Skip to main content

Interpenetrating Polymer Network Hydrogels of Chitosan: Applications in Controlling Drug Release

  • Reference work entry
  • First Online:
Cellulose-Based Superabsorbent Hydrogels

Abstract

Chitosan is a natural polysaccharide obtained by alkaline deacetylation of chitin. It is cationic in ionic nature. Because of its biocompatibility and biodegradability, chitosan is employed as a drug carrier material in the development of various kinds of drug delivery. However, the extensive use of chitosan as a drug delivery carrier material is limited by its rapid dissolution in the acidic pH of the stomach, and this causes restrictions in controlling drug release from chitosan-based oral dosage forms. To overcome this limitation, modifications of chitosan to develop hydrogel systems are being investigated by researchers. Among these modified chitosan-based hydrogel systems, interpenetrated polymer network (IPN) hydrogels have enhanced mechanical properties at gastric pH, as well as improved control of drug release over a longer period. This chapter describes the preparations and properties, in terms of drug-releasing performance, of various chitosan-based IPN hydrogels for controlling drug release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohamed EIB, Entsar IR (2011) A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int J Carbohydr Chem 2011:1–29. https://doi.org/10.1155/2011/460381

    Article  CAS  Google Scholar 

  2. Randy CFC, Tzi BN, Jack HW, Wai YC (2015) Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs 13:5156–5186

    Article  Google Scholar 

  3. Shweta A, Ankita L, Aakriti T, Vijay K, Imran M, Anita KV (2015) Versatility of chitosan: a short review. J Pharm Res 4(3):125–134

    Google Scholar 

  4. Manish PP, Ravi RP, Jayvadan KP (2010) Chitosan mediated targeted drug delivery system: a review. J Pharm Pharm Sci 3(3):536–557

    Google Scholar 

  5. Arya S, Flowerlet M, Chacko AJ, Mini A, Poosan GV (2014) Interpenetrating polymer network (IPN) – hydrogels. Pharma Innov J 3(8):59–66

    Google Scholar 

  6. Mohd FQ, Rishabha M, Pramod KS (2015) Biomedical applications of interpenetrating polymer network system. Open Pharm Sci J 2:21–30

    Article  Google Scholar 

  7. Vineet B, Gargi H, Sokindra K (2012) Interpenetrating polymer network (IPN): novel approach in drug delivery. Int J Drug Dev Res 4(3):41–54

    Google Scholar 

  8. Duncan R (2012) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360

    Article  Google Scholar 

  9. Duncan R (2006) Polymer conjugates for drug targeting. From inspired to inspiration! J Drug Target 14:333–335

    Article  CAS  Google Scholar 

  10. Pangburn SH, Trescony PV, Heller J (1982) Lysozyme degradation of partially deacetylated chitin, its films and hydrogels. Biomaterials 3(2):105–108

    Article  CAS  Google Scholar 

  11. Martins AF, Facchi SP, Follmann HD, Pereira AG, Rubira AF, Muniz EC (2014) Antimicrobial activity of chitosan derivatives containing N-quaternized moieties in its backbone: a review. Int J Mol Sci 15:20800–200832

    Article  CAS  Google Scholar 

  12. Kumari K, Kundu PP (2008) Studies on in vitro release of CPM from semi-interpenetrating polymer network (IPN) composed of chitosan and glutamic acid. Bull Mater Sci 31:159–167

    Article  CAS  Google Scholar 

  13. Gupta AK, Maurya SD, Dhakar RC, Singh RD (2010) pH sensitive interpenetrating hydrogel for eradication of Helicobacter pylori. Int J Pharm Sci Nanotechnol 3:924–932

    CAS  Google Scholar 

  14. Dogra S (2011) A chitosan–polymer hydrogel bead system for a metformin HCI controlled release oral dosage form. PhD theses and dissertations, The University of Toledo Digital Repository, pp 1–92

