Skip to main content

Biodegradable Hydrogels for Controlled Drug Delivery

  • Reference work entry
  • First Online:
Cellulose-Based Superabsorbent Hydrogels

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

Hydrogels are three-dimensional cross-linked polymeric networks that can imbibe large amount of water or biological fluids. The ability of hydrogel to absorb water appears due to the presence of hydrophilic groups such as –OH, –CONH, –CONH2, –COOH, and –SO3H, along the polymer chain. Depending on the pendant functional groups, hydrogels have the ability to respond to their environmental changes such as pH, ionic strength, or temperature. The high water content and soft texture of these hydrogels translate them into a biocompatible material. This property renders the hydrogel similar to biological tissues and consequently minimizes inflammation once implanted or injected in the body. Biodegradable hydrogels are further adding advantages of degradation of the matrix into innocuous biocompatible products that can be eliminated after serving, thus eliminating the necessity of their removal. The degree of biodegradation can be controlled by manipulating the cross-linking with suitable precursors. Their mechanical property can also be tailored to have structural stability followed by extended release of cargo molecules. Their flexibility and minimally invasive administration are useful characteristics for their increased application in biomedical fields. Biodegradable hydrogels as controlled release systems are investigated to improve the temporal and spatial presentation of drug in the body, to protect drug from physiological degradation or elimination and to improve patient compliance. Hence the author has made an attempt to discuss biodegradable polymers of natural and synthetic origin, the biodegradation mechanisms, hydrogel engineering strategies, drug-hydrogel interactions, and release kinetics and mechanisms of such hydrogels to attain controlled delivery of drugs to different site of action in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prashant PK, Vivek BR, Deepashree ND, Pranav PP (2012) Hydrogels as a drug delivery system and applications: a review. Int J Pharm Pharm Sci 4(1):1–7

    Google Scholar 

  2. Das N, Bera T, Mukherjee A (2012) Biomaterial hydrogels for different biomedical applications. Int J Pharm Bio Sci 3:586–595

    CAS  Google Scholar 

  3. De SK, Aluru N, Johnson B, Crone W, Beebe DJ, Moore J (2002) Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. J Microelectromech Syst 11:544–555

    Article  CAS  Google Scholar 

  4. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    Article  CAS  PubMed  Google Scholar 

  5. Grassi M, Sandolo C, Perin D, Coviello T, Lapasin R, Grassi G (2009) Structural characterization of calcium alginate matrices by means of mechanical and release tests. Molecules 14:3003–3017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bryant SJ, Nuttelman CR, Anseth KS (2000) Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed 11:439–457

    Article  CAS  PubMed  Google Scholar 

  7. Huaping T, Kacey GM (2010) Injectable, biodegradable hydrogels for tissue engineering applications. Materials 3:1746–1767

    Article  CAS  Google Scholar 

  8. Jay RJ, Ronak PP (2012) Role of biodegradable polymers in drug delivery. Int J Curr Pharm Res 4:74–81

    Google Scholar 

  9. Xiong XY, Tam KC, Gan LH (2006) Polymeric nanostructures for drug delivery applications based on pluronic copolymer systems. J Nanosci Nanotechnol 6(9–10):2638–2650

    Article  CAS  PubMed  Google Scholar 

  10. Chen PC, Kohane DS, Park YJ, Bartlett RH, Langer R, Yang VC (2004) Injectable microparticle-gel system for prolonged and localized lidocaine release. II. In vivo anesthetic effects. J Biomed Mater Res A 70(3):459–466

    Article  PubMed  CAS  Google Scholar 

  11. Sosnik A, Cohn D (2004) Ethoxysilane-capped PEO-PPO-PEO triblocks: a new family of reverse thermo-responsive polymers. Biomaterials 25(14):2851–2588

    Article  CAS  PubMed  Google Scholar 

  12. Cho KY, Chung TW, Kim BC, Kim MK, Lee JH, Wee WR, Cho CS (2003) Release of ciprofloxacin from poloxamer-graft-hyaluronic acid hydrogels in vitro. Int J Pharm 260(1):83–91

    Article  CAS  PubMed  Google Scholar 

  13. Kim MR, Park TG (2002) Temperature-responsive and degradable hyaluronic acid/pluronic composite hydrogels for controlled release of human growth hormone. J Control Release 80(1–3):69–77

    Article  CAS  PubMed  Google Scholar 

  14. Determan MD, Cox JP, Mallapragada SK (2007) Drug release from pH-responsive thermogelling pentablock copolymers. J Biomed Mater Res A 81(2):326–333

    Article  PubMed  CAS  Google Scholar 

  15. Singh S, Webster DC, Singh J (2007) Thermosensitive polymers: synthesis, characterization, and delivery of proteins. Int J Pharm 341(1–2):68–77

    Article  CAS  PubMed  Google Scholar 

  16. Lee WC, Li YC, Chu IM (2006) Amphiphilic poly(d,l-lactic acid)/poly(ethylene glycol)/poly(d,l-lactic acid) nanogels for controlled release of hydrophobic drugs. Macromol Biosci 6(10):846–854

    Article  CAS  PubMed  Google Scholar 

  17. Qiao M, Chen D, Ma X, Liu Y (2005) Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int J Pharm 294(1–2):103–112

    Article  CAS  PubMed  Google Scholar 

  18. Li C, Tang Y, Armes SP, Morris CJ, Rose SF, Lloyd AW, Lewis AL (2005) Synthesis and characterization of biocompatible thermo-responsive gelators based on ABA triblock copolymers. Biomacromolecules 6(2):994–999

    Article  CAS  PubMed  Google Scholar 

  19. Ha DI, Lee SB, Chong MS, Lee YM, Kim SY, Park YH (2006) Preparation of thermo-responsive and injectable hydrogels based on hyaluronic acid and poly(N-isopropylacrylamide) and their drug release behaviors. Macromol Res 14(1):87–93

    Article  CAS  Google Scholar 

  20. Hyun H, Kim YH, Song IB, Lee JW, Kim MS, Khang G, Park K, Lee HB (2007) In vitro and in vivo release of albumin using a biodegradable MPEG-PCL diblock copolymer as an in situ gel-forming carrier. Biomacromolecules 8(4):1093–1100

    Article  CAS  PubMed  Google Scholar 

  21. Kang GD, Cheon SH, Song SC (2006) Controlled release of doxorubicin from thermosensitive poly(organophosphazene) hydrogels. Int J Pharm 319(1–2):29–36

    Article  CAS  PubMed  Google Scholar 

  22. Molinaro G, Leroux JC, Damas J, Adam A (2002) Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials. Biomaterials 23(13):2717–2722

    Article  CAS  PubMed  Google Scholar 

  23. Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang MQ (2005) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Control Release 103(3):609–624

    Article  CAS  PubMed  Google Scholar 

  24. Van Tomme SR, van Steenbergen MJ, De Smedt SC, van Nostrum CF, Hennink WE (2005) Self-gelling hydrogels based on oppositely charged dextran microspheres. Biomaterials 26(14):2129–2135

    Article  PubMed  CAS  Google Scholar 

  25. Ricciardi R, Gaillet C, Ducouret G, Lafuma F, Laupretre F (2003) Investigation of the relationships between the chain organization and rheological properties of atactic poly(vinyl alcohol) hydrogels. Polymer 44(11):3375–3380

    Article  CAS  Google Scholar 

  26. Hiemstra C, Zhong Z, Li L, Dijkstra PJ, Feijen F (2006) In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers. Biomacromolecules 7(10):2790–2795

    Article  CAS  PubMed  Google Scholar 

  27. Bos GW, Jacobs JJ, Koten JW, Van Tomme S, Veldhuis T, van Nostrum CF, Den Otter W, Hennink WE (2004) In situ crosslinked biodegradable hydrogels loaded with IL-2 are effective tools for local IL-2 therapy. Eur J Pharm Sci 21(4):561–567

    Article  CAS  PubMed  Google Scholar 

  28. Li J, Ni XP, Leong KW (2003) Injectable drug delivery systems based on supramolecular hydrogels formed by poly(ethylene oxides) and α-cyclodextrin. J Biomed Mater Res A 65(2):196–202

    Article  PubMed  CAS  Google Scholar 

  29. Choi HS, Kontani K, Huh KM, Sasaki S, Ooya T, Lee WK, Yui N (2002) Rapid induction of thermoreversible hydrogel formation based on poly(propylene glycol)-grafted dextran inclusion complexes. Macromol Biosci 2(6):298–303

    Article  CAS  Google Scholar 

  30. Li J, Li X, Ni XP, Wang X, Li HZ, Leong KW (2006) Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and a-cyclodextrin. Biomaterials 27(22):4132–4140

    Article  CAS  PubMed  Google Scholar 

  31. Seal BL, Panitch A (2003) Physical polymer matrices based on affinity interactions between peptides and polysaccharides. Biomacromolecules 4(6):1572–1582

    Article  CAS  PubMed  Google Scholar 

  32. Jin R, Hiemstra C, Zhong Z, Feijen J (2007) Enzyme-mediated fast in situ formation of hydrogels from dextran-tyramine conjugates. Biomaterials 28(18):2791–2800

    Article  CAS  PubMed  Google Scholar 

  33. Kurisawa M, Chung JE, Yang YY, Gao SJ, Uyama H (2005) Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering. Chem Commun 14(34):4312–4314

    Article  CAS  Google Scholar 

  34. Nishi KK, Jayakrishnan A (2007) Self-gelling primaquine-gum arabic conjugate: an injectable controlled delivery system for primaquine. Biomacromolecules 8(1):84–90

    Article  CAS  PubMed  Google Scholar 

  35. Ito T, Yeo Y, Highley CB, Bellas E, Benitez CA, Kohane DS (2007) The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials 28(6):975–983

    Article  CAS  PubMed  Google Scholar 

  36. Hiemstra C, van der Aa LJ, Zhong Z, Dijkstra PJ, Feijen J (2007) Novel in situ forming, degradable dextran hydrogels by Michael addition chemistry: synthesis, rheology, and degradation. Macromolecules 40(4):1165–1173

    Article  CAS  Google Scholar 

  37. Hahn SK, Oh EJ, Miyamoto H, Shimobouji T (2006) Sustained release formulation of erythropoietin using hyaluronic acid hydrogels crosslinked by Michael addition. Int J Pharm 322(1–2):44–51

    Article  CAS  PubMed  Google Scholar 

  38. Muhammad R, Rosiyah Y, Aziz H, Muhammad Y, Ahmad DA, Vidhya S, Faridah S, Cheyma NA (2017) pH sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications. Polymers 9(4):137–174

    Google Scholar 

  39. Baljit S, Nisha S (2008) Mechanistic implications of plastic degradation. Polym Degrad Stab 93:561–584

    Article  CAS  Google Scholar 

  40. Kondiah PJ, Choonara YE, Kondiah PP, Marimuthu T, Kumar P, du Toit LC, Pillay V (2016) A review of injectable polymeric hydrogel systems for application in bone tissue engineering. Molecules 21(11):1580–1584

    Article  PubMed Central  CAS  Google Scholar 

  41. Sweta G, Ashish G, Vishal S (2016) Hydrogels: effectiveness extension for drug delivery and biomedical application. Asian J Biomater Res 2(5):142–151

    Google Scholar 

  42. Das N (2013) Preparation methods and properties of hydrogel: a review. Int J Pharm Pharm Sci 5(3):112–117

    CAS  Google Scholar 

  43. Todd RH, Daniel SK (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007

    Article  CAS  Google Scholar 

  44. Fariba G, Ebrahim VF (2009) Hydrogels in controlled drug delivery systems. Iran Polym J 18(1):63–88

    Google Scholar 

  45. Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58(12–13):1379–1408

    Article  CAS  PubMed  Google Scholar 

  46. Roman Z, Zofia M, Katarzyna N (2010) Drug release from hydrogel matrices. Ecol Chem Eng S 17(2):117–136

    Google Scholar 

  47. Ford Versypt AN, Pack DW, Braatz RD (2013) Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres-a review. J Control Release 165(1):29–37

    Article  CAS  PubMed  Google Scholar 

  48. Wu N, Wang LS, Tan DCW, Moochhala SM, Yang YY (2005) Mathematical modeling and in vitro study of controlled drug release via a highly swellable and dissoluble polymer matrix: polyethylene oxide with high molecular weights. J Control Release 102(3):569–581

    Article  CAS  PubMed  Google Scholar 

  49. Ehrbar M, Metters A, Zammaretti P, Hubbell JA, Zisch AH (2005) Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. J Control Release 101(1–3):93–109

    Article  CAS  PubMed  Google Scholar 

  50. DuBose JW, Cutshall C, Metters AT (2005) Controlled release of tethered molecules via engineered hydrogel degradation: model development and validation. J Biomed Mater Res A 74(1):104–116

    Article  PubMed  CAS  Google Scholar 

  51. Rice MA, Sanchez-Adams J, Anseth KS (2006) Exogenously triggered, enzymatic degradation of photopolymerized hydrogels with polycaprolactone subunits: experimental observation and modeling of mass loss behavior. Biomacromolecules 7(6):1968–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Siepmann J, Gopferich A (2001) Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv Drug Deliv Rev 48(2–3):229–247

    Article  CAS  PubMed  Google Scholar 

  53. Charlier A, Leclerc B, Couarraze G (2000) Release of mifepristone from biodegradable matrices: experimental and theoretical evaluations. Int J Pharm 200(1):115–120

    Article  CAS  PubMed  Google Scholar 

  54. Yong Q, Kinam P (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339

    Article  Google Scholar 

  55. Chai Q, Jiao Y, Yu X (2017) Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 3(1):6–21

    Article  PubMed Central  CAS  Google Scholar 

  56. Taylor MJ, Tomlins P, Sahota TS (2017) Thermoresponsive gels. Gels 3(1):4–35

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilimanka Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Das, N. (2019). Biodegradable Hydrogels for Controlled Drug Delivery. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-77830-3_47

Download citation

Publish with us

Policies and ethics