Skip to main content

Protein-Based Hydrogels

  • Reference work entry
  • First Online:
Cellulose-Based Superabsorbent Hydrogels

Abstract

Hydrogels have the capability to absorb large amounts of water or biological fluids into their three-dimensional hydrophilic polymer networks. These attractive materials are used to develop food additives, superabsorbents, wound dressing compounds, pharmaceuticals, and biomedical implants and also applied in tissue engineering, regenerative medicines, and controlled-release process. Hydrogels can be obtained from synthetic and/or natural resources. Synthetic hydrogels exhibit high water absorption capacities and proper mechanical strength, although their applications are being limited because of low biocompatibility and biodegradability as well as the toxicity arisen from unreacted monomers remained in the gel structure. Natural hydrogels are often derived from polysaccharides and proteins. Protein-based hydrogels have substantial advantages such as biocompatibility, biodegradability, tunable mechanical properties, molecular binding abilities, and intelligent responses to external stimuli such as pH, ionic strength, and temperature. Therefore, this kind of hydrogels is known as smart biomaterials for controlled release, tissue engineering, regenerative medicine, and other applications. Protein can be converted to hydrogel using physical, chemical, or enzymatic treatments. To improve their mechanical properties, hybrid hydrogels are synthesized by combining natural polymers with synthetic ones. The main approach to obtain hybrid hydrogels is grafting natural polymers with synthetic one and vice versa. This chapter intends to look over protein-based hydrogels. After brief introduction of protein and its structure, the properties of proteins and peptides used to develop hydrogels, as well as their preparation methods are discussed. The potential applications of these polypeptide-based hydrogels in the fields of superabsorbent development, tissue engineering, and controlled release are reported. Characterization methods for protein-based hydrogels are covered in the final section to determine rheological properties, morphology, and thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sepantafar M, Maheronnaghsh R, Mohammadi H, Radmanesh F, Hasani-sadrabadi MM, Ebrahimi M, Baharvand H (2017) Engineered hydrogels in cancer therapy and diagnosis. Trends Biotechnol 35(11):1074–1087

    Article  CAS  PubMed  Google Scholar 

  2. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185(4706):117–118

    Article  Google Scholar 

  3. Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58(12):1379–1408

    Article  CAS  PubMed  Google Scholar 

  4. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Article  Google Scholar 

  5. Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17(6):451–477

    CAS  Google Scholar 

  6. Fisher SA, Baker AE, Shoichet MS (2017) Designing peptide and protein modified hydrogels: selecting the optimal conjugation strategy. J Am Chem Soc 139(22):7416–7427

    Article  CAS  PubMed  Google Scholar 

  7. Campoccia D, Doherty P, Radice M, Brun P, Abatangelo G, Williams DF (1998) Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19(23):2101–2127

    Article  CAS  PubMed  Google Scholar 

  8. Prestwich GD, Marecak DM, Marecek JF, Vercruysse KP, Ziebell MR (1998) Controlled chemical modification of hyaluronic acid: synthesis applications and biodegradation of hydrazide derivatives. J Control Release 53(1):93–103

    Article  CAS  PubMed  Google Scholar 

  9. Silva NH, Vilela C, Marrucho IM, Freire CS, Neto CP, Silvestre AJ (2014) Protein-based materials: from sources to innovative sustainable materials for biomedical applications. J Mater Chem B 2(24):3715–3740

    Article  CAS  Google Scholar 

  10. Sharma K, Kaith BS, Kumar V, Kalia S, Kumar V, Swart HC (2014) Water retention and dye adsorption behavior of gg-cl-poly (acrylic acid-aniline) based conductive hydrogels. Geoderma 232:45–55

    Article  CAS  Google Scholar 

  11. Echalier C, Jebors S, Laconde G, Brunel L, Verdié P, Causse L, Bethry A, Legrand B, Van den Berghe H, Garric X, Noël D, Martinez J, Mehdi A, Subra G (2017) Sol–gel synthesis of collagen-inspired peptide hydrogel. Mater Today 20(2):59–66

    Article  CAS  Google Scholar 

  12. Jabbari E, Leijten J, Xu Q, Khademhosseini A (2016) The matrix reloaded: the evolution of regenerative hydrogels. Mater Today 19:191–196

    Article  CAS  Google Scholar 

  13. Zohuriaan-Mehr MJ, Pourjavadi A, Salimi H, Kurdtabar M (2009) Protein-and homo poly (amino acid)-based hydrogels with super-swelling properties. Polym Advan Technol 20(8):655–671

    Article  CAS  Google Scholar 

  14. Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45(21):5711–5735

    Article  CAS  Google Scholar 

  15. Hwang DC, Damodaran S (1996) Chemical modification strategies for synthesis of protein-based hydrogel. J Agric Food Chem 44(3):751–758

    Article  CAS  Google Scholar 

  16. Shi W, Dumont MJ, Ly EB (2014) Synthesis and properties of canola protein-based superabsorbent hydrogels. Eur Polym J 54:172–180

    Article  CAS  Google Scholar 

  17. Singhal R, Gupta K (2016) A review: tailor-made hydrogel structures (classifications and synthesis parameters). Polym Plast Technol Eng 55(1):54–70

    Article  CAS  Google Scholar 

  18. Whitford D (2005) Proteins: structure and function. Wiley, Chichester

    Google Scholar 

  19. Hardy JG, Römer LM, Scheibel TR (2008) Polymeric materials based on silk proteins. Polymer 49(20):4309–4327

    Article  CAS  Google Scholar 

  20. Lake JA (1983) Ribosome evolution: the structural bases of protein synthesis in archaebacteria eubacteria and eukaryotes. Prog Nucleic Acid Res Mol Biol 30:163–194

    Article  CAS  PubMed  Google Scholar 

  21. Kozak M (1983) Comparison of initiation of protein synthesis in procaryotes eucaryotes and organelles. Microbiol Rev 47(1):1

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rossmann MG, Argos P (1981) Protein folding. Annu Rev Biochem 50(1):497–532

    Article  CAS  PubMed  Google Scholar 

  23. Lehninger AL, Nelson DL, Cox MM (2004) Lehninger principles of biochemistry. W.H. Freeman and Company, New York

    Google Scholar 

  24. Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32(2):277–289

    Article  CAS  Google Scholar 

  25. Silva R, Fabry B, Boccaccini AR (2014) Fibrous protein-based hydrogels for cell encapsulation. Biomaterials 35(25):6727–6738

    Article  CAS  PubMed  Google Scholar 

  26. Le XT, Rioux LE, Turgeon SL (2017) Formation and functional properties of protein–polysaccharide electrostatic hydrogels in comparison to protein or polysaccharide hydrogels. Adv Colloid Interf Sci 239:127–135

    Article  CAS  Google Scholar 

  27. Totosaus A, Montejano JG, Salazar JA, Guerrero I (2002) A review of physical and chemical protein-gel induction international. J Food Sci Technol 37(6):589–601