    Google Scholar 

  15. Subhash SV, Madhabhai M (2011) Hydrogels based on interpenetrating network of chitosan and polyvinyl pyrrolidone for pH-sensitive delivery of repaglinide. Curr Drug Discov Technol 8:126–135

    Article  Google Scholar 

  16. Bahman VF, Hossein G, Shiravan A (2016) Intelligent semi-IPN chitosan–PEG–PAAm hydrogel for closed-loop insulin delivery and kinetic modeling. RSC Adv 6(32):26590–26598

    Article  Google Scholar 

  17. Nazar MR, Gohar A, Shahzad A, Muhammad TA (2010) Preparation and characterization of hybrid pH-sensitive hydrogels of chitosan-co-acrylic acid for controlled release of verapamil. J Mater Sci Mater Med 21:2805–2816

    Article  Google Scholar 

  18. Yang J, Chen J, Pan D, Wan Y, Wang Z (2013) pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery. Carbohydr Polym 92:719–725

    Article  CAS  Google Scholar 

  19. Nayak A, Pal D (2012) Ionotropically-gelled mucoadhesive beads for oral metformin HCl delivery: formulation, optimization and antidiabetic evaluation. J Sci Ind Res 72:851–858

    Google Scholar 

  20. Kemal B, Ayse ZA, Zelal A, Bahattin MB (2013) Chitosan/alginate crosslinked hydrogels: preparation, characterization and application for cell growth purposes. Int J Biol Macromol 59:342–348

    Article  Google Scholar 

  21. Chen R, Chen Q, Huo D, Ding Y, Hu Y, Jiang X (2012) In situ formation of chitosan–gold hybrid hydrogel and its application for drug delivery. Colloids Surf B Biointerfaces 97:132–137

    Article  CAS  Google Scholar 

  22. Pal D, Nayak A (2012) Novel tamarind seed polysaccharide–alginate mucoadhesive microspheres for oral gliclazide delivery: in vitro–in vivo evaluation. Drug Deliv 19:123–131

    Article  CAS  Google Scholar 

  23. Marek K, Marek K, Małgorzata S, Aleksandra P, Ewa L, Aleksandra M, Agnieszka A, Aleksandra K (2016) Hydrogels made from chitosan and silver nitrate. Carbohydr Polym 140:74–87

    Article  Google Scholar 

  24. Garcia J, Ruiz-Durantez E, Valderruten NE (2017) Interpenetrating polymer networks hydrogels of chitosan and poly(2-hydroxyethyl methacrylate) for controlled release of quetiapine. React Funct Polym 117:52–59

    Article  CAS  Google Scholar 

  25. Nayak AK, Pal D, Malakar J (2012) Development, optimization and evaluation of floating beads using natural polysaccharides blend for controlled drug release. Polym Eng Sci 53:238–250

    Article  Google Scholar 

  26. Nayak A, Pal D (2011) Development of pH sensitive tamarind seed polysaccharide alginate composite beads for controlled diclofenac sodium delivery using response surface methodology. Int J Biol Macromol 49:784–793

    Article  CAS  Google Scholar 

  27. Aminabhavi TM, Dharupaneedi SP (2017) Production of chitosan-based hydrogels for biomedical applications. In: Chitosan based biomaterials. Woodhead Publishing, Sciencedirect. vol 1. pp 295–319

    Google Scholar 

  28. Banerjee S, Siddiqui L, Bhattacharya SS, Kaity S, Ghosh A, Chattopadhyay P, Pandey A, Singh L (2012) Interpenetrating polymer network (IPN) hydrogel microspheres for oral controlled release application. Int J Biol Macromol 50:198–206

    Article  CAS  Google Scholar 

  29. Hosseinzadeh H (2012) Synthesis of a novel interpenetrating polymer network hydrogel as drug delivery system. Adv Environ Biol 6(3):1079–1081

