Skip to main content

Morphological Characterization of Hydrogels

  • Reference work entry
  • First Online:

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

Hydrogels are physically or chemically cross-linked polymer networks that are able to absorb large amounts of water. They can be classified into different categories depending on various parameters including the preparation method, the charge, and the mechanical and structural characteristics. The morphological structures are differed from hydrogel compositions to preparation method, fabrication techniques, type of hydrophobic substitutes, etc. This chapter addresses an overview of the morphological characterization of hydrogels and impact of these properties in various potential applications of hydrogels. In a first part, morphological characterizations of hydrogels directly prepared from native materials are described. In a second part, morphological characterizations of hydrogels prepared from different derivatives of native materials by physical as well as chemical cross-linking strategies are introduced. In a third part, morphological characterizations of composite type hydrogels including blending composites, polyelectrolyte complexes, and interpenetrating polymer networks (IPNs) are discussed. In a final part, morphological characterizations of inorganic nanoparticles incorporated hybrid hydrogels are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121

    CAS  PubMed  Google Scholar 

  2. Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17:451–477

    CAS  Google Scholar 

  3. Gulrez SK, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. In: Carpi A (ed) Progress in molecular and environmental bioengineering-from analysis and modeling to technology applications. InTech, Rijeka, pp 117–150

    Google Scholar 

  4. Bures NPP, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    PubMed  Google Scholar 

  5. Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53

    CAS  PubMed  Google Scholar 

  6. Varaprasad K, Raghavendra GM, Jayaramudu T, Yallapu MM, Sadiku R (2017) A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng C 79:958–971

    CAS  Google Scholar 

  7. Sharma K, Kaith B, Kumar V, Kalia S, Kumar V, Swart H (2014) Water retention and dye adsorption behavior of Gg-cl-poly (acrylic acid-aniline) based conductive hydrogels. Geoderma 232:45–55

    Google Scholar 

  8. Jayaramudu T, Li Y, Ko H-U, Shishir IR, Kim J (2016) Poly (acrylic acid)-Poly (vinyl alcohol) hydrogels for reconfigurable lens actuators. Int J Pr Eng Man-GT 3:375–379

    Google Scholar 

  9. Tsuji H (2005) Poly (lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597

    CAS  PubMed  Google Scholar 

  10. Ebara M, Kotsuchibashi Y, Narain R, Idota N, Kim Y-J, Hoffman JM, Uto K, Aoyagi T (2014) Smart hydrogels. Smart biomaterial. Springer, Tokyo, pp 9–65

    Google Scholar 

  11. Takigami M, Amada H, Nagasawa N, Yagi T, Kasahara T, Takigami S, Tamada M (2007) Preparation and properties of CMC gel. Trans Mater Res Soc Jpn 32:713

    CAS  Google Scholar 

  12. Aoki H, Al-Assaf S, Katayama T, Phillips GO (2007) Characterization and properties of Acacia senegal (L.) Willd. var. senegal with enhanced properties (Acacia (sen) SUPER GUM™): part 2 – mechanism of the maturation process. Food Hydrocoll 21:329–337

    CAS  Google Scholar 

  13. Abaee A, Madadlou A, Saboury AA (2017) The formation of non-heat-treated whey protein cold-set hydrogels via non-toxic chemical cross-linking. Food Hydrocoll 63:43–49

    CAS  Google Scholar 

  14. Athawale V, Lele V (1998) Graft copolymerization onto starch. II. Grafting of acrylic acid and preparation of it’s hydrogels. Carbohydr Polym 35:21–27

    CAS  Google Scholar 

  15. Said HM, Alla SGA, El-Naggar AWM (2004) Synthesis and characterization of novel gels based on carboxymethyl cellulose/acrylic acid prepared by electron beam irradiation. React Funct Polym 61:397–404

    CAS  Google Scholar 

  16. Jayaramudu T, Raghavendra GM, Varaprasad K, Raju KM, Sadiku ER, Kim J (2016) 5-Fluorouracil encapsulated magnetic nanohydrogels for drug-delivery applications. J Appl Polym Sci 133:43921

    Google Scholar 

  17. de Nooy AE, Capitani D, Masci G, Crescenzi V (2000) Ionic polysaccharide hydrogels via the Passerini and Ugi multicomponent condensations: synthesis, behavior and solid-state NMR characterization. Biomacromolecules 1:259–267