    Article  CAS  Google Scholar 

  28. Rutz AL, Shah RN (2016) Protein-based hydrogels. In: Kalia S (ed) Polymeric hydrogels as smart biomaterials. Springer, Switzerland

    Google Scholar 

  29. Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC (2004) Glutaraldehyde: behavior in aqueous solution reaction with proteins and application to enzyme crosslinking. BioTechniques 37:790–802

    Article  CAS  PubMed  Google Scholar 

  30. Rafat M, Li F, Fagerholm P, Lagali NS, Watsky MA, Munger R, Matsuura T, Griffith M (2008) PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering. Biomaterials 29:3960–3972

    Article  CAS  PubMed  Google Scholar 

  31. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan-a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36(8):981–1014

    Article  CAS  Google Scholar 

  32. Sosnik A, Sefton MV (2005) Semi-synthetic collagen/poloxamine matrices for tissue engineering. Biomaterials 26(35):7425–7435

    Article  CAS  PubMed  Google Scholar 

  33. Utech S, Boccaccini AR (2016) A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. J Mater Sci 51(1):271–310

    Article  CAS  Google Scholar 

  34. Gyles DA, Castro LD, Júnior JOCS, Ribeiro-Costa RM (2017) A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polym J 88:373–392

    Article  CAS  Google Scholar 

  35. Wang N, Lin W, Mu C (2006) Progress in extraction and purification of collagen from animal skin. Leat Sci Eng 16(2):42–47

    CAS  Google Scholar 

  36. Jonker AM, Lowik DW, van Hest JC (2012) Peptide-and protein-based hydrogels. Chem Mater 24(5):759–773

    Article  CAS  Google Scholar 

  37. Aigner T, Stöve J (2003) Collagens-major component of the physiological cartilage matrix major target of cartilage degeneration major tool in cartilage repair. Adv Drug Deliv Rev 55(12):1569–1593

    Article  CAS  PubMed  Google Scholar 

  38. Cen L, Liu WEI, Cui LEI, Zhang W, Cao Y (2008) Collagen tissue engineering: development of novel biomaterials and applications. Pediat Res 63(5):492–496

    Article  CAS  PubMed  Google Scholar 

  39. Chattopadhyay S, Raines RT (2014) Collagen-based biomaterials for wound healing. Biopolymers 101(8):821–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gómez-Guillén MC, Giménez B, López-Caballero MA, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25(8):1813–1827

    Article  CAS  Google Scholar 

  41. Gasperini L, Mano JF, Reis RL (2014) Natural polymers for the microencapsulation of cells. J R Soc Interf 11(100):20140817

    Article  CAS  Google Scholar 

  42. Kuijpers AJ, Engbers GH, Krijgsveld J, Zaat SA, Dankert J, Feijen J (2000) Cross-linking and characterisation of gelatin matrices for biomedical applications. J Biomater Sci Polym Ed 11(3):225–243

    Article  CAS  PubMed  Google Scholar 

  43. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1880

    Article  CAS  PubMed  Google Scholar 

  44. Ni N, Dumont M (2017) Protein-based hydrogels derived from industrial byproducts containing collagen keratin zein and soy. Waste Biomass Valorization 8:285–300

    Article  CAS  Google Scholar 

  45. Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Antoine EE, Vlachos PP, Rylander MN (2014) Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics structure and transport. Tissue Eng Part B Rev 20(6):683–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen Z, Du T, Tang X, Liu C, Li R, Xu C, Tian F, Du Z, Wu J (2016) Comparison of the properties of collagen-chitosan scaffolds after gamma-ray irradiation and carbodiimide crosslinking. J Biomater Sci Polym Ed 27:937–953

    Article  CAS  PubMed  Google Scholar 

  48. Reddy N, Yang Y (2011) Potential of plant proteins for medical applications. Trends Biotechnol 29(10):490–498

    Article  CAS  PubMed  Google Scholar 

  49. Santin M, Ambrosio L (2008) Soybean-based biomaterials: preparation properties and tissue regeneration potential. Expert Rev Med Devices 5(3):349–358

    Article  CAS  PubMed  Google Scholar 

  50. Chien KB, Chung EJ, Shah RN (2014) Investigation of soy protein hydrogels for biomedical applications: materials characterization drug release and biocompatibility. J Biomater Appl 28(7):1085–1096

    Article  CAS  PubMed  Google Scholar 

  51. Ma L, Yang Y, Yao J, Shao Z, Huang Y, Chen X (2015) Selective chemical modification of soy protein for a tough and applicable plant protein-based material. J Mater Chem B 3(26):5241–5248

    Article  CAS  PubMed  Google Scholar 

  52. Kumar R, Choudhary V, Mishra S, Varma IK, Mattiason B (2002) Adhesives and plastics based on soy protein products. Ind Crop Prod 16(3):155–172

    Article  CAS  Google Scholar 

  53. Chien KB, Shah RN (2012) Novel soy protein scaffolds for tissue regeneration: material characterization and interaction with human mesenchymal stem cells. Acta Biomater 8(2):694–703

    Article  CAS  PubMed  Google Scholar 

  54. Su JF, Yuan XY, Huang Z, Wang XY, Lu XZ, Zhang LD, Wang SB (2012) Physicochemical properties of soy protein isolate/carboxymethyl cellulose blend films crosslinked by Maillard reactions: color transparency and heat-sealing ability. Mater Sci Eng C 32(1):40–46

    Article  CAS  Google Scholar 

  55. Caillard R, Remondetto GE, Mateescu MA, Subirade M (2008) Characterization of amino cross-linked soy protein hydrogels. J Food Sci 73(5):283–291

    Article  CAS  Google Scholar 

  56. Caillard R, Remondetto GE, Subirade M (2009) Physicochemical properties and microstructure of soy protein hydrogels co-induced by Maillard type cross-linking and salts. Food Res Int 42(1):98–106

    Article  CAS  Google Scholar 

  57. Meikle ST, Standen G, Salvage J, De Santis R, Nicolais L, Ambrosio L, Santin M (2012) Synthesis and characterization of soybean-based hydrogels with an intrinsic activity on cell differentiation. Tissue Eng Part A 18:1932–1939

    Article  CAS  PubMed  Google Scholar 

  58. Kapoor S, Kundu SC (2016) Silk protein-based hydrogels: promising advanced materials for biomedical applications. Acta Biomater 31:17–32

    Article  CAS  PubMed  Google Scholar 

  59. Kunz RI, Brancalhão RMC, Ribeiro LFC, Natali MRM (2016) Silkworm sericin: properties and biomedical applications. Biomed Res Int 2016:8175701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kundu B, Kurland NE, Bano S, Patra C, Engel FB, Yadavalli VK, Kundu SC (2014) Silk proteins for biomedical applications: bioengineering perspectives. Prog Polym Sci 39(2):251–267

