanova S, Plazas M, Gramazio P, Herraiz FJ, Brar NS, Prohens J (2015) Breeding vegetables with increased content in bioactive phenolic acids. Molecules 20:18464–18481

    CAS  PubMed Central  Google Scholar 

  38. Ekiert H, Gomółka E (2000) Furanocoumarins in Pastinaca Sativa L. in vitro culture. Pharmazie 55:618–620

    CAS  Google Scholar 

  39. Trifunschi S, Ardelean D (2012) Quantification of phenolics and flavonoids from Petroselinum crispum extracts. J Med Ar 15:83–86

    Google Scholar 

  40. Chaves D, Frattani F, Assafim M, de Almeida AP, Zingali R, Costa S (2011) Phenolic chemical composition of Petroselinum crispum extract and its effect on haemostasis. Nat Prod Comm 6:961–964

    CAS  Google Scholar 

  41. Christova-Bagdassarian VL, Bagdassarian KS, Atanassova MS (2013) Phenolic compounds and antioxidant capacity in Bulgarian plans (dry seeds). Int J Adv Res 1:186–197

    CAS  Google Scholar 

  42. Garrod B, Lewis BG, Coxon DT (1978) Cis-heptadeca-1,9-diene-4,6-diyne-3,8-diol, an antifungal polyacetylene from carrot root tissue. Physiol Plant Pathol 13:241–246

    CAS  Google Scholar 

  43. Schinkovitz A, Stavri M, Gibbons S, Bucar F (2008) Antimycobacterial polyacetylenes from Levisticum officinale. Phytother Res 22:681–684

    CAS  Google Scholar 

  44. Metzger B, Waksmonski J, Thompson A, Barnes D (2013) Supercritical fluid extraction (SFE) of anti-inflammatory polyacetylenes from celeriac (Apium graveolens L.) FASEB J 27:1079.34

    Google Scholar 

  45. Dembitsky V, Levitsky D (2006) Acetylenic terrestrial anticancer agents. Nat Prod Commun 1:405–429

    CAS  Google Scholar 

  46. Zaini RG, Brandt K, Clench MR, Le Maitre CL (2012) Effects of bioactive compounds from carrots (Daucus carota L.), polyacetylenes, beta-carotene and lutein on human lymphoid leukaemia cells. Anti Cancer Agents Med Chem 12:640–652

    CAS  Google Scholar 

  47. El-Houri RB, Kotowska D, Christensen KB, Bhattacharya S, Oksbjerg N, Wolber G, Kristiansen K, Christensen LP (2015) Polyacetylenes from carrots (Daucus carota) improve glucose uptake in vitro in adipocytes and myotubes. Food Funct 6:2135–2144

    CAS  Google Scholar 

  48. Choi YE, Ahn H, Ryu JH (2000) Polyacetylenes from Angelica gigas and their inhibitory activity on nitric oxide synthesis in activated macrophages. Biol Pharm Bull 23:884–886

    CAS  Google Scholar 

  49. Zidorn C, Jöhrer K, Ganzera M, Schubert B, Sigmund EM, Mader J, Greil R, Ellmerer EP, Stuppner H (2005) Polyacetylenes from the Apiaceae vegetables carrot, celery, fennel, parsley, and parsnip and their cytotoxic activities. J Agric Food Chem 53:2518–2523

    CAS  Google Scholar 

  50. Christensen LP (2011) Aliphatic C(17)-polyacetylenes of the falcarinol type as potential health promoting compounds in food plants of the Apiaceae Family. Recent Pat Food Nutr Agric 3:64–77

    CAS  Google Scholar 

  51. Chen Y, Peng S, Luo Q, Zhang J, Guo Q, Zhang Y, Chai X (2015) Chemical and pharmacological progress on polyacetylenes isolated from the family Apiaceae. Chem Biodivers 12:474–502

    CAS  Google Scholar 

  52. Christensen LP, Brandt K (2006) Bioactive polyacetylenes in food plants of the Apiaceae Family: occurrence, bioactivity and analysis. J Pharm Biomed Anal 41:683–693

    CAS  Google Scholar 

  53. Kreutzmann S, Christensen L, Edelenbos M (2008) Investigation of bitterness in carrots (Daucus carota L.) based on quantitative chemical and sensory analyses. LWT 41:193–205

    CAS  Google Scholar 

  54. Schulz-Witte J, Nothnagel T, Schulz H (2010) Comparison of different clean-up methods for simultaneous HPLC determination of carotenoids and polyacetylenes in carrot root. J Appl Bot Food Qual 83:123–127

    CAS  Google Scholar 

  55. Roman M, Baranski R, Baranska M (2011) Nondestructive Raman analysis of polyacetylenes in Apiaceae vegetables. J Agric Food Chem 59:7647–7653

    CAS  Google Scholar 

  56. Kramer M, Bufler G, Nothnagel T, Carle R, Kammerer DR (2012) Effects of cultivation conditions and cold storage on the polyacetylene contents of carrot (Daucus carota L.) and parsnip (Pastinaca sativa L.) J Hortic Sci Biotechnol 87:101–106

    CAS  Google Scholar 

  57. Rawson A, Hossain M, Patras A, Tuohy M, Brunton N (2013) Effect of boiling and roasting on the polyacetylene and polyphenol content of fennel (Foeniculum vulgare) bulb. Food Res Int 50:513–518

    CAS  Google Scholar 

  58. Petrache P, Rodino S, Butu M, Pribac G, Pentea M, Butnariu M (2014) Polyacetylene and carotenes from Petroselinum sativum root. Dig J Nanomater Biostruct 9:1523–1527

    Google Scholar 

  59. Dawid C, Dunemann F, Schwab W, Nothnagel T, Hofmann T (2015) Bioactive C17-polyacetylenes in carrots (Daucus carota L.): current knowledge and future perspectives. J Agric Food Chem 63:9211–9222

    CAS  Google Scholar 

  60. Nakano Y, Matsunaga H, Saita T, Mori M, Katano M, Okabe H (1998) Antiproliferative constituents in Umbelliferae plants II. Screening for polyacetylenes in some Umbelliferae plants, and isolation of panaxynol and falcarindiol from the root of Heracleum moellendorffii. Biol Pharm Bull 21:257–261

    CAS  Google Scholar 

  61. Min BS (2006) Coumarins and a polyacetylene from the roots of Angelica purpuraefolia. Nat Prod Sci 12:129–133

    CAS  Google Scholar 

  62. Matsuda H, Kageura T, Ninomiya K, Toguchida I, Nishida N, Yoshikawa M (1998) Hepatoprotective and nitric oxide production inhibitory activities of coumarin and polyacetylene constituents from the roots of Angelica furcijuga. Bioorg Med Chem Lett 8:2191–2196

    CAS  Google Scholar 

  63. Nurcahyanti A, Nasser I, Sporer F, Graf J, Bermawie N, Reichling J, Wink M (2016) Chemical composition of the essential oil from aerial parts of Javanian Pimpinella pruatjan Molk. And its molecular phylogeny. Diversity 8:15. https://doi.org/10.3390/d8030015

    Article  CAS  Google Scholar 

  64. El Sohaimy SA (2012) Functional foods and nutraceuticals-modern approach to food science. World Appl Sci J 20:691–708

    Google Scholar 

  65. Aćimović M, Korać J, Jaćimović G, Oljača S, Đukanović L, Vuga-Janjatov V (2014a) Influence of ecological conditions on seeds traits and essential oil contents in anise (Pimpinella anisum L.) Not Bot Horti Agrobot Cluj Napoca 42:232–238

    Google Scholar 

  66. Aćimović M, Oljača S, Tešević V, Todosijević M, Đisalov J (2014b) Evaluation of caraway essential oil from different production areas of Serbia. Hort Sci (Prague) 41:122–130

    Google Scholar 

  67. Aćimović M, Stanković J, Cvetković M, Ignjatov M, Lj N (2016b) Chemical characterization of essential oil from seeds of wild and cultivated carrots from Serbia. Bot Serb 40:55–60

    Google Scholar 

  68. Tongnuanchan P, Benjakul S (2014) Essential oils: extraction, bioactivities, and their uses for food preservation. J Food Sci 79:1231–1249

    Google Scholar 

  69. Aćimović M, Lj K, Popović S, Dojčinović N (2015a) Apiaceae seeds as functional food. J Agric Sci (Belgrade) 60:237–246

    Google Scholar 

  70. Saleh MA, Clark S, Woodard B, Deolu-Sobogun SA (2010) Antioxidant and free radical scavenging activities of essential oils. Ethn Dis 20:78–82

    Google Scholar 

  71. Kosalec I, Pepeljnjak S, Kuštrak D (2005) Antifungal activity of fluid extract and essential oil from anise fruits (Pimpinella anisum L., Apiaceae). Acta Pharma 55:377–385

    CAS  Google Scholar 

  72. Fraternale D, Flamini G, Ricci D (2014) Essential oil composition and antimicrobial activity of Angelica archangelica L. (Apiaceae) roots. J Med Food 17:1043–1047

    CAS  Google Scholar 

  73. Bailer J, Aichinger T, Hackl G, de Hueber K, Dachler M (2001) Essential oil content and composition in commercially available dill cultivars in comparison to caraway. Ind Crop Prod 14:229–239

    CAS  Google Scholar 

  74. Rana VS, Blazquez AM (2014) Chemical composition of the essential oil of Anethum graveolens aerial parts. J Essent Oil Bear Pl 17:1219–1223

    CAS  Google Scholar 

  75. Aćimović M, Pavlović S, Varga A, Filipović V, Cvetković M, Stanković J, Čabarkapa I (2017a) Chemical composition and antibacterial activity of Angelica archangelica root essential oil. Nat Prod Commun 12:205–206

    Google Scholar 

  76. Aćimović M, Cvetković M, Stanković J, Filipović V, Nikolić L, Dojčinović N (2017b) Analysis of volatile compounds from Angelica seeds obtained by headspace method. AJMAP 3:10–17

    Google Scholar 

  77. Sowbhagya HB (2014) Chemistry, technology, and nutraceutical functions of celery (Apium graveolens L.): an overview. Crit Rev Food Sci Nutr 54:389–398

    CAS  Google Scholar 

  78. Meshkatalsadat MH, Salahvarzi S, Aminiradpoor R, Abdollahi A (2012) Identification of essential oil constituents of caraway (Carum carvi) using ultrasonic assist with headspace solid phase microextraction (UA-HS-SPME). Dig J Nanomater Biostruct 7:637–640

    Google Scholar 

  79. Seidler-Łożykowska K, Kędzia B, Karpińska E, Bocianowski J (2013) Microbiological activity of caraway (Carum carvi L.) essential oil obtained from different origin. Acta Sci Agron 35:495–500

    Google Scholar 

  80. Aćimović M, Oljača S, Jaćimović G, Dražić S, Tasić S (2011) Benefits of environmental conditions for growing coriander in Banat region, Serbia. Nat Prod Commun 6:1465–1468

    Google Scholar 

  81. Aćimović M, Stanković J, Cvetković M (2016) Effect of weather conditions, location and fertilization on coriander fruit essential oil quality. J Essent Oil Bear Plant 19:1208–1215

    Google Scholar 

  82. Aćimović M, Grahovac M, Stanković J, Cvetković M, Maširević S (2016) Essential oil composition of different coriander (Coriandrum sativum L.) accessions and their influence on mycelial growth of Colletotrichum ssp. Acta Scientiarum Polonorum Hortorum Cultus 15:35–44

    Google Scholar 

  83. Mandal S, Mandal M (2015) Coriander (Coriandrum sativum L.) essential oil: chemistry and biological activity. Asian Pac J Trop Biomed 5:421–428

    CAS  Google Scholar 

  84. Aliniana S, Razmjooa J, Zeinali H (2016) Flavonoids, anthocyanins, phenolics and essential oil produced in cumin (Cuminum cyminum L.) accessions under different irrigation regimes. Ind Crop Prod 81:49–55

    Google Scholar 

  85. Ma M, Mu T, Sun H, Zhang M, Chen J, Yan Z (2015) Optimization of extraction efficiency by shear emulsifying assisted enzymatic hydrolysis and functional properties of dietary fiber from deoiled cumin (Cuminum cyminum L.) Food Chem 179:270–277

    CAS  Google Scholar 

  86. Topal U, Sasaki M, Goto M, Otles S (2008) Chemical compositions and antioxidant properties of essential oils from nine species of Turkish plants obtained by supercritical carbon dioxide extraction and steam distillation. Int J Food Sci Nutr 59:619–634

    CAS  Google Scholar 

  87. Wanner J, Bail S, Jirovetz L, Buchbauer G, Schmidt E, Gochev V, Girova T, Atanasova T, Stoyanova A (2010) Chemical composition and antimicrobial activity of cumin oil (Cuminum cyminum, Apiaceae). Nat Prod Commun 5:1355–1358

    CAS  Google Scholar 

  88. Zatla AT, Dib MEA, Djabou N, Tabti B, Meliani N, Costa J, Muselli A (2017) Chemical variability of essential oil of Daucus carota subsp. sativus from Algeria. J Herbs Spices Med Plant 23:216–230

    CAS  Google Scholar 

  89. Aćimović M, Tešević V, Todosijević M, Đisalov J, Oljača S (2015c) Compositional characteristics of the essential oil of Pimpinella anisum and Foeniculum vulgare grown in Serbia. Bot Serb 39:9–14

    Google Scholar 

  90. Aćimović M, Lj K, Stanković J, Cvetković M, Filipović V (2015) Essential oil composition from sweet and bitter fennel fruits from Serbia. Med Raw Mat 35:121–129

    Google Scholar 

  91. Aćimović M, Cvetković M, Stanković J, Malenčić Đ, Kostadinović L (2015b) Compound analysis of essential oils from lovage and celery fruits obtained by headspace extraction. Ann Agron (Novi Sad) 39:44–51

    Google Scholar 

  92. Nikolić M, Markovic T, Ćirić A, Glamočlija J, Marković D, Soković M (2015) Susceptibility of oral Candida spp. reference strains and clinical isolates to selected essential oils of Apiaceae species. Med Raw Mat 35:151–162

    Google Scholar 

  93. Matejić J, Džamić A, Mihajilov-Krstev T, Ranđelović V, Krivošej Z, Marin P (2014) Antimicrobial potential of essential oil from Pastinaca sativa L. Biologica Nyssana 5:31–35

    Google Scholar 

  94. Linde GA, Gazim ZC, Cardoso BK, Jorge LF, Tešević V, Glamoćlija J, Soković M, Colauto NB (2016) Antifungal and antibacterial activities of Petroselinum crispum essential oil. Genet Mol Res 15(3). https://doi.org/10.4238/gmr.15038538

  95. Borges IB, Cardoso BK, Silva ES, de Oliveira JS, da Silva RF, de Rezende CM, Gonçalves JE, Junior RP, de Souza SGH, Gazim ZC (2016) Evaluation of performance and chemical composition of Petroselinum Crispum essential oil under different conditions of water deficit. Afr J Agric Res 11:480–486

    CAS  Google Scholar 

  96. Gende LB, Maggi MD, Fritz R, Eguaras MJ, Bailac PN, Ponzi MI (2009) Antimicrobial activity of Pimpinella anisum and Foeniculum vulgare essential oils against Paenibacillus larvae. J Essent Oil Res 21:91–93

    CAS  Google Scholar 

  97. Jana S, Shekhawat GS (2010) Anethum graveolens: an Indian traditional medicinal herb and spice. Pharmacogn Rev 4:179–184

    CAS  PubMed Central  Google Scholar 

  98. Aćimović M, Milić N (2015) Dill in traditional medicine and modern phytotherapy. Med Raw Mat 35:23–35

    Google Scholar 

  99. El Mansouri L, Bousta D, Balouiri M, Ouedrhiri W, Elyoubi-El HA (2015) Antioxidant activity of aqueous seed extract of Anethum graveolens L. Int J Pharm Sci Res 7:1219–1223

    Google Scholar 

  100. Mansouri M, Nayebi N, Keshtkar A, Hasani-Ranjbar S, Taheri E, Larijani B (2012) The effect of 12 weeks Anethum graveolens (dill) on metabolic markers in patients with metabolic syndrome; a randomized double blind controlled trial. Daru 20:47. https://doi.org/10.1186/2008-2231-20-47

    Article  PubMed Central  Google Scholar 

  101. Mishra N (2013) Haematological and hypoglycemic potential Anethum graveolens seeds extract in normal and diabetic Swiss albino mice. Vet World 6:502–507

    Google Scholar 

  102. Goodarzi MT, Khodadadi I, Tavilani H, Oshaghi EA (2016) The role of Anethum graveolens L. (dill) in the management of diabetes. J Trop Med 2016:1098916. https://doi.org/10.1155/2016/1098916

    Article  PubMed Central  Google Scholar 

  103. Mobasseri M, Payahoo L, Ostadrahimi A, Bishak YK, Jafarabadi MA, Mahluji S (2014) Anethum graveolens supplementation improves insulin sensitivity and lipid abnormality in type 2 diabetic patients. Pharm sci 20:40–45

    Google Scholar 

  104. Yazdanparast R, Bahramikia S (2008) Evaluation of the effect of Anethum graveolens L. crude extracts on serum lipids and lipoproteins profiles in hypercholesterolaemic rats. Daru 16:88–94

    CAS  Google Scholar 

  105. Bano F, Ikram H, Akhtar N (2013) Aqueous extract of Anethum graveolens L. seeds decrease LDL-C:HDL-C ratio in over weight rats. Pak J Biochem Mol Biol 46:26–29

    Google Scholar 

  106. Mirhosseini M, Baradaran A, Rafieian-Kopaei M (2014) Anethum graveolens and hyperlipidemia: a randomized clinical trial. J Res Med Sci 19:758–761

    PubMed Central  Google Scholar 

  107. Yazdanparast R, Alavi M (2001) Antihyperlipidaemic and antihypercholesterolaemic effects of Anethum graveolens leaves after removal of furocoumarins. Cytobios 105:185–191

    CAS  Google Scholar 

  108. Tamilarasi R, Sivanesan D, Kanimozhi P (2012) Hepatoprotective and antioxidant efficacy of Anethum graveolens Linn in carbon tetrachloride induced hepatotoxicity in albino rats. J Chem Pharm Res 4:1885–1888

    Google Scholar 

  109. Thuppia A, Jitvaropas R, Saenthaweesuk S, Somparn N, Kaulpiboon J (2011) Hepatoprotective effect of the ethanolic extract of Anethum graveolens L. on paracetamol-induced hepatic damage in rats. Planta Med 77:PF18

    Google Scholar 

  110. Ali WSH (2013) Hypolipidemic and antioxidant activities of Anethum graveolens against acetaminophen induced liver damage in rats. WJMS 8:387–392

    Google Scholar 

  111. Rabeh NM, Aboraya AO (2014) Hepatoprotective effect of dill (Anethum graveolens L.) and fennel (Foeniculum vulgare) oil on hepatotoxic rats. PJN 13:303–309

    Google Scholar 

  112. Oshaghi EA, Khodadadi I, Tavilani H, Goodarzi MT (2016) Effect of dill tablet (Anethum graveolens L) on antioxidant status and biochemical factors on carbon tetrachloride-induced liver damage on rat. Int J App Basic Med Res 6:111–114

    CAS  Google Scholar 

  113. Peerakam N, Wattanathorn J, Punjaisee S, Buamongkol S, Sirisa P, Chansakaow S (2014) Chemical profiling of essential oil composition and biological evaluation of Anethum graveolens L. (seed) grown in Thailand. J Nat Sci Res 4:34–41

    Google Scholar 

  114. Kaur GJ, Arora DS (2009) Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC Complement Altern Med 9:30. https://doi.org/10.1186/1472-6882-9-30

    Article  CAS  PubMed Central  Google Scholar 

  115. Chen Y, Zeng H, Tian J, Ban X, Ma B, Wang Y (2013) Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans. J Med Microbiol 62:1175–1183

    Google Scholar 

  116. Dahiya P, Purkayastha S (2012) Phytochemical analysis and antibacterial efficacy of dill seed oil against multi-drug resistant clinical isolates. Asian J Pharm Clin Res 5:62–64

    Google Scholar 

  117. Sava-Sand C, Antofie MM (2016) New improvements in plant quality of Angelica archangelica l. as a crop species of food and pharmaceutical interest. Sci Paper Series Manag Eco Eng Agri Rural Develop 16:477–480

    Google Scholar 

  118. Bhat ZA, Kumar D, Shah MY (2011) Angelica archangelica Linn. Is an angel on earth for the treatment of diseases. Int J Nutri Pharmacol Neurol Diseases 1:36–50

    Google Scholar 

  119. Elgohary AA, Shafaa MW, Raafat BM, Rizk RA, Metwally FG, Saleh AM (2009) Prophylactic effect of Angelica archangelica against acute lead toxicity in albino rabbits. Romanian. J Biophys 19:259–275

    Google Scholar 

  120. Wojcikowski K, Stevenson L, Leach D, Wohlmuth H, Gobe G (2007) Antioxidant capacity of 55 medicinal herbs traditionally used to treat the urinary system: a comparison using a sequential three-solvent extraction process. J Alternat Complement Med 13:103–109

    Google Scholar 

  121. Sezer-Senol F, Skalicka-Woźniak K, Khan MTH, Orhan IE, Głowniak K (2011) An in vitro and in silico approach to cholinesterase inhibitory and antioxidant effects of the methanol extract, furanocoumarin fraction, and major coumarins of Angelica officinalis L. fruits. Phytochem Lett 4:462–467

    Google Scholar 

  122. Nemeth S, Paşca B, Teodorescu A, Coita I, Teaha D (2015) Coumarins isolated from the dry roots of Angelica archangelica L. and their antibacterial activity. Analele Universităţii din Oradea, Fascicula: Ecotoxicologie, Zootehnie şi Tehnologii de Industrie Alimntară B 14:355–362

    Google Scholar 

  123. Rather RA, Rehman SU, Naseer S, Lone SH, Bhat KA, Chouhan A (2013) Flash chromatography guided fractionation and antibacterial activity studies of Angelica archangelica root extracts. IOSR-JAC 4:34–38

    Google Scholar 

  124. Prakash B, Singh P, Goni R, Raina AK, Dubey NK (2015) Efficacy of Angelica archangelica essential oil, phenyl ethyl alcohol and α- terpineol against isolated molds from walnut and their antiaflatoxigenic and antioxidant activity. J Food Sci Technol 52:2220–2228

    CAS  Google Scholar 

  125. Fraternale D, Flamini G, Ricci D (2016) Essential oil composition of Angelica archangelica L. (Apiaceae) roots and its antifungal activity against plant pathogenic fungi. Plant Biosyst 150:558–563

    Google Scholar 

  126. Raafat BM, Zahrany SM, Al-Zahrani AS, Tawifiek E, Al-Omery AM (2012) Angelica Archangelica roots water extraction as a natural antioxidant tolerating ROS production in lead poisoning. RJPBCS 3:795–806

    Google Scholar 

  127. Yeh ML, Liu CF, Huang CL, Huang TC (2003) Hepatoprotective effect of Angelica archangelica in chronically ethanol-treated mice. Pharmacology 68:70–73

    CAS  Google Scholar 

  128. Sigurdsson S, Ogmundsdottir HM, Gudbjarnason S (2005) The cytotoxic effect of two chemotypes of essential oils from the fruits of Angelica archangelica L. Anticancer Res 25:1877–1880

    CAS  Google Scholar 

  129. Kumar D, Ali Bhat Z (2012) Anti-anxiety activity of methanolic extracts of different parts of Angelica archangelica Linn. J Tradit Complement Med 2:235–241

    PubMed Central  Google Scholar 

  130. Pathak S, Wanjari MM, Jain SK, Tripathi M (2010) Evaluation of antiseizure activity of essential oil from roots of Angelica archangelica Linn. In mice. Indian J Pharm Sci 72:371–375

    CAS  PubMed Central  Google Scholar 

  131. Asif HM, Akram M, Usmanghani K, Akhtar N, Shah PA, Uzair M, Ramzan M, Ali Shah SM, Rehman R (2011) Monograph of Apium graveolens Linn. JMPR 5:1494–1496

    Google Scholar 

  132. Fazal SS, Singla RK (2012) Review on the pharmacognostical and pharmacological characterization of Apium Graveolens Linn. IGJPS 2:36–42

    Google Scholar 

  133. Kooti W, Daraei N (2017) A review of the antioxidant activity of celery (Apium graveolens L.). J Evid Based Complementary Altern Med. https://doi.org/10.1177/2156587217717415

  134. Sameh B, Ibtissem B, Mahmoud A, Boukef K, Boughattas NA (2011) Antioxidant activity of Apium graveolens extracts. JBAPN 1:340–343

    Google Scholar 

  135. Kooti W, Ali-Akbari S, Asadi-Samani M, Ghadery H, Ashtary-Larky D (2014) A review on medicinal plant of Apium graveolens. Adv Herb Med 1:48–59

    Google Scholar 

  136. Shanmugapriya R, Ushadevi T (2014) In vitro antibacterial and antioxidant activities of Apium graveolens L. seed extracts. Int J Drug Dev Res 6:165–170

    Google Scholar 

  137. Uddin Z, Shad AA, Bakht J, Ullah I, Jan S (2015) In vitro antimicrobial, antioxidant activity and phytochemical screening of Apium Graveolens. Pak J Pharm Sci 28:1699–1704

    Google Scholar 

  138. Singh A, Handa SS (1995) Hepatoprotective activity of Apium graveolens and Hygrophila auriculata against paracetamol and thioacetamide intoxication in rats. J Ethnopharmacol 49:119–126