    CAS  Google Scholar 

  30. Bhattacharya SS, Mishra A, Pal D, Ghosh AK, Ghosh A, Banerjee S, Sen KK (2012) Synthesis and characterization of poly(acrylic acid)/poly(vinyl alcohol)–xanthan gum interpenetrating network (IPN) superabsorbent polymeric composites. Polym-Plast Technol Eng 51:876–882

    Article  Google Scholar 

  31. Nayak AK, Pal D (2015) Polymeric hydrogels as smart biomaterials. Part of the springer series on polymer and composite materials book series (SSPCM). Springer. Nature Switzerland AG. pp 105–151

    Google Scholar 

  32. Nayak AK, Pal D (2016) Sterculia gum–based hydrogels for drug delivery applications. In: Polymeric hydrogels as smart biomaterials. Springer series on polymer and composite materials. Springer. Nature Switzerland AG. pp 105–151

    Google Scholar 

  33. Fahad SAM, Sajjad H, Muhammad O, Adnan H, Tahseen K, Waheed AA, Muhammad J, Salah UDK (2016) Preparation of the chitosan/polyacrylonitrile semi-IPN hydrogel via glutaraldehyde vapors for the removal of Rhodamine B dye. Polym Bull 74:1535–1551

    Google Scholar 

  34. Nagahama H, Maeda H, Kashiki T, Jayakumar R, Furuike T, Tamura H (2009) Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohydr Polym 76:255–260

    Article  CAS  Google Scholar 

  35. Fahanwi AN, Mustafa G, Akeem AO (2016) Adsorptive removal of multi-azo dye from aqueous phase using a semi-IPN superabsorbent chitosan–starch hydrogel. Chem Eng Res Des 112:274–288

    Article  Google Scholar 

  36. Yu X, Tao G, Ying J, Yapin W, Zezhang TW, Shaobing Z, Chongyun B, Xiaoming X (2016) Fabrication and characterization of a glucose-sensitive antibacterial chitosan polyethylene oxide hydrogel. Polymer 82:1–10

    Article  Google Scholar 

  37. Pal D, Mandal M, Senthilkumar GP, Padhiari A (2006) Antibacterial activity of methanol extract of Cuscuta reflexa Roxb. stem and Corchorus olitorius Linn. seed. Fitoterapia 77:589–591

    Article  CAS  Google Scholar 

  38. Mohanta TK, Patra JK, Rath SK, Pal D, Thatoi HN (2007) Evaluation of antimicrobial activity and phytochemical screening of oils and nuts of Semicarpus anacardium L. Sci Res Essays 2:486–490

    Google Scholar 

  39. Wen BW, Da JH, Yu RK, Wang AQ (2013) One-step in situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion. Colloids Surf B Biointerfaces 106:51–59

    Article  Google Scholar 

  40. Xiaohong W, Haiqian H, Yujun L, Yingying W, Chen H, Cunwang G (2016) A novel semi-IPN hydrogel: preparation, swelling properties and adsorption studies of Co (II). J Ind Eng Chem 41:82–90

    Article  Google Scholar 

  41. Chena J, Suna J, Liming Y, Qunfei Z, Huina Z, Huifeng W, Allan SH, Isao K (2007) Preparation and characterization of a novel IPN hydrogel membrane of poly(N-isopropylacrylamide)/carboxymethyl chitosan (PNIPAAM/CMCS). Radiat Phys Chem 76:1425–1429

    Article  Google Scholar 

  42. Himadri SS, Ray SK (2014) Controlled release of tinidazole and theophylline from chitosan based composite hydrogels. Carbohydr Polym 106:109–120

    Article  Google Scholar 

  43. Mingzhen W, Yu F, Daodao H (2001) Preparation and properties of chitosan-poly(N-isopropylacrylamide) full-IPN hydrogels. React Funct Polym 48:215–221