    Article  CAS  Google Scholar 

  61. Wang HY, Zhang YQ (2015) Processing silk hydrogel and its applications in biomedical materials. Biotechnol Prog 31(3):630–640

    Article  CAS  PubMed  Google Scholar 

  62. Hu X (2011) Synthesis and properties of silk sericin-g-poly(acrylicacid-co-acrylamide) superabsorbent hydrogel. Polym Bull 66:447–462

    Article  CAS  Google Scholar 

  63. Craig CL, Hsu M, Kaplan D, Pierce NE (1999) A comparison of the composition of silk proteins produced by spiders and insects international. Int J Biol Macromol 24(2):109–118

    Article  CAS  PubMed  Google Scholar 

  64. Kundu B, Kurland NE, Yadavalli VK, Kundu SC (2014) Isolation and processing of silk proteins for biomedical applications. Int J Biol Macromol 70:70–77

    Article  CAS  PubMed  Google Scholar 

  65. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6(10):1612–1631

    Article  CAS  PubMed  Google Scholar 

  66. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24(3):401–416

    Article  CAS  PubMed  Google Scholar 

  67. Shao Z, Vollrath F (2002) Materials: surprising strength of silkworm silk. Nature 418(6899):741–741

    Article  CAS  PubMed  Google Scholar 

  68. Kim UJ, Park J, Li C, Jin HJ, Valluzzi R, Kaplan DL (2004) Structure and properties of silk hydrogels. Biomacromolecules 5(3):786–792

    Article  CAS  PubMed  Google Scholar 

  69. Matsumoto A, Chen J, Collette AL, Kim UJ, Altman GH, Cebe P, Kaplan DL (2006) Mechanisms of silk fibroin sol− gel transitions. J Phys Chem B 110(43):21630–21638

    Article  CAS  PubMed  Google Scholar 

  70. Anderson TJ, Buddhi P, Lamsal BP (2011) Zein extraction from corn corn products and coproducts and modifications for various applications: a review. Cereal Chem 88(2):159–173

    Article  CAS  Google Scholar 

  71. Labib G (2018) Overview on zein protein: a promising pharmaceutical excipient in drug delivery systems and tissue engineering. Expert Opin Drug Deliv 15(1):65–75

    Article  CAS  PubMed  Google Scholar 

  72. Luo Y, Wang Q (2014) Zein-based micro- and nano-particles for drug and nutrient delivery: a review. J Appl Polym Sci 131(16):40696

    Article  CAS  Google Scholar 

  73. Paliwal R, Palakurthi S (2014) Zein in controlled drug delivery and tissue engineering. J Control Release 189:108–122

    Article  CAS  PubMed  Google Scholar 

  74. Shukla R, Cheryan M (2001) Zein: the industrial protein from corn. Ind Crop Prod 13(3):171–192

    Article  CAS  Google Scholar 

  75. Bräuer S, Meister F, Gottlöber RP, Nechwatal A (2007) Preparation and thermoplastic processing of modified plant proteins. Macromol Mater Eng 292(2):176–183

    Article  CAS  Google Scholar 

  76. Sousa FFO, Luzardo-Álvarez A, Blanco-Méndez J, Martín-Pastor M (2012) NMR techniques in drug delivery: application to zein protein complexes. Int J Pharm 439(1):41–48

    Article  CAS  PubMed  Google Scholar 

  77. Huang GP, Yang XQ (2005) Studies on zein as delayed-release skeleton material of aspirin. Chem Bioeng 9:48–50

    Google Scholar 

  78. Hurtado-Lopez P, Murdan S (2005) Formulation and characterisation of zein microspheres as delivery vehicles. J Drug Deliv Sci Technol 15(4):267–272

    Article  CAS  Google Scholar 

  79. Ni N, Duquette D, Dumont MJ (2017) Synthesis and characterization of zein-based cryogels and their potential as diesel fuel absorbent. Eur Polym J 91:420–428

    Article  CAS  Google Scholar 

  80. Cao X, Geng J, Su S, Zhang L, Xu Q, Zhang L, Xie Y, Wu S, Sun Y, Gao Z (2012) Doxorubicin-loaded zein in situ gel for interstitial chemotherapy. Chem Pharm Bull (Tokyo) 60:1227–1233

    Article  CAS  Google Scholar 

  81. Shavandi A, Silva TH, Bekhit AA, Bekhit AEDA (2017) Keratin: dissolution extraction and biomedical application. Biomater Sci 5:1699–1735

    Article  CAS  PubMed  Google Scholar 

  82. Wattie B, Dumont MJ, Lefsrud M (2017) Synthesis and properties of feather keratin-based superabsorbent hydrogels. Waste Biomass Valoriz. https://doi.org/10.1007/s12649-016-9773-0 (In press)

  83. Rouse JG, Van Dyke ME (2010) A review of keratin-based biomaterials for biomedical applications. Materials 3(2):999–1014

    Article  PubMed Central  Google Scholar 

  84. Shi W, Dumont MJ (2014) Bio-based films from zein keratin pea and rapeseed protein feedstocks. J Mater Sci 49(5):1915–1930

    Article  CAS  Google Scholar 

  85. Karthikeyan R, Balaji S, Sehgal PK (2007) Industrial applications of keratins–a review. J Sci Ind Res 66(9):710–715

    CAS  Google Scholar 

  86. Lee H, Noh K, Lee SC, Kwon IK, Han DW, Lee IS, Hwang YS (2014) Human hair keratin and its-based biomaterials for biomedical applications. Tissue Eng Regen Med 11(4):255–265

    Article  CAS  Google Scholar 

  87. Arai KM, Takahashi R, Yokote Y, Akahane K (1983) Amino-acid sequence of feather keratin from fowl. Eur J Biochem 132(3):501–507

    Article  CAS  PubMed  Google Scholar 

  88. Wang J, Hao S, Luo T, Cheng Z, Li W, Gao F, Guo T, Gong Y, Wang B (2017) Feather keratin hydrogel for wound repair: preparation healing effect and biocompatibility evaluation. Colloids and Surf B 149:341–350

    Article  CAS  Google Scholar 

  89. Cardamone JM, Tunick MH, Onwulata C (2013) Keratin sponge/hydrogel: I. Fabrication and characterization. Text Res J 83(7):661–670

    Article  CAS  Google Scholar 

  90. Spizzirri UG, Cirillo G, Parisi OI, Iemma F (2012) Synthesis of protein-based hydrogel for pharmaceutical and biomedical applications. In: Câmara FV, Ferreira LJ (eds) Hydrogels synthesis characterization and applications. Nova Science Publishers Inc, New York

    Google Scholar 

  91. Songa F, Zhang L-M, Yang C, Yan L (2009) Genipin-crosslinked casein hydrogels for controlled drug delivery. Int J Pharm 373:41–47

