Skip to main content

Cellulose-Based Hydrogels for Wound Healing

  • Reference work entry
  • First Online:

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

Wound healing is a dynamic process involving several intra/extracellular mechanisms, which are triggered by cutaneous injuries. Wound repair consists of three separate but overlapping phases, i.e., inflammation, formation of new tissue, and remodeling. Although wound healing is an innate ability of every multicellular organism, specific precautions are required in some particular cases. One important aspect of wound management is maintaining a good level of moisture. It has been acknowledged by the medical community that an optimal level of hydration leads to increased healing rates, reduces pain, and improves cosmesis. In this context, it is essential to know the nature of the wound in order to choose the most suitable wound dressing. For instance, in the presence of a dry wound, where additional hydration is necessary, the use of highly hydrated hydrogels can allow the autolytic debridement of necrotic tissue when its surgical removal is not feasible. The ability to trap water up to thousand times their dry weight turns these materials into valid alternatives for wound healing applications. The use of cellulose-based hydrogels has become popular owing to their great degree of biocompatibility, low-cost, and biodegradability. Recently, different strategies have been investigated for the development of more efficient wound dressings, for instance, the introduction of antibacterial features using a combination of antibiotics and/or antibacterial polymers. Along with plant-derived cellulose, the use of bacterial cellulose membranes as wound dressings and skin substitutes is attracting considerable interest due to their innate hydrogel structure as well as their high chemical purity and mechanical properties. This chapter will present an overview of the most recent studies on cellulose-based hydrogels for wound healing applications, as well as the most recent outcomes of research in this field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923

    Article  CAS  PubMed  Google Scholar 

  2. Han G, Ceilley R (2017) Chronic wound healing: a review of current management and treatments. Adv Ther 34(3):599–610

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321

    Article  CAS  PubMed  Google Scholar 

  4. Guo SA, Di Pietro LA (2010) Factors affecting wound healing. J Dent Res 89(3):219–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mellott AJ, Zamierowski DS, Andrews BT (2016) Negative pressure wound therapy in maxillofacial applications. Dent J 4(3):30

    Article  Google Scholar 

  6. Robson MC, Stenberg BD, Heggers JP (1990) Wound healing alterations caused by infection. Clin Plast Surg 17(3):485–492

    CAS  PubMed  Google Scholar 

  7. Abdelrahman T, Newton H (2011) Wound dressings: principles and practice. Surgery (Oxford) 29(10):491–495

    Article  Google Scholar 

  8. Ovington LG (2007) Advances in wound dressings. Clin Dermatol 25(1):33–38

    Article  PubMed  Google Scholar 

  9. Ng VW, Chan JM, Sardon H, Ono RJ, García JM, Yang YY, Hedrick JL (2014) Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections. Adv Drug Deliv Rev 78:46–62

    Article  CAS  PubMed  Google Scholar 

  10. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Google Scholar 

  11. Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: preparation functionalization and biomedical application. Prog Polym Sci 37(2):237–280

    Article  CAS  Google Scholar 

  12. Augustine R, Rajendran R, Cvelbar U, Mozetič M, George A (2013) Biopolymers for health food and cosmetic applications. In: Handbook of biopolymer-based materials: from blends and composites to gels and complex networks. Wiley, Singapore, pp 801–849

    Chapter  Google Scholar 

  13. Steinbüchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1(1):1–24

    Article  Google Scholar 

  14. Giano MC, Ibrahim Z, Medina SH, Sarhane KA, Christensen JM, Yamada Y, Brandacher G, Schneider JP (2014) Injectable bioadhesive hydrogels with innate antibacterial properties. Nat Commun 5:4095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Basu A, Lindh J, Ålander E, Strømme M, Ferraz N (2017) On the use of ion-crosslinked nanocellulose hydrogels for wound healing solutions: physicochemical properties and application-oriented biocompatibility studies. Carbohydr Polym 174:299–308

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Chen Y, Zhao Y, Tong Z, Chen S (2015) Superabsorbent sponge and membrane prepared by polyelectrolyte complexation of carboxymethyl cellulose/hydroxyethyl cellulose-Al3+. Bioresources 10(4):6479–6495

    CAS  Google Scholar 

  17. Nordli HR, Chinga-Carrasco G, Rokstad AM, Pukstad B (2016) Producing ultrapure wood cellulose nanofibrils and evaluating the cytotoxicity using human skin cells. Carbohydr Polym 150:65–73

    Article  CAS  PubMed  Google Scholar 

  18. Mertaniemi H, Escobedo-Lucea C, Sanz-Garcia A, Gandía C, Mäkitie A, Partanen J, Ikkala O, Yliperttula M (2016) Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials 82:208–220

    Article  CAS  PubMed  Google Scholar 

  19. Rees A Powell LC, Chinga-Carrasco G, Gethin DT, Syverud K, Hill KE, Thomas DW (2015) 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. Biomed Res Int 2015:Article ID 925757, 7 pages

    Google Scholar 

  20. Ogawa A, Nakayama S, Uehara M, Mori Y, Takahashi M, Aiba T, Kurosaki Y (2014) Pharmaceutical properties of a low-substituted hydroxypropyl cellulose (L-HPC) hydrogel as a novel external dressing. Int J Pharm 477(1):546–552

    Article  CAS  PubMed  Google Scholar 

  21. Liu J, Chinga-Carrasco G, Cheng F, Xu W, Willför S, Syverud K, Xu C (2016) Hemicellulose-reinforced nanocellulose hydrogels for wound healing application. Cellulose 23(5):3129–3143

    Article  CAS  Google Scholar 

  22. Bang S, Ko YG, Kim WI, Cho D, Park WH, Kwon OH (2017) Preventing postoperative tissue adhesion using injectable carboxymethyl cellulose-pullulan hydrogels. Int J Biol Macromol 105(1):886–893

    Article  CAS  PubMed  Google Scholar 

  23. Nayak S, Kundu SC (2014) Sericin–carboxymethyl cellulose porous matrices as cellular wound dressing material. J Biomed Mater Res A 102(6):1928–1940

    Article  PubMed  Google Scholar 

  24. Siritientong T, Aramwit P (2015) Characteristics of carboxymethyl cellulose/sericin hydrogels and the influence of molecular weight of carboxymethyl cellulose. Macromol Res 23(9): 861–866

    Article  CAS  Google Scholar 

  25. Huang B, Liu M, Zhou C (2017) Cellulose–halloysite nanotube composite hydrogels for curcumin delivery. Cellulose 24(7):2861–2875

    Article  CAS  Google Scholar 

  26. Römling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153(4):205–212

    Article  PubMed  Google Scholar 

  27. Helenius G Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76((2):431–438

    Article  Google Scholar 

  28. Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D (2014) Recent advances in bacterial cellulose. Cellulose 21(1):1–30

    Article  Google Scholar 

  29. Kucińska-Lipka J, Gubanska I, Janik H (2015) Bacterial cellulose in the field of wound healing and regenerative medicine of skin: recent trends and future prospectives. Polym Bull 72(9): 2399–2419

    Article  Google Scholar 

  30. Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92(2):1432–1442

    Article  CAS  PubMed  Google Scholar 

  31. Lin YK, Chen KH, Ou KL, Liu M (2011) Effects of different extracellular matrices and growth factor immobilization on biodegradability and biocompatibility of macroporous bacterial cellulose. J Bioact Compat Polym 26(5):508–518

    Article  CAS  Google Scholar 

  32. Moraes PRFDS, Saska S, Barud H, Lima LRD, Martins VDCA, Plepis AMDG, Ribeiro SJL, Gaspar AMM (2016) Bacterial cellulose/collagen hydrogel for wound healing. Mater Res 19(1):106–116

    Article  CAS  Google Scholar 

  33. Lamboni L, Li Y, Liu J, Yang G (2016) Silk sericin-functionalized bacterial cellulose as a potential wound-healing biomaterial. Biomacromolecules 17(9):3076–3084

    Article  CAS  PubMed  Google Scholar 

  34. Awadhiya A, Kumar D, Rathore K, Fatma B, Verma V (2017) Synthesis and characterization of agarose–bacterial cellulose biodegradable composites. Polym Bull 74(7):2887–2903

    Article  CAS  Google Scholar 

  35. Mohamad N, Amin MCIM, Pandey M, Ahmad N, Rajab NF (2014) Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym 114:312–320

    Article  CAS  PubMed  Google Scholar 

  36. Pandey M, Mohamad N, Low WL, Martin C, Amin MCIM (2017) Microwaved bacterial cellulose-based hydrogel microparticles for the healing of partial thickness burn wounds. Drug Deliv Transl Res 7(1):89–99

    Article  CAS  PubMed  Google Scholar 

  37. Yu J, Huang TR, Lim ZH, Luo R, Pasula RR, Liao LD, Lim S, Chen CH (2016) Production of hollow bacterial cellulose microspheres using microfluidics to form an injectable porous scaffold for wound healing. Adv Healthc Mater 5(23):2983–2992

    Article  CAS  PubMed  Google Scholar 

  38. Hirayama K, Okitsu T, Teramae H, Kiriya D, Onoe H, Takeuchi S (2013) Cellular building unit integrated with microstrand-shaped bacterial cellulose. Biomaterials 34(10):2421–2427

    Article  CAS  PubMed  Google Scholar 

  39. Mekkawy AI, El-Mokhtar MA, Nafady NA, Yousef N, Hamad MA, El-Shanawany SM, Ibrahim EH, Elsabahy M (2017) In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels. Int J Nanomedicine 12:759–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Singla R, Soni S, Patial V, Kulurkar PM, Kumari A, Mahesh S, Padwad YS, Yadav SK (2017) In vivo diabetic wound healing potential of nanobiocomposites containing bamboo cellulose nanocrystals impregnated with silver nanoparticles. Int J Biol Macromol 105(1:45–55

    Article  Google Scholar 

  41. Gupta A, Low WL, Radecka I, Britland ST, Mohd Amin MCI, Martin C (2016) Characterisation and in vitro antimicrobial activity of biosynthetic silver-loaded bacterial cellulose hydrogels. J Microencapsul 33(8):725–734

    Article  CAS  PubMed  Google Scholar 

  42. de Boer TR, Chakraborty I, Mascharak PK (2015) Design and construction of a silver (I)-loaded cellulose-based wound dressing: trackable and sustained release of silver for controlled therapeutic delivery to wound sites. J Mater Sci Mater Med 26(10):1–9

    Google Scholar 

  43. Khalid A, Khan R, Ul-Islam M, Khan T, Wahid F (2017) Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydr Polym 164:214–221

    Article  CAS  PubMed  Google Scholar 

  44. Janpetch N, Saito N, Rujiravanit R (2016) Fabrication of bacterial cellulose-ZnO composite via solution plasma process for antibacterial applications. Carbohydr Polym 148:335–344

    Article  CAS  PubMed  Google Scholar 

  45. Fan L, Tan C, Wang L, Pan X, Cao M, Wen F, Xie W, Nie M (2013) Preparation characterization and the effect of carboxymethylated chitosan–cellulose derivatives hydrogels on wound healing. J Appl Polym Sci 128(5):2789–2796

    Article  CAS  Google Scholar 

  46. Jeong D, ki Kim H, Jeong JP, Dindulkar SD, Cho E, Yang YH, Jung S (2016) Cyclosophoraose/cellulose hydrogels as an efficient delivery system for galangin a hydrophobic antibacterial drug. Cellulose 23(4):2609–2625

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ipsita Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Orlando, I., Roy, I. (2019). Cellulose-Based Hydrogels for Wound Healing. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-77830-3_38

Download citation

Publish with us

Policies and ethics