    Article  Google Scholar 

  44. Daniela A, Luminita M, Simona M, Mihai M, Andra-Cristina B, Mariana P, Bogdan CS, Mihai B (2016) Dual crosslinked iminoboronate–chitosan hydrogels with strong antifungal activity against Candida planktonic yeasts and biofilms. Carbohydr Polym 152:306–316

    Article  Google Scholar 

  45. Hao Z, LiLi X, Yuezhong W, Kunde L, Xiaomei Z (2017) Ring-like structured chitosan–metal hydrogel: mass production, formation mechanism and applications. J Colloid Interface Sci 490:233–241

    Article  Google Scholar 

  46. Fazli W, Jun JY, Dong DX, Han X, Yu SL, Cheng Z, Li QC (2016) Synthesis and characterization of antibacterial carboxymethyl chitosan/ZnO nanocomposite hydrogels. Int J Biol Macromol 88:273–279

    Article  Google Scholar 

  47. Pal D, Nayak AK (2010) Nanotechnology for targeted delivery in cancer therapeutics. Int J Pharm Sci Rev Res 1:1–7

    CAS  Google Scholar 

  48. Abdur RA, Lubna S, Farah A, Khan AF, Chaudhry AA, Rehman I, Yar M (2017) Thyroxin releasing chitosan/collagen based smart hydrogels to stimulate neovascularization. Mater Des 133:416–425

    Article  Google Scholar 

  49. Jinke X, Mifong T, Sepideh S, Sophie L, Jake B, Mary MS, Marta C (2017) Mucoadhesive chitosan hydrogels as rectal drug delivery vessels to treat ulcerative colitis. Acta Biomater 48:247–257

    Article  Google Scholar 

  50. Nayak A, Pal D (2014) Trigonella foenum-graecum L. seed mucilage–gellan mucoadhesive beads for controlled release of metformin HCl. Carbohydr Polym 107:31–40

    Article  CAS  Google Scholar 

  51. Fatemeh Z, Pompilia I, Djahida D, Lojan S, Borhane A, Gilles S, Mircea AM, Sophie L (2017) Chitosan–doxycycline hydrogel: an MMP inhibitor/sclerosing embolizing agent as a new approach to endoleak prevention and treatment after endovascular aneurysm repair. Acta Biomater 64:94–105

    Article  Google Scholar 

  52. Nayak A, Pal D (2014) Ispaghula mucilage–gellan mucoadhesive polysaccharide–gellan mucoadhesive beads for controlled release of metformin HCl. Carbohydr Polym 103:41–50

    Article  Google Scholar 

  53. Nayak AK, Pal D (2015) Plant-derived polymers: ionically-gelled sustained drug release systems. In: Encyclopedia of biomedical polymers and polymer biomaterials. Taylor & Francis, New York, pp 6002–6017

    Google Scholar 

  54. Pal D, Nayak AK (2015) Alginate, blends and microspheres: controlled drug delivery. In: Encyclopedia of biomedical polymers and polymer biomaterials. Taylor & Francis, New York, pp 89–98

    Chapter  Google Scholar 

  55. Nayak A, Pal D (2014) Tamarind seed polysaccharide–gellan mucoadhesive beads for controlled release of metformin HCl. Carbohydr Polym 103:154–163

    Article  CAS  Google Scholar 

  56. Nayak A, Pal D (2014) Development of calcium pectinate–tamarind seed polysaccharide mucoadhesive beads containing metformin HCl. Carbohydr Polym 101:220–230

    Article  CAS  Google Scholar 

  57. Nayak A, Pal D, Das S (2013) Calcium pectinate–fenugreek seed mucilage mucoadhesive beads for controlled delivery of metformin HCl. Carbohydr Polym 96:349–357

    Article  CAS  Google Scholar 

  58. Nayak A, Pal D (2013) Fenugreek seed gum–alginate mucoadhesive beads of metformin HCl: design, optimization and evaluation. Int J Biol Macromol 54:144–154