    Article  CAS  Google Scholar 

  92. Raja ST, Thiruselvi T, Mandal AB, Gnanamani A (2015) pH and redox sensitive albumin hydrogel: a self-derived biomaterial. Sci Rep 5:15977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Navarra G, Peres C, Contardi M, Picone P, San Biagio PL, Di Carlo M, Giacomazza D, Militello V (2016) Heat- and pH-induced BSA conformational changes hydrogel formation and application as 3D cell scaffold. Arch Biochem Biophys 606:134–142

    Article  CAS  PubMed  Google Scholar 

  94. Ribeiro AJAM, Gomes AC, Cavaco-Paulo AM (2012) Developing scaffolds for tissue engineering using the Ca2-induced cold gelation by an experimental design approach. J Biomed Mater Res B Appl Biomater 100b(8):2269–2278

    Article  CAS  Google Scholar 

  95. Zhou X, He Z, Huang H (2017) Secondary structure transitions of bovine serum albumin induced by temperature variation. Vib Spectrosc 92:273–279

    Article  CAS  Google Scholar 

  96. Annabi N, Mithieux SM, Boughton EA, Ruys AJ, Weiss AS, Dehghani F (2009) Synthesis of highly porous crosslinked elastin hydrogels and their interaction with fibroblasts in vitro. Biomaterials 30:4550–4557

    Article  CAS  PubMed  Google Scholar 

  97. Nettles DL, Chilkoti A, Setton LA (2010) Applications of elastin-like polypeptides in tissue engineering. Adv Drug Deliv Rev 62:1479–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lim DW, Nettles DL, Setton LA, Chilkoti A (2007) Rapid cross-linking of elastin-like polypeptides with (hydroxymethyl)phosphines in aqueous solution. Biomacromolecules 8:1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tamburro AM, Panariello S, Santopietro V, Bracalello A, Bochicchio B, Pepe A (2010) Molecular and supramolecular structural studies on significant repetitive sequences of resilin. Chem BioChem 11(1):83–93

    CAS  Google Scholar 

  100. Li L, Tong Z, Jia X, Kiick K (2013) Resilin-like polypeptide hydrogels engineered for versatile biological function. Soft Matter 9:665–673

    Article  CAS  PubMed  Google Scholar 

  101. Renner JN, Cherry KM, Su RSC, Liu JC (2012) Characterization of resilin-based materials for tissue engineering applications. Biomacromolecules 13(11):3678–3685

    Article  CAS  PubMed  Google Scholar 

  102. Kowalczyk T, Hnatuszko-Konka K, Gerszberg A, Kononowicz AK (2014) Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers. World J Microbiol Biotechnol 30(8):2141–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yan H, Saiani A, Gough JE, Miller AF (2006) Thermoreversible protein hydrogel as cell scaffold. Biomacromolecules 7(10):2776–2782

    Article  CAS  PubMed  Google Scholar 

  104. Yan H, Nykanen A, Ruokolainen J, Farrar D, Gough JE, Saiani A, Miller AF (2008) Thermo-reversible protein fibrillar hydrogels as cell scaffolds. Faraday Discuss 139:71–84

    Article  CAS  PubMed  Google Scholar 

  105. Collier JH, Segura T (2011) Evolving the use of peptides as components of biomaterials. Biomaterials 32(18):4198–4204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Vega-Chacón J, Arbeláez MIA, Jorge JH, Marques RFC, Jr MJ (2017) pH-responsive poly(aspartic acid) hydrogel-coated magnetite nanoparticles for biomedical applications. Mater Sci Eng C 77:366–373

    Article  CAS  Google Scholar 

  107. Zhang C, Wan LY, Wu S, Wu D, Qin X, Ko F (2015) A reversible colorimetric chemosensor for naked-eye detection of copper ions using poly (aspartic acid) nanofibrous hydrogel. Dyes Pigments 123:380–385

    Article  CAS  Google Scholar 

  108. Sharma S, Dua A, Malik A (2014) Polyaspartic acid based superabsorbent polymers. Eur Polym J 59:363–376

    Article  CAS  Google Scholar 

  109. Gyarmati B, Mészár EZ, Kiss L, Deli MA, László K, Szilágyi A (2015) Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels. Acta Biomater 22:32–38

    Article  CAS  PubMed  Google Scholar 

  110. El-Rehim HAA (2006) Characterization and possible agricultural application of polyacrylamide/sodium alginate crosslinked hydrogels prepared by ionizing radiation. J Appl Polym Sci 101:3572–3580

    Article  CAS  Google Scholar 

  111. Varaprasad K, Raghavendra GM, Jayaramudu T, Yallapu MM, Sadiku R (2017) A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng C 79:958–971

    Article  CAS  Google Scholar 

  112. Zhang B, Cui Y, Yin G, Li X, You Y (2010) Synthesis and swelling properties of hydrolyzed cottonseed protein composite superabsorbent hydrogel. International J Polym Mater 59(12):1018–1032

    Article  CAS  Google Scholar 

  113. Sannino A, Maffezzoli A, Nicolais L (2003) Introduction of molecular spacers between the crosslinks of a cellulose-based superabsorbent hydrogel: effects on the equilibrium sorption properties. J Appl Polym Sci 90(1):168–174

    Article  CAS  Google Scholar 

  114. Samaha SH, Nasr HE, Hebeish A (2005) Synthesis and characterization of starch-poly (vinyl acetate) graft copolymers and their saponified form. J Polym Res 12(5):343–353

    Article  CAS  Google Scholar 

  115. Huacai G, Wan P, Dengke L (2006) Graft copolymerization of chitosan with acrylic acid under microwave irradiation and its water absorbency. Carbohydr Polym 66(3):372–378

    Article  CAS  Google Scholar 

  116. Pourjavadi A, Kurdtabar M, Mahdavinia GR, Hosseinzadeh H (2006) Synthesis and super-swelling behavior of a novel protein-based superabsorbent hydrogel. Polym Bull 57(6):813–824

    Article  CAS  Google Scholar 

  117. Pourjavadi A, Salimi H, Kurdtabar M (2007) Hydrolyzed collagen-based hydrogel with salt and pH-responsiveness properties. J Appl Polym Sci 106(4):2371–2379

    Article  CAS  Google Scholar 

  118. Pourjavadi A, Salimi H, Amini-Fazl MS, Kurdtabar M, Amini-Fazl AR (2006) Optimization of synthetic conditions of a novel collagen-based superabsorbent hydrogel by Taguchi method and investigation of its metal ions adsorption. J Appl Polym Sci 102(5):4878–4885

    Article  CAS  Google Scholar 

  119. Pourjavadi A, Ayyari M, Amini-Fazl MS (2008) Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel. Eur Polym J 44:1209–1216

    Article  CAS  Google Scholar 

  120. Bagheri Marandi G, Mahdavinia GR, Ghafary S (2011) Swelling behavior of novel protein-based superabsorbent nanocomposite. J Appl Polym Sci 120:1170–1179