    PubMed  Google Scholar 

  18. Sperinde JJ, Griffith LG (1997) Synthesis and characterization of enzymatically-cross-linked poly (ethylene glycol) hydrogels. Macromolecules 30:5255–5264

    CAS  Google Scholar 

  19. Zhai M, Yoshii F, Kume T, Hashim K (2002) Syntheses of PVA/starch grafted hydrogels by irradiation. Carbohydr Polym 50:295–303

    CAS  Google Scholar 

  20. Liu Y, Vrana N, Cahill P, McGuinness G (2009) Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility. J Biomed Mater Res B 90:492–502

    CAS  Google Scholar 

  21. Schulze J, Hendrikx S, Schulz-Siegmund M, Aigner A (2016) Microparticulate poly (vinyl alcohol) hydrogel formulations for embedding and controlled release of polyethylenimine (PEI)-based nanoparticles. Acta Biomater 45:210–222

    CAS  PubMed  Google Scholar 

  22. Hennink W, De Jong S, Bos G, Veldhuis T, Van Nostrum C (2004) Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins. Int J Pharm 277:99–104

    CAS  PubMed  Google Scholar 

  23. Erickson IE, Kestle SR, Zellars KH, Dodge GR, Burdick JA, Mauck RL (2012) Improved cartilage repair via in vitro pre-maturation of MSC-seeded hyaluronic acid hydrogels. Biomed Mater 7:024110

    PubMed  PubMed Central  Google Scholar 

  24. Essawy HA, Ghazy MB, El-Hai FA, Mohamed MF (2016) Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Int J Biol Macromol 89:144–151

    CAS  PubMed  Google Scholar 

  25. Tran TH, Okabe H, Hidaka Y, Hara K (2017) Removal of metal ions from aqueous solutions using carboxymethyl cellulose/sodium styrene sulfonate gels prepared by radiation grafting. Carbohydr Polym 157:335–343

    CAS  PubMed  Google Scholar 

  26. Varaprasad K, Sadiku R (2015) Development of microbial protective Kolliphor-based nanocomposite hydrogels. J Appl Polym Sci 132:42781

    Google Scholar 

  27. Wei Q, Xu M, Liao C, Wu Q, Liu M, Zhang Y, Wu C, Cheng L, Wang Q (2016) Printable hybrid hydrogel by dual enzymatic polymerization with superactivity. Chem Sci 7:2748–2752

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Subia B, Kundu J, Kundu S (2010) Biomaterial scaffold fabrication techniques for potential tissue engineering applications. In: Eberli D (ed) Tissue engineering. InTech, Vienna, pp 141–157

    Google Scholar 

  29. Lohfeld S, Tyndyk M, Cahill S, Flaherty N, Barron V, McHugh P (2010) A method to fabricate small features on scaffolds for tissue engineering via selective laser sintering. J Biomed Sci Eng 3:138–147

    Google Scholar 

  30. Narayan R, Goering P (2011) Laser micro-and nanofabrication of biomaterials. MRS Bull 36:973–982

    CAS  Google Scholar 

  31. Zhang H, Luan Q, Huang Q, Tang H, Huang F, Li W, Wan C, Liu C, Xu J, Guo P (2017) A facile and efficient strategy for the fabrication of porous linseed gum/cellulose superabsorbent hydrogels for water conservation. Carbohydr Polym 157:1830–1836

    CAS  PubMed  Google Scholar 

  32. Rasoulzadeh M, Namazi H (2017) Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. Carbohydr Polym 168:320–326

    CAS  PubMed  Google Scholar 

  33. Martens PJ, Bryant SJ, Anseth KS (2003) Tailoring the degradation of hydrogels formed from multivinyl poly (ethylene glycol) and poly (vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules 4:283–292

    CAS  PubMed  Google Scholar 

  34. Nayak S, Lee H, Chmielewski J, Lyon LA (2004) Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels. J Am Chem Soc 126:10258–10259

    CAS  PubMed  Google Scholar 

  35. Tomatsu I, Hashidzume A, Harada A (2006) Contrast viscosity changes upon photoirradiation for mixtures of poly (acrylic acid)-based α-cyclodextrin and azobenzene polymers. J Am Chem Soc 128:2226–2227

    CAS  PubMed  Google Scholar 

  36. Ferruti P, Bianchi S, Ranucci E, Chiellini F, Piras AM (2005) Novel agmatine-containing poly (amidoamine) hydrogels as scaffolds for tissue engineering. Biomacromolecules 6:2229–2235

    CAS  PubMed  Google Scholar 

  37. Nagahama K, Ouchi T, Ohya Y (2008) Temperature-induced hydrogels through self-assembly of cholesterol-substituted star PEG-b-PLLA copolymers: an injectable scaffold for tissue engineering. Adv Funct Mater 18:1220–1231

    CAS  Google Scholar 

  38. Gao D, Xu H, Philbert MA, Kopelman R (2007) Ultrafine hydrogel nanoparticles: synthetic approach and therapeutic application in living cells. Angew Chem Int Ed Eng 46:2224–2227

    CAS  Google Scholar 

  39. Trombino S, Cassano R, Bloise E, Muzzalupo R, Tavano L, Picci N (2009) Synthesis and antioxidant activity evaluation of a novel cellulose hydrogel containing trans-ferulic acid. Carbohydr Polym 75:184–188

    CAS  Google Scholar 

  40. Luo X, Zhang H, Cao Z, Cai N, Xue Y, Yu F (2016) A simple route to develop transparent doxorubicin-loaded nanodiamonds/cellulose nanocomposite membranes as potential wound dressings. Carbohydr Polym 143:231–238

    CAS  PubMed  Google Scholar 

  41. Shen J, Yan B, Li T, Long Y, Li N, Ye M (2012) Study on graphene-oxide-based polyacrylamide composite hydrogels. Compos Part A Appl Sci Manuf 43:1476–1481

    CAS  Google Scholar 

  42. Treesuppharat W, Rojanapanthu P, Siangsanoh C, Manuspiya H, Ummartyotin S (2017) Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug-delivery systems. Biotechnol Rep (Amst) 15:84–91

    CAS  PubMed Central  Google Scholar 

  43. Chang C, Zhang L, Zhou J, Zhang L, Kennedy JF (2010) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr Polym 82:122–127

    CAS  Google Scholar 

  44. Abe K, Yano H (2011) Formation of hydrogels from cellulose nanofibers. Carbohydr Polym 85:733–737

    CAS  Google Scholar 

  45. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    CAS  PubMed  Google Scholar 

  46. Weng L, Zhang L, Ruan D, Shi L, Xu J (2004) Thermal gelation of cellulose in a NaOH/thiourea aqueous solution. Langmuir 20:2086–2093

    CAS  PubMed  Google Scholar 

  47. Deng J, He Q, Wu Z, Yang W (2008) Using glycidyl methacrylate as cross-linking agent to prepare thermosensitive hydrogels by a novel one-step method. J Polym Sci A Polym Chem 46:2193–2201

    CAS  Google Scholar 

  48. Fekete T, Borsa J, Takács E, Wojnárovits L (2017) Synthesis and characterization of superabsorbent hydrogels based on hydroxyethylcellulose and acrylic acid. Carbohydr Polym 166:300–308

    CAS  PubMed  Google Scholar 

  49. Mohamad N, Amin MCIM, Pandey M, Ahmad N, Rajab NF (2014) Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym 114:312–320

    CAS  PubMed  Google Scholar 

  50. Liu H, Rong L, Wang B, Xie R, Sui X, Xu H, Zhang L, Zhong Y, Mao Z (2017) Facile fabrication of redox/pH dual stimuli responsive cellulose hydrogel. Carbohydr Polym 176:299–306

    CAS  PubMed  Google Scholar 

  51. Ma C, Li T, Zhao Q, Yang X, Wu J, Luo Y, Xie T (2014) Supramolecular Lego assembly towards three-dimensional multi-responsive hydrogels. Adv Mater 26:5665–5669

    CAS  PubMed  Google Scholar 

  52. Liu H, Liu J, Qi C, Fang Y, Zhang L, Zhuo R, Jiang X (2016) Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture. Acta Biomater 35:228–237

