Skip to main content

Differential Response of Herbivores to Plant Defence

  • Living reference work entry
  • First Online:
Co-Evolution of Secondary Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

The differential response of insect herbivores to plant traits is one of the mechanisms promoting diversity and specificity of insect-plant interactions. The response differs mainly among generalist insects on the one hand and specialized or adapted insects on the other hand. While generalists are often strongly affected by toxic defences of their hosts, specialists have evolved various adaptations to overcome such defences. These adaptations include tolerance, detoxification, or sequestration of secondary metabolites of the host. In addition, behavioral adaptations help herbivores to avoid particularly potent defences. The response of herbivores is also tightly linked to their feeding mode (i.e., herbivore guild), physiology, metabolism, or size. The resulting specificity of interactions gives rise to diversification of host defences as no single trait can provide an efficient defence against diverse communities of insects. The diversification of host defences then seems to be one of the key factors promoting diversity of insects in a reciprocal way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hamilton AJ, Novotny V, Waters EK, Basset Y, Benke KK, Grimbacher PS, Miller SE, Samuelson GA, Weiblen GD, Yen JDL, Stork NE (2013) Estimating global arthropod species richness: refining probabilistic models using probability bounds analysis. Oecologia 171:357–365

    Article  PubMed  Google Scholar 

  2. Basset Y, Cizek L, Cuenoud P, Didham RK, Guilhaumon F, Missa O, Novotny V, Odegaard F, Roslin T, Schmidl J, Tishechkin AK, Winchester NN, Roubik DW, Aberlenc HP, Bail J, Barrios H, Bridle JR, Castano-Meneses G, Corbara B, Curletti G, da Rocha WD, de Bakker D, Delabie JHC, Dejean A, Fagan LL, Floren A, Kitching RL, Medianero E, Miller SE, de Oliveira EG, Orivel J, Pollet M, Rapp M, Ribeiro SP, Roisin Y, Schmidt JB, Sorensen L, Leponce M (2012) Arthropod diversity in a tropical forest. Science 338:1481–1484

    Article  CAS  PubMed  Google Scholar 

  3. Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect–plant biology. Oxford University Press, New York

    Google Scholar 

  4. Ehrlich PR, Raven PH (1964) Butterflies and plants – a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  5. Janz N (2011) Ehrlich and Raven revisited: mechanisms underlying codiversification of plants and enemies. Annu Rev Ecol Evol Syst 42:71–89

    Article  Google Scholar 

  6. Farrell BD, Dussourd DE, Mitter C (1991) Escalation of plant defense – do latex and resin canals spur plant diversification. Am Nat 138:881–900

    Article  Google Scholar 

  7. Volf M, Segar ST, Miller SE, Isua B, Sisol M, Aubona G, Šimek P, Moos M, Laitila J, Kim J, Zima Jnr J, Rota J, Weiblen GD, Wossa S, Salminen JP, Basset Y, Novotny V (2018) Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in Ficus. Ecol Lett 21:83–92

    Article  PubMed  Google Scholar 

  8. Marquis RJ, Salazar D, Baer C, Reinhardt J, Priest G, Barnett K (2016) Ode to Ehrlich and Raven or how herbivorous insects might drive plant speciation. Ecology 97:2939–2951

    Article  PubMed  Google Scholar 

  9. Steemans P, Le Herisse A, Melvin J, Miller MA, Paris F, Verniers J, Wellman CH (2009) Origin and radiation of the earliest vascular land plants. Science 324:353–353

    Article  CAS  PubMed  Google Scholar 

  10. Labandeira CC (2013) A paleobiologic perspective on plant–insect interactions. Curr Opin Plant Biol 16:414–421

    Article  PubMed  Google Scholar 

  11. Labandeira C (2007) The origin of herbivory on land: initial patterns of plant tissue consumption by arthropods. Insect Sci 14:259–275