    Article  CAS  Google Scholar 

  121. Rezanejade Bardajee G, Pourjavadi A, Soleyman R (2011) Novel highly swelling nanoporous hydrogel based on polysaccharide/protein hybrid backbone. J Polym Res 18:337–346

    Article  CAS  Google Scholar 

  122. Soleyman R, Rezanejade Bardajee G, Pourjavadi A, Varamesh A, Davoodi AA (2015) Hydrolyzed salep/gelatin-g-polyacrylamide as a novel micro/nano-porous superabsorbent hydrogel: synthesis optimization and investigation on swelling behavior. Sci Iran C 22(3):883–893

    Google Scholar 

  123. Demeter M, Virgolici M, Vancea C, Scarisoreanu A, Kaya MGA, Meltzer V (2017) Network structure studies on gamma-irradiated collagen-PVP superabsorbent hydrogels. Radiat Phys Chem 131:51–59

    Article  CAS  Google Scholar 

  124. Zheng Y, Zhu Y, Wang F, Wang A (2015) Gelatin-grafted granular composite hydrogel for selective removal of malachite green. Water Air Soil Pollut 226:354

    Article  CAS  Google Scholar 

  125. Saber-Samandari S, Saber-Samandari S, Yekta H, Mohseni M (2017) Adsorption of anionic and cationic dyes from aqueous solution using gelatin-based magnetic nanocomposite beads comprising carboxylic acid functionalized carbon nanotube. Chem Eng J 308:1133–1144

    Article  CAS  Google Scholar 

  126. Tian H, Wu W, Guo G, Gaolun B, Jia Q, Xiang A (2012) Microstructure and properties of glycerol plasticized soy protein plastics containing castor oil. J Food Eng 109(3):496–500

    Article  CAS  Google Scholar 

  127. Fernández-Espada L, Bengoechea C, Cordobés F, Guerrero A (2016) Protein/glycerol blends and injection-molded bioplastic matrices: soybean versus egg albumen. J Appl Polym Sci 133(6):42980

    Article  CAS  Google Scholar 

  128. Felix M, Martín-Alfonso JE, Romero A, Guerrero A (2014) Development of albumen/soy biobased plastic materials processed by injection molding. J Food Eng 125:7–16

    Article  CAS  Google Scholar 

  129. Stern T, Lamas MC, Benita S (2002) Design and characterization of protein-based microcapsules as a novel catamenial absorbent system. Int J Pharm 242(1):185–190

    Article  CAS  PubMed  Google Scholar 

  130. Song W, Xin J, Zhang J (2017) One-pot synthesis of soy protein (SP)-poly (acrylic acid)(PAA) superabsorbent hydrogels via facile preparation of SP macromonomer. Ind Crop Prod 100:117–125

    Article  CAS  Google Scholar 

  131. Hwang DC, Damodaran S (1996) Equilibrium swelling properties of a novel ethylenediaminetetraacetic dianhydride (EDTAD)-modified soy protein hydrogel. J Appl Polym Sci 62(8):1285–1293

    Article  CAS  Google Scholar 

  132. Yoshimura T, Yoshimura R, Seki C, Fujioka R (2006) Synthesis and characterization of biodegradable hydrogels based on starch and succinic anhydride. Carbohydr Polym 64(2):345

    Article  CAS  Google Scholar 

  133. Cuadri AA, Romero A, Bengoechea C, Guerrero A (2017) Natural superabsorbent plastic materials based on a functionalized soy protein. Polym Test 58:126–134

    Article  CAS  Google Scholar 

  134. Hu X, Deng Y (2015) Synthesis and swelling properties of silk sericin-g-poly(acrylic acid/attapulgite) composite superabsorbent. Polym Bull 72:487–501

    Article  CAS  Google Scholar 

  135. Castilhos NDB, Sampaio NMFM, da Silva BC, Riegel-Vidotti IC, Grassi MT, Silva BJG (2017) Physical-chemical characteristics and potential use of a novel alginate/zein hydrogel as the sorption phase for polar organic compounds. Carbohydr Polym 174:507–516

    Article  CAS  PubMed  Google Scholar 

  136. de Kruif CG (Kees), Anema SG, Zhu C, Havea P, Coker C (2015) Water holding capacity and swelling of casein hydrogels. Food Hydrocoll 44:372–379

    Article  CAS  Google Scholar 

  137. Bajpai A, Saini R (2005) Preparation and characterization of spongy cryogels of poly(vinyl alcohol)–casein system: water sorption and blood compatibility study. Polym Int 54:796–806

    Article  CAS  Google Scholar 

  138. Lao UL, Sun M, Matsumoto M, Mulchandani A, Chen W (2007) Genetic engineering of self-assembled protein hydrogel based on elastin-like sequences with metal binding functionality. Biomacromolecules 8(12):3736–3739

    Article  CAS  PubMed  Google Scholar 

  139. Kou S, Yang Z, Sun F (2017) Protein hydrogel microbeads for selective uranium mining from seawater. ACS Appl Mater Interfaces 9(3):2035–2039

    Article  CAS  PubMed  Google Scholar 

  140. Rathna GVN, Damodaran S (2001) Swelling behavior of protein-based superabsorbent hydrogels treated with ethanol. J Appl Polym Sci 81(9):2190–2196

    Article  CAS  Google Scholar 

  141. Hwang DC, Damodaran S (1997) Synthesis and properties of fish protein-based hydrogel. J Am Oil Chem Soc 74(9):1165–1171

    Article  CAS  Google Scholar 

  142. Zhang B, Cui Y, Yin G, Li X (2012) Adsorption of copper (II) and lead (II) ions onto cottonseed protein-PAA hydrogel composite polymer-plastics. Technol Eng 51(6):612–619

    CAS  Google Scholar 

  143. Chang CJ, Swift G (1999) Poly (aspartic acid) hydrogel J. Macromol Sci Pure Appl Chem 36(7-8):963–970

    Article  Google Scholar 

  144. Min SK, Kim JH, Chung DJ (2001) Swelling behavior of biodegradable crosslinked gel based on poly (aspartic acid) and PEG-diepoxide. Korea Polym J 9(3):143–149

    CAS  Google Scholar 

  145. Yang J, Fang L, Tan T (2006) Synthesis and characterization of superabsorbent hydrogels composites based on polysuccinimide. J Appl Polym Sci 102(1):550–557

    Article  CAS  Google Scholar 

  146. Umeda S, Nakade H, Kakuchi T (2011) Preparation of superabsorbent hydrogels from poly(aspartic acid) by chemical crosslinking. Polym Bull 67:1285–1292

    Article  CAS  Google Scholar 

  147. Vakili MR, Rahneshin N (2013) Synthesis and characterization of novel stimuli-responsive hydrogelsbased on starch and L-aspartic acid. Carbohydr Polym 98(2):1624–1630

    Article  CAS  PubMed  Google Scholar 

  148. Kunioka M (2004) Biodegradable water absorbent synthesized from bacterial poly(amino acid)s. Macromol Biosci 4:324–329

    Article  CAS  PubMed  Google Scholar 

  149. Shimokuri T, Kaneko T, Akashi M (2004) Specific thermosensitive volume change of biopolymer gels derived from propylated poly(γ-glutamate)s. J Polym Sci Part A Polym Chem 42: 4492–4501

    Google Scholar 

  150. Li Z, He G, Hua J, Wu M, Guo W, Gong J, Zhang J, Qiao C (2017) Preparation of g-PGA hydrogels and swelling behaviors in salt solutions with different ionic valence numbers. RSC Adv 7:11085–11093

    Article  CAS  Google Scholar 

  151. Tsang VL, Bhatia SN (2004) Three-dimensional tissue fabrication. Adv Drug Deliv Rev 56(11):1635–1647

    Article  CAS  PubMed  Google Scholar 

  152. Li S, Nih LR, Bachman H, Fei P, Li Y, Nam E, Dimatteo R, Carmichael ST, Barker TH, Segura T (2017) Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability. Nat Mater 16:953–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Joosten EAJ, Veldhuis WB, Hamers FPT (2004) Collagen containing neonatal astrocytes stimulates regrowth of injured fibers and promotes modest locomotor recovery after spinal cord injury. J Neurosci Res 77:127–142

    Article  CAS  PubMed  Google Scholar 

  154. DeLustro F, Condell RA, Nguyen MA, McPherson JM (1986) A comparative study of the biologic and immunologic response to medical devices derived from dermal collagen. J Biomed Mater Res 20:109–120

    Article  CAS  PubMed  Google Scholar 

  155. Taylor PM, Cass AEG, Yacoub MH (2006) Extracellular matrix scaffolds for tissue engineering heart valves. Prog Pediatr Cardiol 21(2):219–225

    Article  Google Scholar 

  156. Tangsadthakun C, Kanokpanont S, Sanchavanakit N, Banaprasert T, Damrongsakkul S (2006) Properties of collagen/chitosan scaffolds for skin tissue engineering fabrication of collagen/chitosan scaffolds. J Miner Met Mater Eng 16:37–44

    CAS  Google Scholar 

  157. Madry H, Rey-Rico A, Venkatesan JK, Johnstone B, Cucchiarini M (2013) Transforming growth factor beta-releasing scaffolds for cartilage tissue engineering. Tissue Eng Part B Rev 20(2):106–125

    Article  CAS  PubMed  Google Scholar 

  158. Calabrese G, Forte S, Gulino R, Cefalì F, Figallo E, Salvatorelli L, Maniscalchi ET, Angelico G, Parenti R, Gulisano M, Memeo L, Giuffrida R (2017) Combination of collagen-based scaffold and bioactive factors induces adipose-derived mesenchymal stem cells chondrogenic differentiation in vitro. Front Physiol 8:50

    PubMed  PubMed Central  Google Scholar 

  159. Calabrese G, Giuffrida R, Forte S, Salvatorelli L, Fabbi C, Figallo E, Gulisano M, Parenti R, Magro G, Colarossi C, Memeo L, Gulino R (2016) Bone augmentation after ectopic implantation of a cell-free collagen-hydroxyapatite scaffold in the mouse. Sci Rep 6(36399):1–10

    Google Scholar 

  160. Calabrese G, Giuffrida R, Fabbi C, Figallo E, Furno D, Lo Gulino R, Colarossi C, Fullone F, Giuffrida R, Parenti R, Memeo L, Forte S (2016) Collagen-hydroxyapatite scaffolds induce human adipose derived stem cells osteogenic differentiation in vitro. PLoS One 11(3):e0151181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Juncosa-Melvin N, Shearn JT, Boivin GP, Gooch C, Galloway MT, West JR, Butler DL (2006) Effects of mechanical stimulation on the biomechanics and histology of stem cell–collagen sponge constructs for rabbit patellar tendon repair. J Tissue Eng 12(8):2291–2300

    Article  CAS  Google Scholar 

  162. Doillon CJ, Drouin R, Cote MF, Dallaire N, Pageau JF, Laroche G (1997) Chemical inactivators as sterilization agents for bovine collagen materials. J Biomed Mater Res 37(2):212–221

    Article  CAS  PubMed  Google Scholar 

  163. Pinkas O, Goder D, Noyvirt R, Peleg S, Kahlon M, Zilberman M (2017) Structuring of composite hydrogel bioadhesives and its effect on properties and bonding mechanism. J Biomed Mater Res 51:125–137

    CAS  Google Scholar 

  164. Chen DC, Lai YL, Lee SY, Hung SL, Chen HL (2007) Osteoblastic response to collagen scaffolds varied in freezing temperature and glutaraldehyde crosslinking. J Biomed Mater Res A 80(2):399–409

    Article  CAS  PubMed  Google Scholar 

  165. Sahiner M, Alpaslan D, Bitlisli BO (2014) Collagen-based hydrogel films as drug-delivery devices with antimicrobial properties. Polym Bull 71(11):3017–3033

    Article  CAS  Google Scholar 

  166. Cheng Y, Lu J, Liu S, Zhao P, Lu G, Chen J (2014) The preparation characterization and evaluation of regenerated cellulose/collagen composite hydrogel films. Carbohydr Polym 107:57–64

    Article  CAS  PubMed  Google Scholar 

  167. Zheng W, Zhang W, Jiang X (2010) Biomimetic collagen nanofibrous materials for bone tissue engineering. Adv Eng Mater 12(9):B451–B466

    Article  CAS  Google Scholar 

  168. Wheeler TS, Sbravati ND, Janorkar AV (2013) Mechanical cell culture properties of elastin-like polypeptide collagen bioglass and carbon nanosphere composites. Ann Biomed Eng 41(10):2042–2055

    Article  PubMed  Google Scholar 

  169. David L, Dulong V, Coquerel B, Le Cerf D, Cazin L, Lamacz M, Vannier JP (2008) Collagens stromal cell-derived factor-1α and basic fibroblast growth factor increase cancer cell invasiveness in a hyaluronan hydrogel. Cell Prolif 41(2):348–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Radhakrishnan J, Krishnan UM, Sethuraman S (2014) Hydrogel based injectable scaffolds for cardiac tissue regeneration. Biotechnol Adv 32(2):449–461