    CAS  PubMed  Google Scholar 

  53. Kong BJ, Kim A, Park SN (2016) Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin. Carbohydr Polym 147:473–481

    CAS  PubMed  Google Scholar 

  54. Kirdponpattara S, Khamkeaw A, Sanchavanakit N, Pavasant P, Phisalaphong M (2015) Structural modification and characterization of bacterial cellulose–alginate composite scaffolds for tissue engineering. Carbohydr Polym 132:146–155

    CAS  PubMed  Google Scholar 

  55. Hong S, Sycks D, Chan HF, Lin S, Lopez GP, Guilak F, Leong KW, Zhao X (2015) 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv Mater 27:4035–4040

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gorgieva S, Kokol V (2011) Synthesis and application of new temperature-responsive hydrogels based on carboxymethyl and hydroxyethyl cellulose derivatives for the functional finishing of cotton knitwear. Carbohydr Polym 85:664–673

    CAS  Google Scholar 

  57. Hu J, Zhang G, Liu S (2012) Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem Soc Rev 41:5933–5949

    CAS  PubMed  Google Scholar 

  58. Liu H, Yang Q, Zhang L, Zhuo R, Jiang X (2016) Synthesis of carboxymethyl chitin in aqueous solution and its thermo-and pH-sensitive behaviors. Carbohydr Polym 137:600–607

    CAS  PubMed  Google Scholar 

  59. Wang D, Wagner M, Butt H-J, Wu S (2015) Supramolecular hydrogels constructed by red-light-responsive host–guest interactions for photo-controlled protein release in deep tissue. Soft Matter 11:D7656–D7662

    Google Scholar 

  60. Peng L, Zhang H, Feng A, Huo M, Wang Z, Hu J, Gao W, Yuan J (2015) Electrochemical redox responsive supramolecular self-healing hydrogels based on host–guest interaction. Polym Chem 6:3652–3659

    CAS  Google Scholar 

  61. Deng G, Li F, Yu H, Liu F, Liu C, Sun W, Jiang H, Chen Y (2012) Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol–gel transitions. ACS Macro Lett 1:275–279

    CAS  Google Scholar 

  62. Han SC, He WD, Li J, Li LY, Sun XL, Zhang BY, Pan TT (2009) Reducible polyethylenimine hydrogels with disulfide crosslinkers prepared by michael addition chemistry as drug delivery carriers: synthesis, properties, and in vitro release. J Polym Sci A Polym Chem 47:4074–4082

    CAS  Google Scholar 

  63. Li L, Gu J, Zhang J, Xie Z, Lu Y, Shen L, Dong Q, Wang Y (2015) Injectable and biodegradable pH-responsive hydrogels for localized and sustained treatment of human fibrosarcoma. ACS Appl Mater Interfaces 7:8033–8040

    CAS  PubMed  Google Scholar 

  64. Zhao J, Zheng K, Nan J, Tang C, Chen Y, Hu Y (2017) Synthesis and characterization of lignosulfonate-graft-poly (acrylic acid)/hydroxyethyl cellulose semi-interpenetrating hydrogels. React Funct Polym 115:28–35

    CAS  Google Scholar 

  65. Prado R, Erdocia X, Labidi J (2016) Study of the influence of reutilization ionic liquid on lignin extraction. J Clean Prod 111:125–132

    CAS  Google Scholar 

  66. Chen Q, Huang W, Chen P, Peng C, Xie H, Zhao ZK, Sohail M, Bao M (2015) Synthesis of lignin-derived bisphenols catalyzed by lignosulfonic acid in water for polycarbonate synthesis. ChemCatChem 7:1083–1089

    CAS  Google Scholar 

  67. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092

    CAS  Google Scholar 

  68. Shi R, Li B (2016) Preparation and characterization of corn starch and lignosulfonate blend film with a high content of lignosulfonate. Bioresources 11:8860–8874

    CAS  Google Scholar 

  69. Zhou B-w, Ha C-y, Deng L-l, Mo J-q, Sun C-n, Shen M-m (2013) Preparation of surfactant with the aid of ultrasonic treatment via alkylation of sodium lignosulfonate. Acta Polym Sin 2013(11):1363–1368

    Google Scholar 

  70. Albertazzi A, Esposito L, Rastelli E, Bierre F, Gómez D, Tebaldi A (2010) Evaluation of performance of modified sodium lignosulfonate additives as reinforcing agent in porcelain stoneware tiles. Bol SECV 49:265–270

    CAS  Google Scholar 

  71. Selvakumaran S, Muhamad II, Razak SIA (2016) Evaluation of kappa carrageenan as potential carrier for floating drug delivery system: effect of pore forming agents. Carbohydr Polym 135:207–214

    CAS  PubMed  Google Scholar 

  72. Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels… a review. Saudi Pharm J 24:554–559

    PubMed  Google Scholar 

  73. Gao L, Gan H, Meng Z, Gu R, Wu Z, Zhu X, Sun W, Li J, Zheng Y, Sun T (2016) Evaluation of genipin-crosslinked chitosan hydrogels as a potential carrier for silver sulfadiazine nanocrystals. Colloids Surf B: Biointerfaces 148:343–353

    CAS  PubMed  Google Scholar 

  74. Haq MA, Su Y, Wang D (2017) Mechanical properties of PNIPAM based hydrogels: a review. Mater Sci Eng C 70:842–855

    Google Scholar 

  75. Czaja W, Romanovicz D, Malcolm Brown R (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–411

    CAS  Google Scholar 

  76. Kim D-Y, Nishiyama Y, Kuga S (2002) Surface acetylation of bacterial cellulose. Cellulose 9:361–367

    CAS  Google Scholar 

  77. Chen H-H, Xu S-Y, Wang Z (2006) Gelation properties of flaxseed gum. J Food Eng 77:295–303

    CAS  Google Scholar 

  78. Tang H, Chen H, Duan B, Lu A, Zhang L (2014) Swelling behaviors of superabsorbent chitin/carboxymethylcellulose hydrogels. J Mater Sci 49:2235–2242

    CAS  Google Scholar 

  79. Nie K, Pang W, Wang Y, Lu F, Zhu Q (2005) Effects of specific bonding interactions in poly (ɛ-caprolactone)/silica hybrid materials on optical transparency and melting behavior. Mater Lett 59:1325–1328

    CAS  Google Scholar 

  80. Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2015) Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels. Int J Biol Macromol 74:136–141

    CAS  PubMed  Google Scholar 

  81. Zhou C, Wu Q (2011) A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Colloids Surf B: Biointerfaces 84:155–162

    CAS  PubMed  Google Scholar 

  82. Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H (2011) Carbon materials for drug delivery & cancer therapy. Mater Today (Kidlington) 14:316–323

    CAS  Google Scholar 

  83. Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9:9243–9257

    CAS  PubMed  Google Scholar 

  84. Rui-Hong X, Peng-Gang R, Jian H, Fang R, Lian-Zhen R, Zhen-Feng S (2016) Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior. Carbohydr Polym 138:222–228

    PubMed  Google Scholar 

  85. Justin R, Chen B (2014) Characterisation and drug release performance of biodegradable chitosan–graphene oxide nanocomposites. Carbohydr Polym 103:70–80

    CAS  PubMed  Google Scholar 

  86. Chen P, Liu X, Jin R, Nie W, Zhou Y (2017) Dye adsorption and photo-induced recycling of hydroxypropyl cellulose/molybdenum disulfide composite hydrogels. Carbohydr Polym 167:36–43

    CAS  PubMed  Google Scholar 

  87. Zamarripa–Cerón JL, García-Cruz JC, Martínez–Arellano AC, Castro–Guerrero CF, Martín ÁS, Estefanía M, Morales–Cepeda AB (2016) Heavy metal removal using hydroxypropyl cellulose and polyacrylamide gels, kinetical study. J Appl Polym Sci 133:43285

    Google Scholar 

  88. Zhu Y, Zheng Y, Zong L, Wang F, Wang A (2016) Fabrication of magnetic hydroxypropyl cellulose-g-poly (acrylic acid) porous spheres via Pickering high internal phase emulsion for removal of Cu2+ and Cd2+. Carbohydr Polym 149:242–250

    CAS  PubMed  Google Scholar 

  89. Yan L, Shuai Q, Gong X, Gu Q, Yu H (2009) Synthesis of microporous cationic hydrogel of hydroxypropyl cellulose (HPC) and its application on anionic dye removal. Clean (Weinh) 37:392–398

    CAS  Google Scholar 

  90. Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    CAS  Google Scholar 

  91. Okamoto M, John B (2013) Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci 38:1487–1503

    CAS  Google Scholar 

  92. Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275

    PubMed  Google Scholar 

  93. Chen Y, Chen L, Bai H, Li L (2013) Graphene oxide–chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J Mater Chem A 1:1992–2001

    CAS  Google Scholar 

  94. Chatterjee S, Lee MW, Woo SH (2010) Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour Technol 101:1800–1806

    CAS  PubMed  Google Scholar 

  95. Deng C, Zhang P, Vulesevic B, Kuraitis D, Li F, Yang AF, Griffith M, Ruel M, Suuronen EJ (2010) A collagen–chitosan hydrogel for endothelial differentiation and angiogenesis. Tissue Eng Part A 16:3099–3109

    CAS  PubMed  Google Scholar 

  96. Risbud MV, Bhonde RR (2000) Polyacrylamide-chitosan hydrogels: in vitro biocompatibility and sustained antibiotic release studies. Drug Deliv 7:69–75

    CAS  PubMed  Google Scholar 

  97. Crompton K, Prankerd R, Paganin D, Scott T, Horne M, Finkelstein D, Gross K, Forsythe J (2005) Morphology and gelation of thermosensitive chitosan hydrogels. Biophys Chem 117:47–53

    CAS  PubMed  Google Scholar 

  98. Nie J, Lu W, Ma J, Yang L, Wang Z, Qin A, Hu Q (2015) Orientation in multi-layer chitosan hydrogel: morphology, mechanism, and design principle. Sci Rep 5:7635

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen C, Wang L, Deng L, Hu R, Dong A (2013) Performance optimization of injectable chitosan hydrogel by combining physical and chemical triple crosslinking structure. J Biomed Mater Res A 101:684–693

    PubMed  Google Scholar 

  100. Wu J, Su Z-G, Ma G-H (2006) A thermo-and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate. Int J Pharm 315:1–11

    CAS  PubMed  Google Scholar 

  101. Mirzaei BE, Ramazani SAA, Shafiee M, Danaei M (2013) Studies on glutaraldehyde crosslinked chitosan hydrogel properties for drug delivery systems. Int J Polym Mater 62:605–611

    Google Scholar 

  102. Yang C, Xu L, Zhou Y, Zhang X, Huang X, Wang M, Han Y, Zhai M, Wei S, Li J (2010) A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohydr Polym 82:1297–1305

    CAS  Google Scholar 

  103. Konwar A, Kalita S, Kotoky J, Chowdhury D (2016) Chitosan–iron oxide coated graphene oxide nanocomposite hydrogel: a robust and soft antimicrobial biofilm. ACS Appl Mater Interfaces 8:20625–20634

    CAS  PubMed  Google Scholar 

  104. Nguyen N-T, Liu J-H (2014) A green method for in situ synthesis of poly (vinyl alcohol)/chitosan hydrogel thin films with entrapped silver nanoparticles. J Taiwan Inst Chem Eng 45:2827–2833

    CAS  Google Scholar 

  105. Paterson SM, Casadio YS, Brown DH, Shaw JA, Chirila TV, Baker MV (2013) Laser scanning confocal microscopy versus scanning electron microscopy for characterization of polymer morphology: sample preparation drastically distorts morphologies of poly (2-hydroxyethyl methacrylate)-based hydrogels. J Appl Polym Sci 127:4296–4304

    CAS  Google Scholar 

  106. Fergg F, Keil F, Quader H (2001) Investigations of the microscopic structure of poly (vinyl alcohol) hydrogels by confocal laser scanning microscopy. Colloid Polym Sci 279:61–67

    CAS  Google Scholar 

  107. Bogue RH (1923) Conditions affecting the hydrolysis of collagen to gelatin. Ind Eng Chem 15:1154–1159

    CAS  Google Scholar 

  108. Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang Z-M, Messi ML, Mintz A, Delbono O (2014) Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 5:122

    PubMed  PubMed Central  Google Scholar 

  109. Cunniffe GM, O'Brien FJ (2011) Collagen scaffolds for orthopedic regenerative medicine. JOM 63:66

    CAS  Google Scholar 

  110. Oliveira SM, Ringshia RA, Legeros RZ, Clark E, Yost MJ, Terracio L, Teixeira CC (2010) An improved collagen scaffold for skeletal regeneration. J Biomed Mater Res A 94:371–379

    PubMed  PubMed Central  Google Scholar 

  111. Hovhannisyan V, Ghazaryan A, Chen Y-F, Chen S-J, Dong C-Y (2010) Photophysical mechanisms of collagen modification by 80 MHz femtosecond laser. Opt Express 18:24037–24047

    CAS  PubMed  Google Scholar 

  112. Pourjavadi A, Kurdtabar M (2007) Collagen-based highly porous hydrogel without any porogen: synthesis and characteristics. Eur Polym J 43:877–889

    CAS  Google Scholar 

  113. Kabiri K, Zohuriaan-Mehr MJ (2004) Porous superabsorbent hydrogel composites: synthesis, morphology and swelling rate. Macromol Mater Eng 289:653–661

    CAS  Google Scholar 

  114. Zhang J, Wang A (2007) Study on superabsorbent composites. IX: synthesis, characterization and swelling behaviors of polyacrylamide/clay composites based on various clays. React Funct Polym 67:737–745

    CAS  Google Scholar 

  115. Nistor MT, Vasile C, Chiriac AP (2015) Hybrid collagen-based hydrogels with embedded montmorillonite nanoparticles. Mater Sci Eng C 53:212–221

    CAS  Google Scholar 

  116. Binning G, Quate C, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:9

    Google Scholar 

  117. Silva SS, Luna SM, Gomes ME, Benesch J, Pashkuleva I, Mano JF, Reis RL (2008) Plasma surface modification of chitosan membranes: characterization and preliminary cell response studies. Macromol Biosci 8:568–576

    CAS  PubMed  Google Scholar 

  118. De Wolf F (2003) Chapter V Collagen and gelatin. In: Progress in biotechnology, Elsevier Science B.V, Amsterdam, vol 23. pp 133–218

    Google Scholar 

  119. Thangaraj SP (2015) Synthesis, characterization and antibacterial activity of gelatin-herb nanocomposite. Asian J Biomed Pharm Sci 5:35

    Google Scholar 

  120. Smith C (1921) Osmosis and swelling of gelatin. J Am Chem Soc 43:1350–1366

    CAS  Google Scholar 

  121. Chen Z, Shi X, Xu J, Du Y, Yao M, Guo S (2016) Gel properties of SPI modified by enzymatic cross-linking during frozen storage. Food Hydrocoll 56:445–452

    CAS  Google Scholar 

  122. Wang T, Zhu X-K, Xue X-T, Wu D-Y (2012) Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydr Polym 88:75–83

    CAS  Google Scholar 

  123. Howe AM (2000) Some aspects of colloids in photography. Curr Opin Colloid Interface Sci 5:288–300

    CAS  Google Scholar 

  124. Sachlos E, Czernuszka J (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5:39–40

    Google Scholar 

  125. Daskalova A, Nathala CS, Bliznakova I, Stoyanova E, Zhelyazkova A, Ganz T, Lueftenegger S, Husinsky W (2014) Controlling the porosity of collagen, gelatin and elastin biomaterials by ultrashort laser pulses. Appl Surf Sci 292:367–377

    CAS  Google Scholar 

  126. Krüger J, Kautek W (2004) Ultrashort pulse laser interaction with dielectrics and polymers. In: Lippert TK (ed) Polymers and light. Springer, Berlin/Heidelberg, pp 247–290

    Google Scholar 

  127. Liu J (1982) Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt Lett 7:196–198

    CAS  PubMed  Google Scholar 

  128. Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53

    CAS  Google Scholar 

  129. Zhu J (2010) Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering. Biomaterials 31:4639–4656

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Kim J, Singh N, Lyon LA (2006) Label-free biosensing with hydrogel microlenses. Angew Chem Int Ed 45:1446–1449

    CAS  Google Scholar 

  131. Kato N, Sakai Y, Shibata S (2003) Wide-range control of deswelling time for thermosensitive poly (N-isopropylacrylamide) gel treated by freeze-drying. Macromolecules 36:961–963

    CAS  Google Scholar 

  132. Huang H, Yao J, Li L, Zhu F, Liu Z, Zeng X, Yu X, Huang Z (2016) Reinforced polyaniline/polyvinyl alcohol conducting hydrogel from a freezing–thawing method as self-supported electrode for supercapacitors. J Mater Sci 51:8728–8736

    CAS  Google Scholar 

  133. Xu Z, Li J, Zhou H, Jiang X, Yang C, Wang F, Pan Y, Li N, Li X, Shi L (2016) Morphological and swelling behavior of cellulose nanofiber (CNF)/poly (vinyl alcohol)(PVA) hydrogels: poly (ethylene glycol)(PEG) as porogen. RSC Adv 6:43626–43633

    CAS  Google Scholar 

  134. Shi Y, Xiong D (2013) Microstructure and friction properties of PVA/PVP hydrogels for articular cartilage repair as function of polymerization degree and polymer concentration. Wear 305:280–285

    CAS  Google Scholar 

  135. Shi Y, Xiong D, Liu Y, Wang N, Zhao X (2016) Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution. Mater Sci Eng C 65:172–180

    CAS  Google Scholar 

  136. Bhowmick S, Koul V (2016) Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: synthesis, characterization and biological evaluation. Mater Sci Eng C 59:109–119

    CAS  Google Scholar 

  137. Yu H, Xu X, Chen X, Lu T, Zhang P, Jing X (2007) Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles. J Appl Polym Sci 103:125–133

    CAS  Google Scholar 

  138. Hu M, Gu X, Hu Y, Deng Y, Wang C (2016) PVA/carbon dot nanocomposite hydrogels for simple introduction of Ag nanoparticles with enhanced antibacterial activity. Macromol Mater Eng 301:1352–1362

    CAS  Google Scholar 

  139. Chen J, Shi X, Ren L, Wang Y (2017) Graphene oxide/PVA inorganic/organic interpenetrating hydrogels with excellent mechanical properties and biocompatibility. Carbon 111:18–27

    CAS  Google Scholar 

  140. Zhang J-T, Bhat R, Jandt KD (2009) Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomater 5:488–497

    CAS  PubMed  Google Scholar 

  141. Li W, Kang J, Yuan Y, Xiao F, Yao H, Liu S, Lu J, Wang Y, Wang Z, Ren L (2016) Preparation and characterization of PVA-PEEK/PVA-β-TCP bilayered hydrogels for articular cartilage tissue repair. Compos Sci Technol 128:58–64

    CAS  Google Scholar 

  142. Zhuo RX, Li W (2003) Preparation and characterization of macroporous poly (N-isopropylacrylamide) hydrogels for the controlled release of proteins. J Polym Sci A Polym Chem 41:152–159

    CAS  Google Scholar 

  143. Comolli N, Neuhuber B, Fischer I, Lowman A (2009) In vitro analysis of PNIPAAm–PEG, a novel, injectable scaffold for spinal cord repair. Acta Biomater 5:1046–1055

    CAS  PubMed  Google Scholar 

  144. Tan H, Ramirez CM, Miljkovic N, Li H, Rubin JP, Marra KG (2009) Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials 30:6844–6853

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Li S (2010) Removal of crystal violet from aqueous solution by sorption into semi-interpenetrated networks hydrogels constituted of poly (acrylic acid-acrylamide-methacrylate) and amylose. Bioresour Technol 101:2197–2202

    CAS  PubMed  Google Scholar 

  146. Jin S, Liu M, Zhang F, Chen S, Niu A (2006) Synthesis and characterization of pH-sensitivity semi-IPN hydrogel based on hydrogen bond between poly (N-vinylpyrrolidone) and poly (acrylic acid). Polymer 47:1526–1532

    CAS  Google Scholar 

  147. Quintero SMM, Cremona M, Triques A, d’Almeida A, Braga A (2010) Swelling and morphological properties of poly (vinyl alcohol)(PVA) and poly (acrylic acid)(PAA) hydrogels in solution with high salt concentration. Polymer 51:953–958

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Mizanur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rahman, M.S. et al. (2019). Morphological Characterization of Hydrogels. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-77830-3_28

Download citation

Publish with us

Policies and ethics