    Article  Google Scholar 

  12. Koricheva J, Nykanen H, Gianoli E (2004) Meta-analysis of trade-offs among plant antiherbivore defenses: are plants jacks-of-all-trades, masters of all? Am Nat 163:64–75

    Article  Google Scholar 

  13. Volf M, Hrcek J, Julkunen-Tiitto R, Novotny V (2015) To each its own: differential response of specialist and generalist herbivores to plant defence in willows. J Anim Ecol 84:1123–1132

    Article  PubMed  Google Scholar 

  14. Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17:293–302

    Article  CAS  PubMed  Google Scholar 

  15. Volf M, Kadlec J, Butterill PT, Novotny V (2017) Host phylogeny and nutrient content drive galler diversity and abundance on willows. Ecol Entomol. https://doi.org/10.1111/een.12420

    Article  Google Scholar 

  16. Whittaker RH, Feeny PP (1971) Allelochemics: chemical interactions between species. Science 171:757–770

    Article  CAS  PubMed  Google Scholar 

  17. Agrawal AA (2005) Natural selection on common milkweed (Asclepias syriaca) by a community of specialized insect herbivores. Evol Ecol Res 7:651–667

    Google Scholar 

  18. Becerra JX (1997) Insects on plants: macroevolutionary chemical trends in host use. Science 276:253–256

    Article  CAS  PubMed  Google Scholar 

  19. Volf M, Julkunen-Tiitto R, Hrcek J, Novotny V (2015) Insect herbivores drive the loss of unique chemical defense in willows. Entomol Exp Appl 156:88–98

    Article  CAS  Google Scholar 

  20. Jones CG, Lawton JH (1991) Plant chemistry and insect species richness of British umbellifers. J Anim Ecol 60:767–777

    Article  Google Scholar 

  21. Hartmann T, Theuring C, Beuerle T, Bernays E, Singer M (2005) Acquisition, transformation and maintenance of plant pyrrolizidine alkaloids by the polyphagous arctiid Grammia geneura. Insect Biochem Mol Biol 35:1083–1099

    Article  CAS  PubMed  Google Scholar 

  22. Althoff DM, Segraves KA, Johnson MT (2014) Testing for coevolutionary diversification: linking pattern with process. Trends Ecol Evol 29:82–89

    Article  PubMed  Google Scholar 

  23. Wahlberg N (2001) The phylogenetics and biochemistry of host-plant specialization in Melitaeine butterflies (Lepidoptera: Nymphalidae). Evolution 55:522–537

    Article  CAS  PubMed  Google Scholar 

  24. Forister ML, Novotny V, Panorska AK, Baje L, Basset Y, Butterill PT, Cizek L, Coley PD, Dem F, Diniz IR, Drozd P, Fox M, Glassmire AE, Hazen R, Hrcek J, Jahner JP, Kaman O, Kozubowski TJ, Kursar TA, Lewis OT, Lill J, Marquis RJ, Miller JS, Morais HC, Murakami M, Nickel H, Pardikes NA, Ricklefs RE, Singer MS, Smilanich AM, Stireman JO, Villamarín-Cortez S, Vodka S, Volf M, Wagner DL, Walla T, Weiblen GD, Dyer LA (2015) The global distribution of diet breadth in insect herbivores. Proc Natl Acad Sci 112:442–447

    Article  CAS  PubMed  Google Scholar 

  25. Novotny V, Miller SE, Leps J, Basset Y, Bito D, Janda M, Hulcr J, Damas K, Weiblen GD (2004) No tree an island: the plant–caterpillar food web of a secondary rain forest in New Guinea. Ecol Lett 7:1090–1100

    Article  Google Scholar 

  26. Unsicker SB, Oswald A, Köhler G, Weisser WW (2008) Complementarity effects through dietary mixing enhance the performance of a generalist insect herbivore. Oecologia 156:313–324

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bernays E, Bright K, Gonzalez N, Angel J (1994) Dietary mixing in a generalist herbivore: tests of two hypotheses. Ecology 75:1997–2006