    Article  CAS  PubMed  Google Scholar 

  171. Toh WS, Loh XJ (2014) Advances in hydrogel delivery systems for tissue regeneration. Mater Sci Eng C 45:690–697

    Article  CAS  Google Scholar 

  172. Yang G, Xiao Z, Ren X, Long H, Qian H, Ma K, Guo Y (2016) Enzymatically crosslinked gelatin hydrogel promotes the proliferation of adipose tissue-derived stromal cells. PeerJ 4:e2497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Shin SR, Aghaei-Ghareh-Bolagh B, Dang TT, Topkaya SN, Gao X, Yang SY, Khademhosseini A (2013) Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide. Adv Mater 25(44):6385–6391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Shin SR, Bae H, Cha JM, Mun JY, Chen YC, Tekin H, Khademhosseini A (2011) Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano 6(1):362–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Liu X, Smith LA, Hu J, Ma PX (2009) Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 30(12):2252–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Luo Y, Lode A, Akkineni AR, Gelinsky M (2015) Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting. RSC Adv 5(54):43480–43488

    Article  CAS  Google Scholar 

  177. Gan Y, Li S, Li P, Xu Y, Wang L, Zhao C, Luo X (2016) A controlled release codelivery system of MSCs encapsulated in dextran/gelatin hydrogel with TGF-β3-loaded nanoparticles for nucleus pulposus regeneration. Stem Cells Int 2016:9042019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Tondera C, Hauser S, Krüger-Genge A, Jung F, Neffe AT, Lendlein A, Pietzsch J (2016) Gelatin-based hydrogel degradation and tissue interaction in vivo: insights from multimodal preclinical imaging in immunocompetent nude mice. Theranostics 6(12):2114–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Masuda T, Furue M, Matsuda T (2004) Photocured styrenated gelatin-based microspheres for de novo adipogenesis through corelease of basic fibroblast growth factor insulin and insulin-like growth factor I. J Tissue Eng 10(3-4):523–535

    Article  CAS  Google Scholar 

  180. Wood AT, Everett D, Budhwani KI, Dickinson B, Thomas V (2016) Wet-laid soy fiber reinforced hydrogel scaffold: fabrication mechano-morphological and cell studies. Mater Sci Eng C 63:308–316

    Article  CAS  Google Scholar 

  181. Aoki H, Tomita N, Morita Y, Hattori K, Harada Y, Sonobe M, Tamada Y (2003) Culture of chondrocytes in fibroin–hydrogel sponge. Biomed Mater Eng 13(4):309–316

    CAS  PubMed  Google Scholar 

  182. Fini M, Motta A, Torricelli P, Giavaresi G, Aldini NN, Tschon M, Migliaresi C (2005) The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel. Biomaterials 26(17):3527–3536

    Article  CAS  PubMed  Google Scholar 

  183. Ming J, Jiang Z, Wang P, Bie S, Zuo B (2015) Silk fibroin/sodium alginate fibrous hydrogels regulated hydroxyapatite crystal growth materials. Mater Sci Eng C 51:287–293

    Article  CAS  Google Scholar 

  184. Gotoh Y, Tsukada M, Minoura N (1998) Effect of the chemical modification of the arginyl residue in Bombyx mori silk fibroin on the attachment and growth of fibroblast cells. J Biomed Mater Res A 39(3):351–357

    Article  CAS  Google Scholar 

  185. Inouye K, Kurokawa M, Nishikawa S, Tsukada M (1998) Use of Bombyx mori silk fibroin as a substratum for cultivation of animal cells. J Biochem Biophys Methods 37(3):159–164

    Article  CAS  PubMed  Google Scholar 

  186. Minoura N, Aiba SI, Gotoh Y, Tsukada M, Imai Y (1995) Attachment and growth of cultured fibroblast cells on silk protein matrices. J Biomed Mater Res A 29(10):1215–1221

    Article  CAS  Google Scholar 

  187. Passipieri JA, Baker HB, Siriwardane M, Ellenburg MD, Vadhavkar M, Saul JM, Tomblyn S, Burnett L, Christ GJ (2017) Keratin hydrogel enhances in vivo skeletal muscle function in a rat model of volumetric muscle loss. Tissue Eng Part A 23(11–12):556–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Fathi A, Mithieux SM, Wei H, Chrzanowski W, Valtchev P, Weiss AS, Dehghani F (2014) Elastin based cell-laden injectable hydrogels with tunable gelation mechanical and biodegradation properties. Biomaterials 35:5425–5435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhang YN, Avery RK, Vallmajo-Martin Q, Assmann A, Vegh A, Memic A, Olsen BD, Annabi N, Khademhosseini A (2015) A highly elastic and rapidly crosslinkable elastin-like polypeptide-based hydrogel for biomedical applications. Adv Funct Mater 25:4814–4826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. McHale MK, Lori MS, Setton A, Chilkoti A (2005) Synthesis and in vivo evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair. Tissue Eng 11:1768–1779

    Article  CAS  PubMed  Google Scholar 

  191. McGann CL, Levenson EA, Kiick KL (2013) Resilin-based hybrid hydrogels for cardiovascular tissue engineering. Macromolecules 214:203–213

    CAS  PubMed  Google Scholar 

  192. Banta S, Wheeldon IR, Blenner M (2010) Protein engineering in the development of functional hydrogels. Annu Rev Biomed Eng 12:167–186

    Article  CAS  PubMed  Google Scholar 

  193. Fischer SE, Liu XY, Mao HQ, Harden JL (2007) Controlling cell adhesion to surfaces via associating bioactive triblock proteins. Biomaterials 28:3325–3337

    Article  CAS  PubMed  Google Scholar 

  194. Jia J, Coyle RC, Richards DJ, Berry CL, Barrs RW, Biggs J, James Chou C, Trusk TC, Mei Y (2016) Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications. Acta Biomater 45:110–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wan S, Borland S, Richardson SM, Merry CL, Saiani A, Gough JE (2016) Self-assembling peptide hydrogel for intervertebral disc tissue engineering. Acta Biomater 46:29–40

    Article  CAS  PubMed  Google Scholar 

  196. Chatzistavrou X, Rao RR, Caldwell DJ, Peterson AW, McAlpin B, Wang YY, Papagerakis P (2016) Collagen/fibrin microbeads as a delivery system for Ag-doped bioactive glass and DPSCs for potential applications in dentistry. J Non-Cryst Solids 432:143–149

    Article  CAS  Google Scholar 

  197. Lovett ML, Wang X, Yucel T, York L, Keirstead M, Haggerty L, Kaplan DL (2015) Silk hydrogels for sustained ocular delivery of anti-vascular endothelial growth factor (anti-VEGF) therapeutics. Eur J Pharm Biopharm 95:271–278

    Article  CAS  PubMed  Google Scholar 

  198. Mandal BB, Kapoor S, Kundu SC (2009) Silk fibroin/polyacrylamide semi-interpenetrating network hydrogels for controlled drug release. Biomaterials 30(14):2826–2836

    Article  CAS  PubMed  Google Scholar 

  199. Price R, Poursaid A, Cappello J, Ghandehari H (2015) In vivo evaluation of matrix metalloproteinase responsive silk–elastinlike protein polymers for cancer gene therapy. J Control Release 213:96–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Megeed Z, Haider M, Li D, O’malley BW, Cappello J, Ghandehari H (2004) In vitro and in vivo evaluation of recombinant silk-elastinlike hydrogels for cancer gene therapy. J Control Release 94(2):433–445

    Article  CAS  PubMed  Google Scholar 

  201. Gao Z, Ding P, Zhang L, Shi J, Yuan S, Wei J, Chen D (2007) Study of a pingyangmycin delivery system: zein/zein-SAIB in situ gels. Int J Pharm 328:57–64

    Article  CAS  PubMed  Google Scholar 

  202. Ham TR, Lee RT, Han S, Haque S, Vodovotz Y, Gu J, Burnett LR, Tomblyn S, Saul JM (2016) Tunable keratin hydrogels for controlled erosion and growth factor delivery. Biomacromolecules 17:225–236

    Article  CAS  PubMed  Google Scholar 

  203. Bajpai SK (1999) Casein cross-linked polyacrylamide hydrogels: study of swelling and drug release behavior. Iran Polym J 8:231–239

    CAS  Google Scholar 

  204. Li NN, Fu CP, Zhang LM (2014) Using casein and oxidized hyaluronic acid to form biocompatible composite hydrogels for controlled drug release. Mater Sci Eng C 36:287–293

    Article  CAS  Google Scholar 

  205. El-Sherif H, El-Masry M, Abou Taleb MF (2010) pH-sensitive hydrogels based on bovine serum albumin for anticancer drug delivery. J Appl Polym Sci 115:2050–2059

    Article  CAS  Google Scholar 

  206. Chronopoulou L, Toumia Y, Cerroni B, Pandolfi D, Paradossi G, Palocci C (2017) Biofabrication of genipin-crosslinked peptide hydrogels and their use in the controlled delivery of naproxen. New Biotechnol 37:138–143

    Article  CAS  Google Scholar 

  207. Li X, Fu M, Wu J, Zhang C, Deng X, Dhinakar A, Huang W, Qian H, Ge L (2017) pH-Sensitive peptide hydrogel for glucose-responsive insulin delivery. Acta Biomater 51:294–303

    Article  CAS  PubMed  Google Scholar 

  208. Yanovsky YG (2012) Polymer rheology: theory and practice. Springer, Switzerland

    Google Scholar 

  209. Osswald TA, Rudolph N (2015) Polymer rheology: fundamentals and applications. Hanser Publications, Cincinnati

    Google Scholar 

  210. Song F, Zhang LM (2008) Enzyme-catalyzed formation and structure characteristics of a protein-based hydrogel. J Phys Chem B 112(44):13749–13755

    Article  CAS  PubMed  Google Scholar 

  211. Sathaye S, Mbi A, Sonmez C, Chen Y, Blair DL, Schneider JP, Pochan DJ (2015) Rheology of peptide-and protein-based physical hydrogels: are everyday measurements just scratching the surface? Wiley Interdiscip rev Nanomed. Nanobiotechnol 7(1):34–68

    Article  CAS  Google Scholar 

  212. Peng Z, She Y, Chen L (2015) Synthesis of poly (glutamic acid)-tyramine hydrogel by enzyme-mediated gelation for controlled release of proteins. J Biomater Sci Polym Ed 26(2):111–127

    Article  CAS  PubMed  Google Scholar 

  213. Kim BJ, Oh DX, Kim S, Seo JH, Hwang DS, Masic A, Cha HJ (2014) Mussel-mimetic protein-based adhesive hydrogel. Biomacromolecules 15(5):1579–1585

    Article  CAS  PubMed  Google Scholar 

  214. Shaw MT (2012) Introduction to polymer rheology. Wiley, Hoboken

    Google Scholar 

  215. Gaudet ID, Shreiber DI (2012) Characterization of methacrylated type-I collagen as a dynamic photoactive hydrogel. Biointerphases 7(1-4):25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Xu X, Xu Z, Yang X, He Y, Lin R (2017) Construction and characterization of a pure protein hydrogel for drug delivery application international. Int J Biol Macromol Int 95:294–298

    Article  CAS  Google Scholar 

  217. Vulpe R, Le Cerf D, Dulong V, Popa M, Peptu C, Verestiuc L, Picton L (2016) Rheological study of in-situ cross-linkable hydrogels based on hyaluronanic acid collagen and sericin. Mater Sci Eng C 69:388–397

    Article  CAS  Google Scholar 

  218. Wheeldon IR, Calabrese Barton S, Banta S (2007) Bioactive proteinaceous hydrogels from designed bifunctional building blocks. Biomacromolecules 8(10):2990–2994

    Article  CAS  PubMed  Google Scholar 

  219. Derkach SR, Ilyin SO, Maklakova AA, Kulichikhin VG, Malkin AY (2015) The rheology of gelatin hydrogels modified by κ-carrageenan. LWT Food Sci Technol 63(1):612–619

    Article  CAS  Google Scholar 

  220. Guan D, Ramirez M, Shao L, Jacobsen D, Barrera I, Lutkenhaus J, Chen Z (2013) Two-component protein hydrogels assembled using an engineered disulfide-forming protein–ligand pair. Biomacromolecules 14(8):2909–2916

    Article  CAS  PubMed  Google Scholar 

  221. Su D, Jiang L, Chen X, Dong J, Shao Z (2016) Enhancing the gelation and bioactivity of injectable silk fibroin hydrogel with laponite nanoplatelets. ACS Appl Mater Interfaces 8(15):9619–9628

    Article  CAS  PubMed  Google Scholar 

  222. Seidler C, Ng DYW, Weil T (2017) Native protein hydrogels by dynamic boronic acid chemistry. Tetrahedron 73(33):4979–4987

    Article  CAS  Google Scholar 

  223. Kim M, Tang S, Olsen BD (2013) Physics of engineered protein hydrogels. J Polym Sci B Polym Phys 51(7):587–601

    Article  CAS  Google Scholar 

  224. Roy SG, Kumar A, De P (2016) Amino acid containing cross-linked co-polymer gels: pH thermo and salt responsiveness. Polym J 85:1–9

    Article  CAS  Google Scholar 

  225. Kremer F, Ritchtering W (2013) Progress in colloid and polymer science: intelligent hydrogel, vol 140. Springer International Publishing, Switzerland

    Google Scholar 

  226. DeSimone E, Schacht K, Scheibel T (2016) Cations influence the cross-linking of hydrogels made of recombinant, polyanionic spider silk proteins. Mater Lett 183:101–104

    Article  CAS  Google Scholar 

  227. Ma J, Lee J, Han SS, Oh KH, Nam KT, Sun JY (2016) Highly stretchable and notch-insensitive hydrogel based on polyacrylamide and milk protein. ACS Appl Mater Interfaces 8(43):29220–29226

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Panahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Panahi, R., Baghban-Salehi, M. (2019). Protein-Based Hydrogels. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-77830-3_52

Download citation

Publish with us

Policies and ethics