    CAS  Google Scholar 

  139. Sultana S, Ahmed S, Jahangir T, Sharma S (2005) Inhibitory effect of celery seeds extract on chemically induced hepatocarcinogenesis: modulation of cell proliferation, metabolism and altered hepatic foci development. Cancer Lett 221:11–20

    CAS  Google Scholar 

  140. Kolarovic J, Popovic M, Mikov M, Mitic R, Gvozdenovic L (2009) Protective effects of celery juice in treatments with doxorubicin. Molecules 14:1627–1638

    CAS  PubMed Central  Google Scholar 

  141. Belal NM (2011) Hepatoprotective effect of feeding celery leaves mixed with chicory leaves and barley grains to hypercholesterolemic rats. Asian J Clin Nutri 3:14–24

    CAS  Google Scholar 

  142. Osman N (2013) The role of antioxidant properties of celery against lead acetate induced hepatotoxicity and oxidative stress in irradiated rats. Arab J Nucl Sci Appl 46:339–346

    Google Scholar 

  143. Ramezani M, Nasri S, Yassa N (2009) Antinociceptive and anti-inflammatory effects of isolated fractions from Apium graveolens seeds in mice. Pharm Biol 49:740–743

    Google Scholar 

  144. Choosri N, Tanasawet S, Chonpathompikunlert P, Sukketsiri W (2017) Apium graveolens extract attenuates adjuvant induced arthritis by reducing oxidative stress. J Food Biochem 41(1):12276. https://doi.org/10.1111/jfbc.12276

    Article  Google Scholar 

  145. Mansi K, Abushoffa AM, Disi A, Aburjai T (2009) Hypolipidemic effects of seed extract of celery (Apium graveolens) in rats. Phcog Mag 5:301–305

    Google Scholar 

  146. Al-Saaidi JAA, Alrodhan MNA, Ismael AK (2012) Antioxidant activity of n-butanol extract of celery (Apium Graveolens) seed in streptozotocin-induced diabetic male rats. Res Pharmaceut Biotechnol 4:24–29

    Google Scholar 

  147. Branković S, Gočmanac-Ignjatović M, Kostić M, Veljković M, Miladinović B, Milutinović M, Radenković M (2015) Spasmolytic activity of the aqueous and ethanol celery leaves (Apium graveolens l.) extracts on the contraction of isolated rat ileum. Acta Medica Medianae 54:11–16

    Google Scholar 

  148. Moghadam MH, Imenshahidi M, Mohajeri SA (2013) Antihypertensive effect of celery seed on rat blood pressure in chronic administration. J Med Food 16:558–563

    CAS  PubMed Central  Google Scholar 

  149. Al Jawad FH, Al Razzuqi RAM, Al Jeboori AA (2011) Apium Graveolens accentuates urinary ca+2 excretions in experimental model of nephrocalcinosis. Int J Green Pharm 5:100–102

    Google Scholar 

  150. Aćimović M, Dolijanović Ž, Oljača S, Kovačević D, Oljača M (2015) Effect of organic and mineral fertilizers on essential oil content in caraway, anise and coriander fruits. Acta Scientiarum Polonorum Hortorum Cultus 14(1):95–103

    Google Scholar 

  151. Najda A, Dyduch J, Brzozowski N (2008) Flavonoid content and antioxidant activity of caraway roots (Carum carvi L.) Veget Crops Res Bull 68:127–133

    Google Scholar 

  152. Foti MC, Ingold KU (2003) Mechanism of inhibition of lipid peroxidation by γ-terpinene, an unusual and potentially useful hydrocarbon antioxidant. J Agric Food Chem 51:2758–2765

    CAS  Google Scholar 

  153. Damašius J, Škėmaitė M, Kirkilaitė G, Vinauskienė R, Venskutonis PR (2007) Antioxidant and antimicrobial properties of caraway (Carum carvi L.) and cumin (Cuminum cyminum L.) extracts. Vet Med Zoot 40:9–13

    Google Scholar 

  154. Samojlik I, Lakić N, Mimica-Dukić N, Đaković-Švajcer K, Božin B (2010) Antioxidant nad hepatoprotective potential of essential oils of coriander (Coriandrum sativum L.) and caraway (Carum carvi L.) (Apiaceae). J Agric Food Chem 58:8848–8853

    CAS  Google Scholar 

  155. Johri KR (2011) Cuminum cyminum and Carum carvi: an update. Pharmacogn Rev 5:63–72

    CAS  PubMed Central  Google Scholar 

  156. Hawerelak JA, Cattley T, Myers SP (2009) Essential oils in the treatment of intestinal dysbiosis: a preliminary in vitro study. Altern Med Rev 14:380–384

    Google Scholar 

  157. Keshavarz A, Minaiyan M, Ghannadi A, Mahzouni P (2013) Effects of Carum carvi L. (caraway) extract and essential oil on TNBS-induced colitis in rats. Resеаrch in pharmaceutical. Science 8:1–8

    CAS  Google Scholar 

  158. Khayyal MT, Seif-El-Nasr M, El-Ghazaly MA, Okpanyi SN, Kelber O, Weiser D (2006) Mechanisms involved in the gastro-protective effect of STW5 (Iberogast®) and its components against ulcers and rebound acidity. Phytomedicine 13:56–66

    CAS  Google Scholar 

  159. Al-Essa MK, Shafagoj YA, Mohammed FI, Afifi FU (2010) Relaxant effect of ethanol extr act of Carum carvi on dispersed intestinal smooth muscle cells of the guinea pig. Pharm Biol 48:76–80

    CAS  Google Scholar 

  160. Sadeghian S, Neyestani T, Shirazi MH, Ranjabarian P (2005) Bacteriostatic effect of dill, fennel, caraway and cinnamon extracts against Helicobacter pylori. J Nutr Environ Med 15:47–55

    Google Scholar 

  161. Villarini M, Fatigoni C, Cerbone B, Dominici L, Moretti M, Pagiotti R (2011) In vitro testing of a laxative herbal food supplement for genotoxic and antigentoxic properties. J Med Plants Res 5:2533–2539

    Google Scholar 

  162. Yosefi SS, Sadeghpour O, Sohrabvand F, Atarod Z, Askarfarashah M, Ateni TR, Yekta NH (2014) Effectiveness of Carum carvi on early return of bowel motility after caesarean section. Eur. J Exp Biol 4:258–262

    Google Scholar 

  163. Haidari F, Sayed-Sadjadi N, Taha-Jalali M, Mohammed-Shahi M (2011) The effect of oral administration of Carum carvi on weight, serum glucose, and lipid profile in streptozotocin-induced diabetic rats. Saudi Med J 32:695–700

    Google Scholar 

  164. Lemhadri A, Hajji L, Michel JB, Eddouks M (2006) Cholesterol and triglycerides lowering activities of caraway fruits in normal and streptozotocin diabetic rats. J Ethnopharmacol 106:321–326

    CAS  Google Scholar 

  165. Saghir MR, Sadiq S, Nayak S, Tahir MU (2012) Hypolipidemic effect of aqueous extract of Carum carvi (black zeera) seeds in diet induced hyperlipidemic rats. Pak J Pharm Sci 25:333–337

    Google Scholar 

  166. Eidi A, Eidi M, Rohani HA, Basati F (2010) Hypoglycemic effect of ethanolic extract of Carum carvi L. seeds in normal and streptozotocin-induced diabetic rats. J Med Plants 9:106–113

    Google Scholar 

  167. Moubarz G, Taha MM, Mahdy-Abdallah H (2014) Antioxidant effect of Carum carvi on the immune status of streptozotocin-induced diabetic rats infested with Staphylococcus aureus. World Appl Sci J 30:63–69

    Google Scholar 

  168. Iacobellis NS, Cantore PL, Capasso F, Senatore F (2005) Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils. J Agric Food Chem 53:57–61

    CAS  Google Scholar 

  169. Simic A, Rančić A, Sokolović MD, Ristić M, Grujić-Jovanović S, Vukojevic J, Marin PD (2008) Essential oil composition of Cymbopogon winterianus and Carum carvi and their antimicrobial activities. Pharm Biol 46:437–441

    CAS  Google Scholar 

  170. Škrinjar M, Mandić A, Mišan A, Sakač M, Lj Š, Zec M (2009) Effect of mint (Mentha piprita L.) and caraway (Carum carvi L.) on growth of some toxigenic Aspergillus species and aflatoxin B1 production. J Nat Sci Matica Srpska Novi Sad 116:131–139

    Google Scholar 

  171. Koppula S, Kopalli SR, Sreemantula S (2009) Adaptogenic and nootropic activities of aqueous extracts of Carum carvi Linn (caraway) fruit: an experimental study in Wistar rats. Aus J Med Herbal 21:72–78

    Google Scholar 

  172. Lahlou S, Tahraoui A, Israili Z, Lyoussi B (2007) Diuretic activity of the aqueous extracts of Carum carvi and Tanacetum vulgare in normal rats. J Ethnopharmacol 110:458–463

    Google Scholar 

  173. Sadiq S, Nagi AH, Shahzad M, Zia A (2010) The reno-protective effect of aqueous extract of Carum carvi (black zeera) seeds in streptozotocin induced diabetic nephropathy in rodents. Saudi J Kidney Dis Transpl 21:1058–1065

    Google Scholar 

  174. El-Soud NH, El-Lithy NA, El-Saeed G, Wahby MS, Khalil MY, Morsy F, Shaffie N (2014) Renoprotective effects of caraway (Carum carvi L.) essential oil in streptozotocin induced diabetic rats. J Appl Pharmaceut Sci 4:27–33

    Google Scholar 

  175. Marangoni C, de Moura NF (2011) Antioxidant activity of essential oil from Coriandrum sativum L. in Italian salami. Ciênc Tecnol Aliment 31:124–128

    Google Scholar 

  176. Darughe F, Barzegar M, Sahari MA (2012) Antioxidant and antifungal activity of coriander (Coriandrum sativum L.) essential oil in cake. Int Food Res J 19:1253–1260

    CAS  Google Scholar 

  177. Matasyoh JC, Maiyo ZC, Ngure RM, Chepkorir R (2009) Chemical composition and antimicrobial activity of the essential oil of Coriandrum sativum. Food Chem 113:526–529

    CAS  Google Scholar 

  178. Silva F, Ferreira S, Queiroz JA, Domingues FC (2011) Coriander (Coriandrum sativum L.) essential oil: its antibacterial activity and mode of action evaluated by flow cytometry. J Med Microbiol 60:1479–1486

    CAS  Google Scholar 

  179. Aćimović M, Oljača S, Dražić S (2012) Uses of coriander (Coriandrum sativum L.) Med Raw Mat 31:67–82

    Google Scholar 

  180. Aćimović M, Kostadinović L, Puvača N, Popović S, Urošević M (2016a) Phytochemical constituents of selected plants from Apiaceae family and their biological effects in poultry. Food Feed Res 43:35–41

    Google Scholar 

  181. Momin AH, Acharya SS, Gajjar AV (2012) Coriandrum sativum – review of advances in phytopharmacology. IJPSR 3:1233–1239

    CAS  Google Scholar 

  182. Emamghoreishi M, Heidari-Hamedani GH (2008) Effect of extract and essential oil of Coriandrum sativum seed against pentylenetetrazole-induced seizure. Pharm Sci 7:1–10

    Google Scholar 

  183. Mahendra P, Bisht S (2011) Anti-anxiety activity of Coriandrum Sativum assessed using different experimental anxiety models. Indian J Pharmacol 43:574–577

    PubMed Central  Google Scholar 

  184. Pathan AR, Kothawade KA, Logade MN (2011) Anxiolytic and analgetic effect of seeds of Coriandrum Sativum Linn. International journal of research in pharmacy and. Chemistry 1:1087–1099

    Google Scholar 

  185. Aissaoui A, El-Hilaly J, Israili ZH, Lyoussi B (2008) Acute diuretic effect of continuous intravenous infusion of an aqueous extract of Coriandrum sativum L. in anesthetized rats. J Ethnopharmacol 115:89–95

    Google Scholar 

  186. Millet J (2005) Cilantro, chlorella, and heavy metals. Med Herbal 14:17–20

    Google Scholar 

  187. Rajeshwari U, Andallu B (2011) Medicinal benefits of coriander (Coriandrum sativum L.) Spatula DD 1:51–58

    Google Scholar 

  188. Lal AA, Kumar T, Murthy PB, Pillai KS (2004) Hypolipidemic effect of Coriandrum sativum L. in triton-induced hyperlipidemic rats. Indian J Exp Biol 42:909–912

    Google Scholar 

  189. Dhanapakiam P, Mini Joseph J, Ramaswamy VK, Moorthi M, Senthil Kumar A (2008) The cholesterol lowering property of coriander seeds (Coriandrum sativum): mechanism of action. J Environ Biol 29:53–56

    CAS  Google Scholar 

  190. Joshi SC, Sharma N, Sharma P (2012) Antioxidant and lipid lowering effects of Coriandrum sativum in cholesterol fed rabbits. Int J Pharm Pharm Sci 4:231–234

    Google Scholar 

  191. Yibru E, Menon MKC, Belayneh Y, Seyifu D (2015) The effect of Coriandrum sativum seed extract on hyperglycemia, lipid profile and renal function in streptozotocin induced type- 2 diabetic Swiss albino mice. IJHSR 5:166–177

    Google Scholar 

  192. Aissaoui A, Zizi S, Israili ZH, Lyoussi B (2011) Hypoglycemic and hypolipidemic effects of Coriandrum sativum L. in Meriones Shawi rats. J Ethnopharmacol 137:652–661

    Google Scholar 

  193. Kansal L, Sharma V, Sharma A, Lodi S, Sharma SH (2011) Protective role of Coriandrum sativum (coriander) extracts against lead nitrate induced oxidative stress and tissue damage in the liver and kidney in male mice. Int J Appl Biol Pharm 2:65–83

    Google Scholar 

  194. John NAA, Shobana G, Keerthana K (2014) Protective effect of Coriander sativum L. on cadmium induced toxicity in albino rats. World J Pharm Pharm Sci 3:525–534

    Google Scholar 

  195. Moustafa AH, Ali EMM, Moselhey SS, Tousson E, El-Said KS (2014) Effect of coriander on thioacetamide-induced hepatotoxicity in rats. Toxicol Ind Health 30:621–629

    CAS  Google Scholar 

  196. Sreelatha S, Padma PR, Umadevi M (2009) Protective effects of Coriandrum sativum extracts on carbon tetrachloride-induced hepatotoxicity in rats. Food Chem Toxicol 47:702–708

    CAS  Google Scholar 

  197. Ramadan MM, Algader NNEA, El-Kamali HH, Ghanem KZ, Farrag ARH (2013) Chemopreventive effect of Coriandrum sativum fruits on hepatic toxicity in male rats. WJMS 8:322–333

    Google Scholar 

  198. Pandey A, Bigoniya P, Raj V, Patel KK (2011) Pharmacological screening of Coriandrum sativum Linn. For hepatoprotective activity. J Pharm Bioallied Sci 3:435–441

    CAS  PubMed Central  Google Scholar 

  199. Nithya TG, Sumalatha D (2014) Evaluation of invitro anti-oxidant and anticancer activity of Coriandrum sativum against human colon cancer HT-29 cell lines. Int J Pharm Pharm Sci 6:421–424

    Google Scholar 

  200. Tang EL, Rajarajeswaran J, Fung SY, Kanthimathi MS (2013) Antioxidant activity of Coriandrum sativum and protection against DNA damage and cancer cell migration. BMC Complement Altern Med 13:347. https://doi.org/10.1186/1472-6882-13-347

    Article  PubMed Central  Google Scholar 

  201. Gomez-Flores R, Hernández-Martínez H, Tamez-Guerra P, Tamez-Guerra R, Quintanilla-Licea R, Monreal-Cuevas E, Rodríguez-Padilla C (2010) Antitumor and immunomodulating potential of Coriandrum sativum, Piper nigrum and Cinnamomum zeylanicum. J Nat Prod 3:54–63

    Google Scholar 

  202. Chandan HS, Tapas AR, Sakarkar DM (2011) Anthelmintic activity of extracts of Coriandrum Sativum Linn. In Indian earthworm. Int J Phytomed 3:36–40

    Google Scholar 

  203. Eguale T, Tilahun G, Debella A, Feleke A, Makonnen E (2007) In vitro and in vivo anthelmintic activity of crude extracts of Coriandrum Sativum against Haemonchus contortus. J Ethnopharmacol 110:428–343

    CAS  Google Scholar 

  204. Mnif S, Aifa S (2015) Cumin (Cuminum cyminum L.) from traditional uses to potential biomedical applications. Chem Biodivers 12:733–742

    CAS  Google Scholar 

  205. Moghadam ARL (2016) Chemical composition and antioxidant activity Cuminum cyminum L. essential oils. Int J Food Prop 19:438–442

    Google Scholar 

  206. Rebey IB, Zakhama N, Karoui IJ, Marzouk B (2012) Polyphenol composition and antioxidant activity of cumin (Cuminum cyminum L.) seed extract under drought. J Food Sci 77:C734–C739

    CAS  Google Scholar 

  207. Abbaszadegan A, Gholami A, Ghahramani Y, Ghareghan R, Ghareghan M, Kazemi A, Iraji A, Ghasemi Y (2016) Antimicrobial and cytotoxic activity of Cuminum cyminum as an intracanal medicament compared to chlorhexidine gel. Iran Endod J 11:44–50

    CAS  Google Scholar 

  208. Saee Y, Dadashi M, Eslami G, Goudarzi H, Taheri S, Fallah F (2016) Evaluation of antimicrobial activity of Cuminum cyminum essential oil and extract against bacterial strains isolated from patients with symptomatic urinary tract infection. NBM 4:147–152

    CAS  Google Scholar 

  209. Koppula S, Choi DK (2011) Cuminum Cyminum extract attenuates scopolamine-induced memory loss and stress-induced urinary biochemical changes in rats: a noninvasive biochemical approach. Pharm Biol 49:702–708

    CAS  Google Scholar 

  210. Dhandapani S, Subramanian VR, Rajagopal S, Namasivayam N (2002) Hypolipidemic effect of Cuminum cyminum L. on alloxan-induced diabetic rats. Pharmacol Res 46:251–255

    CAS  Google Scholar 

  211. Srivastava V, Dubey S, Sharma SB, Chaddha V (2013) Studies on hypolipidemic activity of seeds of Cuminum cyminum Linn. Indo am. J Pharm Res 3:8260–8265

    Google Scholar 

  212. Willatgamuwa SA, Platel K, Saraswathi G, Srinivasan K (1998) Antidiabetic influence of dietary cumin seeds (Cuminum cyminum) in streptozotocin induced diabetic rats. Nutr Res 18:131–142

    CAS  Google Scholar 

  213. Keihan GS, Gharib MH, Momeni A, Hemati Z, Sedighin R (2016) A comparison between the effect of Cuminum cyminum and vitamin E on the level of leptin, paraoxonase 1, HbA1c and oxidized LDL in diabetic patients. Int J Mol Cell Med 5:229–235

    CAS  Google Scholar 

  214. Mushtaq A, Ahmad M, Jabeen Q, Saqib A, Wajid M, Akram MA (2014) Hepatoprotective investigations of Cuminum cyminum dried seeds in nimesulide intoxicated albino rats by phytochemical and biochemical methods. Int J Pharm Pharm Sci 6:506–510

    Google Scholar 

  215. Abbas N, Naz M, Alyousef L, Ahmed ES, Begum A (2017) Comparative study of hepatoprotective effect produced by Cuminum cyminum, fruits of Phyllanthus emblicus and silymarin against cisplatin-induced hepatotoxicity. Int J Pharm Sci Res 8:2026–2032

    CAS  Google Scholar 

  216. Kumar A, Kumar R, Kumar N, Nath A, Singh JK, Ali M (2011) Protective effect of Cuminum cyminum and Coriandrum sativum on profenofos induced liver toxicity. Int J Pharm Biol Arch 2:1405–1409

    Google Scholar 

  217. Mekawey AAI, Mokhtar MM, Farrag RM (2009) Antitumor and antibacterial activities of [1-(2-ethyl, 6-Heptyl) phenol] from Cuminum cyminum seeds. J Appl Scis Res 5:1881–1888

    CAS  Google Scholar 

  218. Prakash E, Gupta DK (2014) Cytotoxic activity of ethanolic extract of Cuminum cyminum Linn against seven human cancer cell line. Univers J Agric Res 2:27–30

    Google Scholar 

  219. Bhat SP, Rizvi W, Kumar A (2014) Effect of Cuminum cyminum L. seed extracts on pain and inflammation. J Nat Remedies 14:186–192

    Google Scholar 

  220. Gilani AH, Shaheen E, Saeed SA, Bibi S, Irfanullah SM, Faizi S (2000) Hypotensive action of coumarin glycosides from Daucus carota. Phytomedicine 7:423–426

    CAS  Google Scholar 

  221. Sudewi S, Wahyuono S, Astuti P (2014) Isolation and identification of free radicals scavenger from Daucus carota L leaves. Trad Med J 19:142–148

    Google Scholar 

  222. Mohammedi H, Mecherara-Idjeri S, Foudil-Cherif Y, Hassani A (2015) Chemical composition and antioxidant activity of essential oils from Algerian Daucus carota L. subsp. carota aerial parts. J Essent Oil Bear Pl 18:873–883

    CAS  Google Scholar 

  223. Al-Snafi AE (2017) Nutritional and therapeutic importance of Daucus Carota- a review. IOSR J Pharm 7:72–88

    Google Scholar 

  224. Zhang D, Hamauzu Y (2004) Phenolic compounds and their antioxidant properties in different tissues of carrots (Daucus carota L.) J Food Agric Environ 2:95–100

    Google Scholar 

  225. Sun T, Simon PW, Tanumihardjo SA (2009) Antioxidant phytochemicals and antioxidant capacity of biofortified carrots (Daucus carota L.) of various colors. J Agric Food Chem 57:4142–4147

    CAS  Google Scholar 

  226. Mueller L, Boehm V (2011) Antioxidant activity of β-carotene compounds in different in vitro assays. Molecules 16:1055–1069

    Google Scholar 

  227. Shoba S, Patil PA, Vivek V (2008) Hepatoprotective activity of Daucus carota L. aqueous extract against paracetamol, isoniazid and alcohol induced hepatotoxicity in male Wistar rats. Pharmacologyonline 3:776–787

    Google Scholar 

  228. Jain PK, Khurana N, Pounikar Y, Patil S, Gajbhiye A (2012) Hepatoprotective effect of carrot (Daucus carota L.) on paracetamol intoxicated rats. IJPPT 1:115–120

    Google Scholar 

  229. Singh K, Singh N, Chandy A, Manigauha A (2012) In vivo antioxidant and hepatoprotective activity of methanolic extracts of Daucus carota seeds in experimental animals. Asian Pac J Trop Biomed 2:385–388

    CAS  PubMed Central  Google Scholar 

  230. Khatib N, Angel G, Nayna H, Kumar JR (2010) Gastroprotective activity of the aqueous extract from the roots of Daucus carota L in rats. IJRAP 1:112–119

    Google Scholar 

  231. Jiin WH, Hidayat EM, Lukman K (2014) Gastroprotective effect of carrot (Daucus carota L.) juice in rat models. Althea Medical Journal 1:35–39

    Google Scholar 

  232. Patil MV, Kandhare A, Bhise S (2012) Anti-inflammatory effect of Daucus carota root on experimental colitis in rats. Int J Pharm Pharm Sci 4:337–343

    Google Scholar 

  233. Chandra P, Kishore K, Ghosh AK (2015) Assessment of antisecretory, gastroprotective, and in-vitro antacid potential of Daucus carota in experimental rats. Osong Public Health Res Perspect 6:329–335

    PubMed Central  Google Scholar 

  234. Wehbe K, Mroueh M, Daher CF (2009) The potential role of Daucus carota aqueous and methanolic extracts on inflammation and gastric ulcers in rats. J Complement Integr Med 6(1):7. https://doi.org/10.2202/1553-3840.1159

    Article  Google Scholar 

  235. Valente J, Resende R, Zuzarte M, Goncalves MJ, Lopes MC, Cavaleiro C, Pereira C, Saiguerio L, Cruz MT (2015) Bioactivity and safety profile of Daucus carota subsp. maximus essential oil. Ind Crop Prod 77:218–224

    CAS  Google Scholar 

  236. Kamiloglu S, Grootaert C, Capanoglu E, Ozkan C, Smagghe G, Raes K, Van Camp J (2016) Anti-inflammatory potential of black carrot (Daucus carota L.) polyphenols in a co-culture model of intestinal Caco-2 and endothelial EA.hy926 cells. Mol Nutr Food Res 00:1–11. https://doi.org/10.1002/mnfr.201600455

    Article  CAS  Google Scholar 

  237. Diab-Assaf M, El-Sharif S, Mroueh M (2007) Evaluation of anti-cancer effect of Daucus carota on the human promyelocytic leukemia HL-60 cells. Clin Cancer Res 13:56

    Google Scholar 

  238. Najm PI (2014) The anti-cancer activity of 2 himachalene-6-ol extracted from Daucus carota ssp. carota. Dissertation, Lebanese American University

    Google Scholar 

  239. Shebaby WN, El-Sibai M, Smith KB, Karam MC, Mroueh M, Daher CF (2013) The antioxidant and anticancer effects of wild carrot oil extract. Phytother Res 27:737–744

    Google Scholar 

  240. Shebaby WN, Mroueh M, Bodman-Smith K, Mansour A, Taleb RI, Daher CF, El-Sibai M (2014) Daucus carota pentane-based fractions arrest the cell cycle and increase apoptosis in MDA-MB-231 breast cancer cells. BMC Complement Altern Med 14:387. https://doi.org/10.1186/1472-6882-14-387.

    Article  PubMed Central  Google Scholar 

  241. Ranjbar B, Pouraboli I, Mehrabani M, Dabiri S, Javadi A (2010) Effect of the methanolic extract of Daucus carota seeds on the carbohydrate metabolism and morphology of pancreas in type I diabetic male rats. Physiol Pharmacol 14:85–93

    Google Scholar 

  242. Vasudevan M, Parle M (2006) Pharmacological evidence for the potential of Daucus carota in the management of cognitive dysfunctions. Biol Pharm Bull 29:1154–1161

    CAS  Google Scholar 

  243. Jaffat HS, Semysim EA (2016) Hypo-lipidemic effects of aqueous extract of Daucus carota seeds (Daucus carota L.) induced atherogenic diet in wister male rats. Res J Pharm Biol Chem Sci 7:2714–2720

    CAS  Google Scholar 

  244. Mani V, Parle M, Ramasamy K, Majeed ABA (2010) Anti-dementia potential of Daucus carota seed extract in rats. Pharmacologyonline 1:552–565

    Google Scholar 

  245. Vasudevan M, Gunnam KK, Parle M (2006) Antinociceptive and anti-imflammatory properties of Daucus carota seeds extract. J Health Sci 52:598–606

    Google Scholar 

  246. Pouraboli I, Ranjbar B (2015) The effect of Daucus carota seeds extract on lipid profile, LFT and kidney function indicators in streptozocin-induced diabetic rats. Int J Plant Sci Ecol 1:84–87

    CAS  Google Scholar 

  247. Singh K, Dhongade H, Singh N, Kashyap P (2010) Hypolipidemic activity of ethanolic extract of Daucus carota seeds in normal rats. IJBAR 1:73–80

    CAS  Google Scholar 

  248. Rahimi R, Ardekani MR (2013) Medicinal properties of Foeniculum Vulgare mill. In traditional Iranian medicine and modern phytotherapy. Chin J Integr Med 19:73–79

    Google Scholar 

  249. Badgujar SB, Patel VV, Bandivdekar AH (2014) Foeniculum vulgare mill: a review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology. Biomed Res Int 2014:842674. https://doi.org/10.1155/2014/842674

    PubMed Central  Google Scholar 

  250. Rather MA, Dar BA, Sofi SN, Bhat BA, Qurishi MA (2016) Foeniculum vulgare: a comprehensive review of its traditional use, phytochemistry, pharmacology, and safety. Arab J Chem 9:S1574–S1583

    CAS  Google Scholar 

  251. Diao WR, QP H, Zhang H, JG X (2014) Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare mill.) Food Control 35:109–116

    CAS  Google Scholar 

  252. Mota AS, Martins MR, Arantes S, Lopes VR, Bettencourt E, Pombal S, Gomes AC, Silva LA (2015) Antimicrobial activity and chemical composition of the essential oils of Portuguese Foeniculum vulgare fruits. Nat Prod Commun 10:673–676

    Google Scholar 

  253. Mimica-Dukić N, Kujundžić S, Soković M, Couladis M (2003) Essential oil composition and antifungal activity of Foeniculum vulgare mill. Obtained by different distillation conditions. Phytother Res 17:368–371

    Google Scholar 

  254. Skrobonja J, Delić D, Karaman M, Matavulj M, Bogavac M (2013) Antifungal properties of Foeniculum vulgare, Carum carvi and Eucalyptus sp. essential oils against Candida albicans strains. J Nat Sci Matica Srpska Novi Sad 124:195–202

    Google Scholar 

  255. Thakur N, Sareen N, Shama B, Jagota K (2013) Studies on in vitro antifungal activity of Foeniculum vulgare Mill. against spoilage fungi. GJBB 2:427–430

    Google Scholar 

  256. Shukla HS, Dubey P, Chaturvedi RV (1989) Antiviral properties of essential oils of Foeniculum vulgare and Pimpinella anisum L. Agron EDP Sci 9:277–279

    Google Scholar 

  257. Shahat AA, Ibrahim AY, Hendawy SF, Omer EA, Hammouda FM, Abdel-Rahman FH, Saleh MA (2011) Chemical composition, antimicrobial and antioxidant activities of essential oils from organically cultivated fennel cultivars. Molecules 16:1366–1377

    CAS  PubMed Central  Google Scholar 

  258. Chang S, Bassiri A, Jalali H (2013) Evaluation of antioxidant activity of fennel (Foeniculum vulgare) seed extract on oxidative stability of olive oil. JCHR 3:53–61

    Google Scholar 

  259. El Ouariachi E, Lahhit N, Bouyanzer A, Hammouti B, Paolini J, Majidi L, Desjobert JM, Costa J (2014) Chemical composition and antioxidant activity of essential oils and solvent extracts of Foeniculum Vulgare mill. From Morocco. J Chem Pharm Res 6:743–748

    Google Scholar 

  260. Choi EM, Hwang JK (2004) Antiinflammatory, analgesic and antioxidant activities of the fruit of Foeniculum vulgare. Fitoterapia 75:557–565

    Google Scholar 

  261. Yang IJ, Lee DU, Shin HM (2015) Anti-inflammatory and antioxidant effects of coumarins isolated from Foeniculum vulgare in lipopolysaccharide-stimulated macrophages and 12-O-tetradecanoylphorbol-13-acetate-stimulated mice. Immunopharmacol Immunotoxicol 37:308–317

    Google Scholar 

  262. Mohamad RH, El-Bastawesy AM, Abdel-Monem MG, Noor AM, Al-Mehdar HA, Sharawy SM, El-Merzabani MM (2011) Antioxidant and anticarcinogenic effects of methanolic extract and volatile oil of fennel seeds (Foeniculum vulgare). J Med Food 14:986–1001

    CAS  Google Scholar 

  263. Özbek H, Ugras S, Dulger H, Bayram I, Tuncer I, Ozturk G, Ozturk A (2003) Hepatoprotective effect of Foeniculum vulgare essential oil. Fitoterapia 74:317–319

    Google Scholar 

  264. Özbek H, Ugras S, Bayram I, Uygan I, Erdogan E, Öztürk A, Huyut Z (2004) Hepatoprotective effect of Foeniculum vulgare essential oil: a carbon-tetrachloride induced liver fibrosis model in rats. Scand J Lab Anim Sci 1:9–17

    Google Scholar 

  265. Parsaeyan N (2016) The effect of Foeniculum vulgare (fennel) extract on lipid profile, lipid peroxidation and liver enzymes of diabetic rat. IJDO 8:24–29

    Google Scholar 

  266. Beaux D, Fleurentin J, Mortier F (1997) Diuretic action of hydroalcohol extracts of Foeniculum vulgare var dulce (D.C.) roots in rats. Phytother Res 11:320–322

    Google Scholar 

  267. Sadrefozalayi S, Farokhi F (2014) Effect of the aqueous extract of Foeniculum vulgare (fennel) on the kidney in experimental PCOS female rats. Avicenna J Phytomed 4:110–117

    CAS  PubMed Central  Google Scholar 

  268. Blank I, Schieberle P (1993) Analysis of the seasoning-like flavour substances of a commercial lovage extract (Levisticum officinale Koch.) Flav Frag J 8:191–195

    CAS  Google Scholar 

  269. Reza VRM, Abbas H (2007) The essential oil composition of Levisticum Officinale from Iran. Asian J Biochem 2:161–163

    Google Scholar 

  270. Mahmoudzehi S, Dorrazehi GM, Jamalzehi S, Khabbaz AHH, Ghorbani F, Hooti A, Dadkani AG, Souran MM (2017) The neuroprotective effects of alcoholic extract of Levisticum officinale on alpha motoneurons’ degeneration after sciatic nerve compression in male rats. Biomed Pharmacol J 10:633–640

    Google Scholar 

  271. Mohammadi M, Parvaneh E, Ghamari ZT (2016) Clinical investigation of Levisticum officinale (lovage) effectiveness’ in patients with cystinuria. J Urol Res 3:1071

    Google Scholar 

  272. Naber KG (2013) Efficacy and safety of the phytotherapeutic drug Canephron® N in prevention and treatment of urogenital and gestational disease: review of clinical experience in Eastern Europe and Central Asia. Res Rep Urol 5:39–46

    CAS  PubMed Central  Google Scholar 

  273. Mirjalili MH, Salehi P, Sonboli A, Hadian J, Ebrahimi SN, Yousefzadi M (2010) The composition and antibacterial activity of the essential oil of Levisticum officinale Koch flowers and fruits at different developmental stages. J Serb Chem Soc 75:1661–1669

    CAS  Google Scholar 

  274. Ebrahimi A, Eshraghi A, Mahzoonieh MR, Lotfalian S (2016) Antibacterial and antibiotic-potentiation activities of Levisticum officinale L. extracts on pathogenic bacteria. Int J Inf Secur 4:e38768. https://doi.org/10.17795/iji-38768

  275. Mohamadi N, Rajaei P, Moradalizadeh M, Amiri MS (2017) Essential oil composition and antioxidant activity of Levisticum officinale Koch. At various phenological stages. J Med Plants 16:45–55

    Google Scholar 

  276. Mirjalili MH, Salehi P, Sonboli A, Hadian J, Ebrahimi SN, Yousefzadi M (2010) The composition and antibacterial activity of the essential oil of Levisticum Officinale Koch flowers and fruits at different developmental stages. J Serb Chem Soc 75:1661–1669

    CAS  Google Scholar 

  277. Sertel S, Eichhorn T, Plinkert P, Efferth T (2011) Chemical composition and antiproliferative activity of essential oil from the l of a medicinal herb, Levisticum officinale, against UMSCC1 head and neck squamous carcinoma cells. Anticancer Res 31:185–192

    CAS  Google Scholar 

  278. El-Hamid SRA, Abeer YI, Hendawy SF (2009) Anti-inflammatory, antioxidant, anti-tumor and physiological studies on Levisticum officinale Koch plant. Planta Med 75:PE62. https://doi.org/10.1055/s-0029-1234623

    Article  Google Scholar 

  279. Cain N, Darbyshire SJ, Francis A, Nurse RE, Simard MJ (2010) The biology of Canadian weeds. 144. Pastinaca sativa L. Can J Plant Sci 90:217–240

    Google Scholar 

  280. Skalicka-Woźniak K, Zagaja M, Głowniak K, Łuszczki J (2014) Purification and anticonvulsant activity of xanthotoxin (8-methoxypsoralen). Cent Eur J Biol 9:431–436

    Google Scholar 

  281. Akbarmivehie M, Baghaei H (2016) The effect of addition parsnip herb and its extract on momtaze hamburger shelf life. Eur Online J Nat Soc Sci 5:132–146

    CAS  Google Scholar 

  282. Mangkoltriluk W, Srzednicki G, Craske J (2005) Preservation of flavour components in parsley (Petroselinum crispum) by heat pump and cabinet drying. Pol J Food Nutr Sci 14:63–66

    CAS  Google Scholar 

  283. Zhang H, Chen F, Wang X, Yao HY (2006) Evaluation of antioxidant activity of parsley (Petroselinum crispum) essential oil and identification of its antioxidant constituents. Food Res Int 39:833–839

    CAS  Google Scholar 

  284. Tang EL, Rajarajeswaran J, Fung S, Kanthimathi MS (2015) Petroselinum crispum has antioxidant properties, protects against DNA damage and inhibits proliferation and migration of cancer cells. J Sci Food Agric 95:2763–2771

    CAS  PubMed Central  Google Scholar 

  285. Al-Howiriny TA, Al-Sohaibani MO, El-Tahir KH, Rafatullah S (2003) Preliminary evaluation of the anti-inflammatory and anti-hepatotoxic activities of ‘parsley’ Petroselinum crispum in rats. J Nat Remedies 3:54–62

    Google Scholar 

  286. Kamal T, Abd-Elhady E, Sadek K, Shukry M (2014) Effect of parsley (Petroselium crispum) on carbon tetrachloride-induced acute hepatotoxicity in rats. Res J Pharm Biol Chem Sci 5:1524–1534

    Google Scholar 

  287. Troncoso L, Guija E (2007) Petroselinum sativum (perejil) antioxidant and hepatoprotective effects in rats with paracetamol-induced hepatic intoxication. Anales de la Facultad de Medicina Universidad Nacional Mayor de San Marcos 68:333–343

    Google Scholar 

  288. Jassim AM (2013) Protective effect of Petroselinum crispum (parsley) extract on histopathological changes in liver, kidney and pancreas induced by sodium valproate in male rats. Kufa J Veteri Med Sci 4:20–27

    Google Scholar 

  289. Bolkent S, Yanardag R, Ozsoy-Sacan O, Karabulut-Bulan O (2004) Effects of parsley (Petroselinum crispum) on the liver of diabetic rats: a morphological and biochemical study. Phytother Res 18:996–999

    CAS  Google Scholar 

  290. Nair VY, Balakrishanan N, Antony Santiago JV (2015) Petroselinum crispum extract attenuates hepatic steatosis in rats fed with fructose enriched diet. Bratislava Med J 116:547–553

    Google Scholar 

  291. Campos KE, Balbi APC, Alves MJQF (2009) Diuretic and hipotensive activity of aqueous extract of parsley seeds (Petroselinum sativum Hoffm.) in rats. Rev Bras Farmacogn 19:41–45

    Google Scholar 

  292. Vargas JLZ, Lujan EGT, Pachas LCC, Lujan EPT, Lujan MT, Lujan PE (2016) Determination of diuretic activity of Petroselinum sativum (parsley). J Hypertens 34:431. https://doi.org/10.1097/01.hjh.0000501115.12030.e5

    Article  Google Scholar 

  293. Moram GSE (2016) Evaluation of anti-urolithiatic effect of aqueous extract of parsley (Petroselinum sativum) using ethylene glycol-induced renal calculi. WJPR 5:1721–1735

    CAS  Google Scholar 

  294. Shojaii A, Fard MA (2012) Review of pharmacological properties and chemical constituents of Pimpinella anisum. ISRN Pharmaceutics. https://doi.org/10.5402/2012/510795

  295. Aćimović M, Dojčinović N (2014) A review of pharmacological properties of anise (Pimpinella anisum L.) Med Raw Mat 34:3–17

    Google Scholar 

  296. Gülçın I, Oktay M, Kıreçcı E, Küfrevıoǧlu I (2003) Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem 83:371–382

    Google Scholar 

  297. Tavallali V, Rahmati S, Bahmanzadegan A (2017) Antioxidant activity, polyphenolic contents and essential oil composition of Pimpinella Anisum L. as affected by zinc fertilizer. J Sci Food Agric. https://doi.org/10.1002/jsfa.8360

  298. Bekara A, Aithamadouhe N, Kahloula K, Sadi N, Aoues AK (2016) Effect of Pimpinella anisum L aqueous extract against oxidative stress induced by lead exposure in young rats brain. J Appl Environ Biol Sci 6:85–93

    Google Scholar 

  299. Akhtar A, Deshmukh AA, Bhonsle AV, Kshirsagar PM, Kolekar MA (2008) In vitro antibacterial activity of Pimpinella anisum fruit extracts against some pathogenic bacteria. Vet World 1:272–274

    Google Scholar 

  300. Kadan S, Rayan M, Rayan A (2013) Anticancer activity of anise (Pimpinella anisum L.) seed extract. Open Nutraceuticals J 6:1–5

    Google Scholar 

  301. Rahamooz-Haghighi S, Asadi MH (2016) Anti-proliferative effect of the extracts and essential oil of Pimpinella Anisum on gastric cancer cells. J Herb Med Pharmacol 5:157–161

    Google Scholar 

  302. Shobha RI, Rajeshwari CU, Andallu B (2013) Anti-peroxidative and anti diabetic activities of aniseeds (Pimpinella anisum l) and identification of bioactive compounds. AJPCT 1:516–527

    Google Scholar 

  303. Rajeshwari U, Shobha I, Andallu B (2011) Comparison of aniseeds and coriander seeds for antidiabetic, hypolipidemic and antioxidant activities. Spatula DD 1:9–16

    Google Scholar 

  304. El-Sayed MGA, Elkomy A, Sahar S, El-Banna AH (2015) Hepatoprotective effect of Pimpinella anisum and Foeniculum vulgare against carbon tetrachloride induced fibrosis in rats. World. J Pharm Sci 4:78–88

    CAS  Google Scholar 

  305. Jamshidzadeh A, Heidari R, Razmjou M, Karimi F, Moein MR, Farshad O, Akbarizadeh AR, Shayesteh MRH (2015) An in vivo and in vitro investigation on hepatoprotective effects of Pimpinella anisum seed essential oil and extracts against carbon tetrachloride-induced toxicity. Iran J Basic Med Sci 18:205–211

    PubMed Central  Google Scholar 

  306. Aćimović M, Tešević V, Mara D, Stanković J, Cvetković M, Djuragić O (2016) Influence of fertilization on total polyphenole content in aniseed postdistillation waste material. AJMAP 3:57–67

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milica G. Aćimović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aćimović, M.G. (2019). Nutraceutical Potential of Apiaceae. In: Mérillon, JM., Ramawat, K.G. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-78030-6_17

Download citation

Publish with us

Policies and ethics