    Article  CAS  Google Scholar 

  59. Pal D, Nayak A (2013) Statistical optimization and characterisation of potato starch blended alginate beads containing tolbutamide. Asian J Pharm 7:43–51

    Article  Google Scholar 

  60. Pal D, Nayak A, Hasnain MS (2013) Development and optimization of jackfruit seed starch alginate mucoadhesive beads containing pioglitazone. Curr Drug Deliv 10:608–619

    Article  Google Scholar 

  61. Nayak AK, Pal D (2015) Chitosan-based interpenetrating polymeric network systems for sustained drug release. In: Tiwari A, Patra HK, Choi J-W (eds) Advanced theranostics materials. Advanced materials book series. Scrivener Publishing LLC, Beverly, pp 207–232

    Google Scholar 

  62. Pal D, Nayak A (2011) Development, and optimization of gliclazide loaded alginate–methyl cellulose mucoadhesive microcapsules. AAPS PharmSciTech 12:1431–1441

    Article  CAS  Google Scholar 

  63. Nayak A, Pal D (2013) Formulation, optimization and evaluation of jackfruit seed starch–alginate mucoadhesive beads of metformin HCl. Int J Biol Macromol 59:264–272

    Article  CAS  Google Scholar 

  64. Nayak A, Pal D, Santra K (2013) Plantago ovata F mucilage–alginate mucoadheisve beads for controlled release of glibenclamide: development, optimization and in vitro–in vivo evaluation. J Pharm 2013:1–11

    Google Scholar 

  65. Jana L, Timothy ELD, Jana B, Agata S, Mojca B, Sangram KS, Zofia M, Selestina G, Vanja K, Lucie B (2015) Chitosan hydrogels enriched with polyphenols: antibacterial activity, cell adhesion and growth and mineralization. Carbohydr Polym 129:135–142

    Article  Google Scholar 

  66. Yumiko IM, Yuka U, Yoshinori O, Hiroshi W, Yuki T, Yoshinobu T, Makiya N (2017) Improved sustained release of antigen from immunostimulatory DNA hydrogel by electrostatic interaction with chitosan. Int J Pharm 516:392–400

    Article  Google Scholar 

  67. Chengdong J, Jeffrey S (2012) Sterilization-free chitosan hydrogels for controlled drug release. Mater Lett 72:110–112

    Article  Google Scholar 

  68. Tao W, Liman C, Tingting S, Dayang W (2017) Preparation and properties of a novel thermo-sensitive hydrogel based on chitosan/hydroxypropyl methylcellulose/glycerol. Int J Biol Macromol 93:775–782

    Google Scholar 

  69. Valderruten NE, Valverde JD, Zuluaga F, Ruiz-Durantez E (2014) Synthesis and characterization of chitosan hydrogels cross-linked with dicarboxylic acids. React Funct Polym 84:21–28

    Article  CAS  Google Scholar 

  70. Bera H, Boddupallia S, Nayak AK (2015) Mucoadhesive-floating zinc–pectinate–sterculia gum interpenetrating polymer network beads encapsulating ziprasidone HCl. Carbohydr Polym 131:108–118

    Article  CAS  Google Scholar 

  71. Jana S, Maji N, Nayak AK, Sen KK, Basu SK (2013) Development of chitosan-based nanoparticles through inter-polymeric complexation for oral drug delivery. Carbohydr Polym 98:870–876

    Article  CAS  Google Scholar 

  72. Jana S, Samanta A, Nayak AK, Sen KK, Jana S (2015) Novel alginate hydrogel core–shell systems for combination delivery of ranitidine HCl and aceclofenac. Int J Biol Macromol 74:85–92

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilipkumar Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pal, D., Nayak, A.K., Saha, S. (2019). Interpenetrating Polymer Network Hydrogels of Chitosan: Applications in Controlling Drug Release. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-77830-3_57

Download citation

Publish with us

Policies and ethics