    Article  Google Scholar 

  28. Ibanez S, Manneville O, Miquel C, Taberlet P, Valentini A, Aubert S, Coissac E, Colace M-P, Duparc Q, Lavorel S (2013) Plant functional traits reveal the relative contribution of habitat and food preferences to the diet of grasshoppers. Oecologia 173:1459–1470

    Article  PubMed  Google Scholar 

  29. Salminen JP, Lahtinen M, Lempa K, Kapari L, Haukioja E, Pihlaja K (2004) Metabolic modifications of birch leaf phenolics by an herbivorous insect: detoxification of flavonoid aglycones via glycosylation. Z Naturforsch C 59:437–444

    Article  CAS  PubMed  Google Scholar 

  30. Vihakas MA, Kapari L, Salminen JP (2010) New types of flavonol oligoglycosides accumulate in the hemolymph of birch-feeding sawfly larvae. J Chem Ecol 36:864–872

    Article  CAS  PubMed  Google Scholar 

  31. Li Q, Eigenbrode SD, Stringam G, Thiagarajah M (2000) Feeding and growth of Plutella xylostella and Spodoptera eridania on Brassica juncea with varying glucosinolate concentrations and myrosinase activities. J Chem Ecol 26:2401–2419

    Article  CAS  Google Scholar 

  32. Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, Gershenzon J, Vogel H (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci U S A 101:4859–4864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J (2002) Disarming the mustard oil bomb. Proc Natl Acad Sci U S A 99:11223–11228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wynn SG, Fougere BJ (2007) Veterinary herbal medicine. Elsevier Health Sciences, St. Louis

    Google Scholar 

  35. Julkunen-Tiitto R (1989) Phenolic constituents of Salix – a chemotaxonomic survey of further Finnish species. Phytochemistry 28:2115–2125

    Article  CAS  Google Scholar 

  36. Kolehmainen J, Julkunen-Tiitto R, Roininen H, Tahvanainen J (1995) Phenolic glucosides as feeding cues for willow-feeding leaf beetles. Entomol Exp Appl 74:235–243

    Article  CAS  Google Scholar 

  37. Matsuki M, Maclean SF (1994) Effects of different leaf traits on growth rates of insect herbivores on willows. Oecologia 100:141–152

    Article  PubMed  Google Scholar 

  38. Rank NE (1992) Host plant preference based on salicylate chemistry in a willow leaf beetle (Chrysomela aeneicollis). Oecologia 90:95–101

    Article  PubMed  Google Scholar 

  39. Denno RF, Larsson S, Olmstead KL (1990) Role of enemy-free space and plant quality in host-plant selection by willow beetles. Ecology 71:124–137

    Article  Google Scholar 

  40. Pasteels JM, Rowell-Rahier M, Braekman JC, Dupont A (1983) Salicin from host plant as precursor of salicylaldehyde in defensive secretion of Chrysomeline larvae. Physiol Entomol 8:307–314

    Article  CAS  Google Scholar 

  41. Rank NE, Kopf A, Julkunen-Tiitto R, Tahvanainen J (1998) Host preference and larval performance of the salicylate-using leaf beetle Phratora vitellinae. Ecology 79:618–631

    Article  Google Scholar 

  42. Novotny V, Miller SE, Baje L, Balagawi S, Basset Y, Cizek L, Craft KJ, Dem F, Drew RAI, Hulcr J, Leps J, Lewis OT, Pokon R, Stewart AJA, Samuelson GA, Weiblen GD (2010) Guild-specific patterns of species richness and host specialization in plant–herbivore food webs from a tropical forest. J Anim Ecol 79:1193–1203

    Article  PubMed  Google Scholar 

  43. Miller SE, Darrow K, Basset Y, Weiblen GD, Novotny V (2018) Caterpillars feeding on New Guinea plants – online. http://www.entu.cas.cz/png/caterpillars/. Accessed 10 Oct 2018

  44. Sourakov A, Emmel TC (2001) On the toxic diet of day-flying moths in the Solomon Islands (Lepidoptera: Arctiidae). Trop Lepid Res 12:5–6

    Google Scholar 

  45. Wills PJ, Anjana M, Nitin M, Varun R, Sachidanandan P, Jacob TM, Lilly M, Thampan RV, Varma KK (2016) Population explosions of tiger moth lead to lepidopterism mimicking infectious fever outbreaks. PLoS One 11:e0152787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Cardoso MZ (2008) Herbivore handling of a plant’s trichome: the case of Heliconius charithonia (L.) (Lepidoptera: Nymphalidae) and Passiflora lobata (Killip) Hutch. (Passifloraceae). Neotrop Entomol 37:247–252

    Article  PubMed  Google Scholar 

  47. Agrawal AA, Konno K (2009) Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu Rev Ecol Evol Syst 40:311–331

    Article  Google Scholar 

  48. Konno K, Hirayama C, Nakamura M, Tateishi K, Tamura Y, Hattori M, Kohno K (2004) Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. Plant J 37:370–378

    Article  CAS  PubMed  Google Scholar 

  49. Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S (2012) Toxic cardenolides: chemical ecology and coevolution of specialized plant–herbivore interactions. New Phytol 194:28–45

    Article  CAS  PubMed  Google Scholar 

  50. Richards LA, Dyer LA, Smilanich AM, Dodson CD (2010) Synergistic effects of amides from two Piper species on generalist and specialist herbivores. J Chem Ecol 36:1105–1113

    Article  CAS  PubMed  Google Scholar 

  51. Bernays EA (1997) Feeding by lepidopteran larvae is dangerous. Ecol Entomol 22:121–123

    Article  Google Scholar 

  52. Murphy SM (2004) Enemy-free space maintains swallowtail butterfly host shift. Proc Natl Acad Sci U S A 101:18048–18052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Greeney H, Dyer L, Smilanich A (2012) Feeding by lepidopteran larvae is dangerous: a review of caterpillars’ chemical, physiological, morphological, and behavioral defenses against natural enemies. Invertebr Surviv J 9:7–34

    Google Scholar 

  54. Coley PD, Bateman ML, Kursar TA (2006) The effects of plant quality on caterpillar growth and defense against natural enemies. Oikos 115:219–228

    Article  Google Scholar 

  55. Gentry GL, Dyer LA (2002) On the conditional nature of neotropical caterpillar defenses against their natural enemies. Ecology 83:3108–3119

    Article  Google Scholar 

  56. Oppenheim SJ, Gould F (2002) Behavioral adaptations increase the value of enemy-free space for Heliothis subflexa, a specialist herbivore. Evolution 56:679–689

    Article  PubMed  Google Scholar 

  57. Pellissier L, Moreira X, Danner H, Serrano M, Salamin N, van Dam NM, Rasmann S (2016) The simultaneous inducibility of phytochemicals related to plant direct and indirect defences against herbivores is stronger at low elevation. J Ecol 104:1116–1125

    Article  CAS  Google Scholar 

  58. Amo L, Jansen JJ, Dam NM, Dicke M, Visser ME (2013) Birds exploit herbivore-induced plant volatiles to locate herbivorous prey. Ecol Lett 16:1348–1355

    Article  PubMed  Google Scholar 

  59. Barbehenn RV, Jaros A, Lee G, Mozola C, Weir Q, Salminen JP (2009) Tree resistance to Lymantria dispar caterpillars: importance and limitations of foliar tannin composition. Oecologia 159:777–788

    Article  PubMed  Google Scholar 

  60. Agrawal AA (1999) Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness. Ecology 80:1713–1723

    Article  Google Scholar 

  61. Falk KL, Kästner J, Bodenhausen N, Schramm K, Paetz C, Vassão DG, Reichelt M, Knorre D, Bergelson J, Erb M (2014) The role of glucosinolates and the jasmonic acid pathway in resistance of Arabidopsis thaliana against molluscan herbivores. Mol Ecol 23:1188–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Turlings TC, Erb M (2018) Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu Rev Entomol 63:433–452

    Article  CAS  PubMed  Google Scholar 

  63. Vet LE, Wäckers FL, Dicke M (1990) How to hunt for hiding hosts: the reliability–detectability problem in foraging parasitoids. Neth J Zool 41:202–213

    Article  Google Scholar 

  64. Erb M, Meldau S, Howe GA (2012) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17:250–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Danner H, Desurmont GA, Cristescu SM, Dam NM (2017) Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores. New Phytol. https://doi.org/10.1111/nph.14428

    Article  PubMed  CAS  Google Scholar 

  66. Rowen E, Kaplan I (2016) Eco-evolutionary factors drive induced plant volatiles: a meta-analysis. New Phytol 210:284–294

    Article  CAS  PubMed  Google Scholar 

  67. Turlings TC, Wäckers F (2004) Recruitment of predators and parasitoids by herbivore-injured plants. Adv Insect Chem Ecol 2:21–75

    Article  Google Scholar 

  68. Turlings TCJ, Loughrin JH, McCall PJ, Rose USR, Lewis WJ, Tumlinson JH (1995) How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad Sci U S A 92:4169–4174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nyman T, Widmer A, Roininen H (2000) Evolution of gall morphology and host-plant relationships in willow-feeding sawflies (Hymenoptera: Tenthredinidae). Evolution 54:526–533

    Article  CAS  PubMed  Google Scholar 

  70. Nyman T, Bokma F, Kopelke J-P (2007) Reciprocal diversification in a complex plant–herbivore–parasitoid food web. BMC Biol 5:49

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kobayashi C, Matsuo K, Watanabe K, Nagata N, Suzuki-Ohno Y, Kawata M, Kato M (2015) Arms race between leaf rollers and parasitoids: diversification of plant-manipulation behavior and its consequences. Ecol Monogr 85:253–268

    Article  Google Scholar 

  72. Paniagua MR, Medianero E, Lewis OT (2009) Structure and vertical stratification of plant galler–parasitoid food webs in two tropical forests. Ecol Entomol 34:310–320

    Article  Google Scholar 

  73. Body M, Burlat V, Giron D (2015) Hypermetamorphosis in a leaf-miner allows insects to cope with a confined nutritional space. Arthropod Plant Interact 9:75–84

    Article  Google Scholar 

  74. Raupp MJ (1985) Effects of leaf toughness on mandibular wear of the leaf beetle, Plagiodera versicolora. Ecol Entomol 10:73–79

    Article  Google Scholar 

  75. Bernays EA (1986) Diet-induced head allometry among foliage-chewing insects and its importance for graminivores. Science 231:495–497

    Article  CAS  PubMed  Google Scholar 

  76. Vincent JF (1982) The mechanical design of grass. J Mater Sci 17:856–860

    Article  Google Scholar 

  77. Yamaguchi H, Tanaka H, Hasegawa M, Tokuda M, Asami T, Suzuki Y (2012) Phytohormones and willow gall induction by a gall-inducing sawfly. New Phytol 196:586–595

    Article  CAS  PubMed  Google Scholar 

  78. Giron D, Huguet E, Stone GN, Body M (2016) Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. J Insect Physiol 84:70–89

    Article  CAS  PubMed  Google Scholar 

  79. Price PW (2005) Adaptive radiation of gall-inducing insects. Basic Appl Ecol 6:413–421

    Article  Google Scholar 

  80. Nyman T, Julkunen-Tiitto R (2000) Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proc Natl Acad Sci U S A 97:13184–13187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stuart JJ, Chen M-S, Shukle R, Harris MO (2012) