Skip to main content

Structure Response for Cellulose-Based Hydrogels via Characterization Techniques

  • Reference work entry
  • First Online:
  • 4414 Accesses

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

Hydrogels are three-dimensional cross-linked polymeric networks capable of imbibing substantial amounts of water or biological fluids and are widely used in biomedical applications, especially in pharmaceutical industry as drug delivery systems. Although their solvent content can be over 99%, hydrogels still retain the appearance and properties of solid materials, and the structural response can include a smart response to environmental stimuli (pH, temp, ionic strength, electric field, presence of enzyme, etc.) These responses can include shrinkage or swelling. Cellulose-based hydrogels are one of the most commonly used materials and extensively investigated due to the widespread availability of cellulose in nature. Cellulose is the most abundant renewable resource on earth that is intrinsically degradable. Additionally, the presence of hydroxyl groups results in fascinating structures and properties. Also, cellulose-based hydrogels with specific properties can be obtained by combining it with synthetic or natural polymers. This chapter surveys different characterization for cellulose hydrogels and the structure-response relationship. As such we would describe the techniques involved for characterizing cellulose-based hydrogels and their response in terms of their morphology such as polarized optical microscopy (POM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), their stability by thermal properties (often with differential scanning calorimetry, DSC), and structure response such as Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). In addition, we give a focus on measuring the mechanical properties of superabsorbent hydrogels giving examples with cellulose where applicable. Finally, we describe the techniques for analyzing biological techniques and the applications with cellulose.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abeer MM, Amin M, Iqbal MC, Martin C (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66:1047–1061

    CAS  PubMed  Google Scholar 

  2. Köhnke T, Elder T, Theliander H, Ragauskas AJ (2014) Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels. Carbohydr Polym 100:24–30

    Article  PubMed  Google Scholar 

  3. Juby KA, Dwivedi C, Kumar M, Kota S, Misra HS, Bajaj PN (2012) Silver nanoparticle-loaded PVA/gum acacia hydrogel: synthesis, characterization and antibacterial study. Carbohydr Polym 89:906–913

    Article  CAS  PubMed  Google Scholar 

  4. Vakili MR, Rahneshin N (2013) Synthesis and characterization of novel stimuli-responsive hydrogels based on starch and L-aspartic acid. Carbohydr Polym 98:1624–1630

    Article  CAS  PubMed  Google Scholar 

  5. Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53. https://doi.org/10.1016/j.carbpol.2010.12.023

    Article  CAS  Google Scholar 

  6. Laçin NT (2014) Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing. Int J Biol Macromol 67:22–27

    Article  PubMed  Google Scholar 

  7. Fink H-P, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524

    Article  CAS  Google Scholar 

  8. Kakugo A, Gong JP, Osada Y (2007) Bacterial cellulose based hydrogel for articular soft tissues. Cellul Commun 14:50

    CAS  Google Scholar 

  9. Bodin A, Concaro S, Brittberg M, Gatenholm P (2007) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med 1:406–408

    Article  CAS  PubMed  Google Scholar 

  10. Liu J, Li Q, Su Y, Yue Q, Gao B (2014) Characterization and swelling–deswelling properties of wheat straw cellulose based semi-IPNs hydrogel. Carbohydr Polym 107:232–240

    Article  CAS  PubMed  Google Scholar 

  11. Demitri C, Scalera F, Madaghiele M, Sannino A, Maffezzoli A (2013) Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int J Polym Sci 2013:1–6

    Article  Google Scholar 

  12. Kelly JA, Shukaliak AM, Cheung CCY, Shopsowitz KE, Hamad WY, MacLachlan MJ (2013) Responsive photonic hydrogels based on nanocrystalline cellulose. Angew Chemie Int Ed 52:8912–8916

    Article  CAS  Google Scholar 

  13. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chemie Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  14. Tatsumi M, Teramoto Y, Nishio Y (2012) Polymer composites reinforced by locking-in a liquid-crystalline assembly of cellulose nanocrystallites. Biomacromolecules 13:1584–1591

    Article  CAS  PubMed  Google Scholar 

  15. Demitri C, Raucci MG, Giuri A, De Benedictis VM, Giugliano D, Calcagnile P, Sannino A, Ambrosio L (2016) Cellulose-based porous scaffold for bone tissue engineering applications: assessment of hMSC proliferation and differentiation. J Biomed Mater Res Part A 104:726–733

    Article  CAS  Google Scholar 

  16. Li X, Li Q, Xu X, Su Y, Yue Q, Gao B (2016) Characterization, swelling and slow-release properties of a new controlled release fertilizer based on wheat straw cellulose hydrogel. J Taiwan Inst Chem Eng 60:564–572

    Article  CAS  Google Scholar 

  17. Kaushik M, Basu K, Benoit C, Cirtiu CM, Vali H, Moores A (2015) Cellulose nanocrystals as chiral inducers: enantioselective catalysis and transmission electron microscopy 3D characterization. J Am Chem Soc 137:6124–6127

    Article  CAS  PubMed  Google Scholar 

  18. Li W, Wang S, Li Y, Ma C, Huang Z, Wang C, Li J, Chen Z, Liu S (2017) One-step hydrothermal synthesis of fluorescent nanocrystalline cellulose/carbon dot hydrogels. Carbohydr Polym 175:7–17

    Article  CAS  PubMed  Google Scholar 

  19. Lü S, Liu M, Ni B, Gao C (2010) A novel pH-and thermo-sensitive PVP/CMC semi-IPN hydrogel: swelling, phase behavior, and drug release study. J Polym Sci Part B Polym Phys 48:1749–1756

    Article  Google Scholar 

  20. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19:375–398

    CAS  Google Scholar 

  21. Lin C-C, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58:1379–1408

    Article  CAS  PubMed  Google Scholar 

  22. Cipriano BH, Banik SJ, Sharma R, Rumore D, Hwang W, Briber RM, Raghavan SR (2014) Superabsorbent hydrogels that are robust and highly stretchable. Macromolecules 47:4445–4452. https://doi.org/10.1021/ma500882n

    Article  CAS  Google Scholar 

  23. Wang Q, Cai J, Zhang L, Xu M, Cheng H, Han CC, Kuga S, Xiao J, Xiao R (2013) A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. J Mater Chem A 1:6678–6686

    Article  CAS  Google Scholar 

  24. Dash R, Foston M, Ragauskas AJ (2013) Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohydr Polym 91:638–645

    Article  CAS  PubMed  Google Scholar 

  25. Grande CJ, Torres FG, Gomez CM, Bañó MC (2009) Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 5:1605–1615

    Article  CAS  PubMed  Google Scholar 

  26. Chen YM, Sun L, Yang SA, Shi L, Zheng WJ, Wei Z, Hu C (2017) Self-healing and photoluminescent carboxymethyl cellulose-based hydrogels. Eur Polym J 94:501–510

    Article  CAS  Google Scholar 

  27. Anilkumar P, Cao L, Yu J, Tackett KN, Wang P, Meziani MJ, Sun Y (2013) Crosslinked carbon dots as ultra-bright fluorescence probes. Small 9:545–551

    Article  CAS  PubMed  Google Scholar 

  28. Liang Q, Ma W, Shi Y, Li Z, Yang X (2013) Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon N Y 60:421–428

    Article  CAS  Google Scholar 

  29. Osada Y, Ping Gong J, Tanaka Y (2004) Polymer Gels. J Macromol Sci Part C Polym Rev 44:87–112. https://doi.org/10.1081/mc-120027935

    Article  Google Scholar 

  30. Zhao X (2014) Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10:672–687. https://doi.org/10.1039/C3SM52272E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Strange DGT, Tonsomboon K, Oyen ML (2014) Mechanical behaviour of electrospun fibre-reinforced hydrogels. J Mater Sci Mater Med 25:681–690. https://doi.org/10.1007/s10856-013-5123-y

    Article  CAS  PubMed  Google Scholar 

  32. Canillas M, de Lima GG, Rodríguez MA, Nugent MJD, Devine DM (2015) Bioactive composites fabricated by freezing-thawing method for bone regeneration applications. J Polym Sci Part B Polym Phys 54:761–773. https://doi.org/10.1002/polb.23974

    Article  CAS  Google Scholar 

  33. Ahearne M, Yang Y, Liu K (2008) Mechanical characterisation of hydrogels for tissue engineering applications. Tissue Eng 4:1–16

    Google Scholar 

  34. Li L, Kiick KL (2014) Transient dynamic mechanical properties of resilin-based elastomeric hydrogels. Front Chem 2:21. https://doi.org/10.3389/fchem.2014.00021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ersumo N, Witherel CE, Spiller KL (2016) Differences in time-dependent mechanical properties between extruded and molded hydrogels. Biofabrication 8:35012. https://doi.org/10.1088/1758-5090/8/3/035012

    Article  CAS  Google Scholar 

  36. Xin H, Brown HR, Naficy S, Spinks GM (2015) Time-dependent mechanical properties of tough ionic-covalent hybrid hydrogels. Polymer 65:253–261. https://doi.org/10.1016/j.polymer.2015.03.079

    Article  CAS  Google Scholar 

  37. Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373

    Article  CAS  PubMed Central  Google Scholar 

  38. White DG, Brown RM Jr (1989) Prospects for the commercialization of the biosynthesis of microbial cellulose. Cellul Wood-Chemistry Technol 573:573–590

    Google Scholar 

  39. Lee SE, Park YS (2017) The role of bacterial cellulose in artificial blood vessels. Mol Cell Toxicol 13:257–261. https://doi.org/10.1007/s13273-017-0028-3

    Article  CAS  Google Scholar 

  40. Scherner M, Reutter S, Klemm D, Sterner-kock A, Guschlbauer M, Richter T, Langebartels G, Madershahian N, Wahlers T, Wippermann J (2014) In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes : proof of concept ? J Surg Res 189:340–347. https://doi.org/10.1016/j.jss.2014.02.011

    Article  CAS  PubMed  Google Scholar 

  41. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603. https://doi.org/10.1016/S0079-6700(01)00021-1

    Article  CAS  Google Scholar 

  42. Yang J, Han C-R, Duan J-F, Xu F, Sun R-C (2013) Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. ACS Appl Mater Interfaces 5:3199–3207. https://doi.org/10.1021/am4001997

    Article  CAS  PubMed  Google Scholar 

  43. Grishkewich N, Mohammed N, Tang J, Tam KC (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45. https://doi.org/10.1016/j.cocis.2017.01.005

    Article  CAS  Google Scholar 

  44. Zhang T, Cheng Q, Ye D, Chang C (2017) Tunicate cellulose nanocrystals reinforced nanocomposite hydrogels comprised by hybrid cross-linked networks. Carbohydr Polym 169:139–148. https://doi.org/10.1016/j.carbpol.2017.04.007

    Article  CAS  PubMed  Google Scholar 

  45. De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing Nanocellulose. Chem Mater 29:4609–4631. https://doi.org/10.1021/acs.chemmater.7b00531

    Article  CAS  Google Scholar 

  46. Boschetti F, Pennati G, Gervaso F, Peretti GM, Dubini G (2004) Biomechanical properties of human articular cartilage under compressive loads. Biorheology 41:159–166

    PubMed  Google Scholar 

  47. Demitri C, Giuri A, Raucci MG, Giugliano D, Madaghiele M, Sannino A, Ambrosio L (2013) Preparation and characterization of cellulose-based foams via microwave curing. Interface Focus 4:20130053–20130053. https://doi.org/10.1098/rsfs.2013.0053

    Article  Google Scholar 

  48. Pharr GM, Oliver WC (1992) Measurement of thin film mechanical properties using nanoindentation. MRS Bull 17:28–33. https://doi.org/10.1557/S0883769400041634

    Article  Google Scholar 

  49. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20

    Article  CAS  Google Scholar 

  50. Xu H, Pharr GM (2006) An improved relation for the effective elastic compliance of a film/substrate system during indentation by a flat cylindrical punch. Scr Mater 55:315–318

    Article  CAS  Google Scholar 

  51. Oyen ML (2014) Mechanical characterisation of hydrogel materials. Int Mater Rev 59:44–59. https://doi.org/10.1179/1743280413Y.0000000022

    Article  CAS  Google Scholar 

  52. Lepienski CM, Foerster CE (2003) Nanomechanical properties by Nanoindentation. Encycl Nanosci Nanotechnol X 6000:669. https://doi.org/10.4028/www.scientific.net/KEM.334-335.669

    Article  Google Scholar 

  53. Wang Z, Volinsky AA, Gallant ND (2015) Nanoindentation study of polydimethylsiloxane elastic modulus using berkovich and flat punch tips. J Appl Polym Sci 132:1–7. https://doi.org/10.1002/app.41384

    Article  CAS  Google Scholar 

  54. Jin C, Ebenstein DM (2017) Nanoindentation of compliant materials using Berkovich tips and flat tips. J Mater Res 32:435–450. https://doi.org/10.1557/jmr.2016.483

    Article  CAS  Google Scholar 

  55. Kaufman JD, Klapperich CM (2009) Surface detection errors cause overestimation of the modulus in nanoindentation on soft materials. J Mech Behav Biomed Mater 2:312–317. https://doi.org/10.1016/j.jmbbm.2008.08.004

    Article  PubMed  Google Scholar 

  56. Bhamra TS, Tighe BJ (2017) Mechanical properties of contact lenses: the contribution of measurement techniques and clinical feedback to 50 years of materials development. Contact Lens Anterior Eye 40:70–81. https://doi.org/10.1016/j.clae.2016.11.005

    Article  PubMed  Google Scholar 

  57. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc A Math Phys Eng Sci 324:301–313. https://doi.org/10.1098/rspa.1971.0141

    Article  CAS  Google Scholar 

  58. Wei J, McFarlin BL, Wagoner Johnson AJ (2016) A multi-indent approach to detect the surface of soft materials during nanoindentation. J Mater Res 31:2672–2685. https://doi.org/10.1557/jmr.2016.265

    Article  CAS  Google Scholar 

  59. Basu P, Saha N, Bandyopadhyay S, Saha P (2017) Rheological performance of bacterial cellulose based nonmineralized and mineralized hydrogel scaffolds. In: AIP conference proceedings. AIP publishing novel trends in rheology VII, Tomas Bata University, Zlín, July 2017, pp 050008-1–050008-7

    Google Scholar 

  60. Liu H, Rong L, Wang B, Xie R, Sui X, Xu H, Zhang L, Zhong Y, Mao Z (2017) Facile fabrication of redox/pH dual stimuli responsive cellulose hydrogel. Carbohydr Polym 176:299–306. https://doi.org/10.1016/j.carbpol.2017.08.085

    Article  CAS  PubMed  Google Scholar 

  61. Omidian H, Park K (2010) In: Ottenbrite R, Park K, Okano T (eds) Biomedical applications of hydrogels handbook. Springer, New York, pp 1–16

    Google Scholar 

  62. Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Control Release 119:5–24

    Article  CAS  PubMed  Google Scholar 

  63. Barbucci R, Giardino R, De Cagna M, Golini L, Pasqui D (2010) Inter-penetrating hydrogels (IPHs) as a new class of injectable polysaccharide hydrogels with thixotropic nature and interesting mechanical and biological properties. Soft Matter 6:3524–3532. https://doi.org/10.1039/C001949f

    Article  CAS  Google Scholar 

  64. Okajima K (1989) Role of molecular characteristics on some physiological properties of cellulose derivatives. In: Kennedy JF, Phillips GO, Williams PA (eds) Cellulose: structural and functional aspects. Ellis Horwood, Chichester, pp 439–446

    Google Scholar 

  65. Pasqui D, De Cagna M, Barbucci R (2012) Polysaccharide-based hydrogels: the key role of water in affecting mechanical properties. Polymers 4:1517–1534. https://doi.org/10.3390/polym4031517

    Article  CAS  Google Scholar 

  66. Domingues RMA, Silva M, Gershovich P, Betta S, Babo P, Caridade SG, Mano JF, Motta A, Reis RL, Gomes ME (2015) Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications. Bioconjug Chem 26:1571–1581

    Article  CAS  PubMed  Google Scholar 

  67. Yang X, Liu G, Peng L, Guo J, Tao L, Yuan J, Chang C, Wei Y, Zhang L (2017) Highly efficient self-healable and dual responsive cellulose-based hydrogels for controlled release and 3D cell culture. Adv Funct Mater 27(40):1703174. https://doi.org/10.1002/adfm.201703174

    Article  CAS  Google Scholar 

  68. Peresin MS, Vesterinen AH, Habibi Y, Johansson LS, Pawlak JJ, Nevzorov AA, Rojas OJ (2014) Crosslinked PVA nanofibers reinforced with cellulose nanocrystals: water interactions and thermomechanical properties. J Appl Polym Sci 131(11):40334–40345. https://doi.org/10.1002/app.40334

    Article  CAS  Google Scholar 

  69. Lavoratti A, Scienza LC, Zattera AJ (2016) Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites. Carbohydr Polym 136:955–963

    Article  CAS  PubMed  Google Scholar 

  70. Joshi SC, Liang CM, Lam YC (2008) Effect of solvent state and isothermal conditions on gelation of methylcellulose hydrogels. J Biomater Sci Polym Ed 19:1611–1623

    Article  CAS  PubMed  Google Scholar 

  71. Patchan M, Graham JL, Xia Z, Maranchi JP, McCally R, Schein O, Elisseeff JH, Trexler MM (2013) Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage. Mater Sci Eng C 33:3069–3076

    Article  CAS  Google Scholar 

  72. Barros SC, da Silva AA, Costa DB, Costa CM, Lanceros-Méndez S, Maciavello MNT, Ribelles JLG, Sentanin F, Pawlicka A, Silva MM (2015) Thermal–mechanical behaviour of chitosan–cellulose derivative thermoreversible hydrogel films. Cellulose 22:1911–1929

    Article  CAS  Google Scholar 

  73. Wang H, Li D, Yano H, Abe K (2014) Preparation of tough cellulose II nanofibers with high thermal stability from wood. Cellulose 21:1505–1515

    Article  CAS  Google Scholar 

  74. Espino-Pérez E, Bras J, Ducruet V, Guinault A, Dufresne A, Domenek S (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly (lactide) based bionanocomposites. Eur Polym J 49:3144–3154

    Article  Google Scholar 

  75. Hossain KMZ, Hasan MS, Boyd D, Rudd CD, Ahmed I, Thielemans W (2014) Effect of cellulose nanowhiskers on surface morphology, mechanical properties, and cell adhesion of melt-drawn polylactic acid fibers. Biomacromolecules 15:1498–1506

    Article  CAS  PubMed  Google Scholar 

  76. Raucci MG, Alvarez-Perez MA, Demitri C, Giugliano D, De Benedictis V, Sannino A, Ambrosio L (2015) Effect of citric acid crosslinking cellulose-based hydrogels on osteogenic differentiation. J Biomed Mater Res Part A 103:2045–2056

    Article  CAS  Google Scholar 

  77. Peng N, Wang Y, Ye Q, Liang L, An Y, Li Q, Chang C (2016) Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohydr Polym 137:59–64

    Article  CAS  PubMed  Google Scholar 

  78. Shi Z, Li Y, Chen X, Han H, Yang G (2014) Double network bacterial cellulose hydrogel to build a biology–device interface. Nanoscale 6:970–977

    Article  CAS  PubMed  Google Scholar 

  79. Sanchavanakit N, Sangrungraungroj W, Kaomongkolgit R, Banaprasert T, Pavasant P, Phisalaphong M (2006) Growth of human keratinocytes and fibroblasts on bacterial cellulose film. Biotechnol Prog 22:1194–1199

    Article  CAS  PubMed  Google Scholar 

  80. Malm CJ, Risberg B, Bodin A, Bäckdahl H, Johansson BR, Gatenholm P, Jeppsson A (2012) Small calibre biosynthetic bacterial cellulose blood vessels: 13-months patency in a sheep model. Scand Cardiovasc J 46:57–62

    Article  CAS  PubMed  Google Scholar 

  81. Huang L, Chen X, Nguyen TX, Tang H, Zhang L, Yang G (2013) Nano-cellulose 3D-networks as controlled-release drug carriers. J Mater Chem B 1:2976–2984

    Article  CAS  PubMed  Google Scholar 

  82. Kowalska-Ludwicka K, Cala J, Grobelski B, Sygut D, Jesionek-Kupnicka D, Kolodziejczyk M, Bielecki S, Pasieka Z (2013) Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves. Arch Med Sci 9:527–534. https://doi.org/10.5114/aoms.2013.33433

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cheng J, Park M, Hyun J (2014) Thermoresponsive hybrid hydrogel of oxidized nanocellulose using a polypeptide crosslinker. Cellulose 21:1699–1708

    Article  CAS  Google Scholar 

  84. Liu Y, Lu W-L, Wang J-C, Zhang X, Zhang H, Wang X-Q, Zhou T-Y, Zhang Q (2007) Controlled delivery of recombinant hirudin based on thermo-sensitive Pluronic® F127 hydrogel for subcutaneous administration: in vitro and in vivo characterization. J Control Release 117:387–395

    Article  CAS  PubMed  Google Scholar 

  85. Portal O, Clark WA, Levinson DJ (2009) Microbial cellulose wound dressing in the treatment of nonhealing lower extremity ulcers. Wounds a Compend Clin Res Pract 21:1–3

    Google Scholar 

  86. Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12

    Article  CAS  PubMed  Google Scholar 

  87. Solway DR, Consalter M, Levinson DJ (2010) Microbial cellulose wound dressing in the treatment of skin tears in the frail elderly. Wounds 22:17

    PubMed  Google Scholar 

  88. Solway DR, Clark WA, Levinson DJ (2011) A parallel open-label trial to evaluate microbial cellulose wound dressing in the treatment of diabetic foot ulcers. Int Wound J 8:69–73

    Article  PubMed  Google Scholar 

  89. Raghavendra GM, Jayaramudu T, Varaprasad K, Sadiku R, Ray SS, Raju KM (2013) Cellulose–polymer–Ag nanocomposite fibers for antibacterial fabrics/skin scaffolds. Carbohydrate polymers. 93(2):553–560

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. D. Nugent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

de Sá, M.J.C., de Lima, G.G., de Sousa Segundo, F.A., Nugent, M.J.D. (2019). Structure Response for Cellulose-Based Hydrogels via Characterization Techniques. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-77830-3_27

Download citation

Publish with us

Policies and ethics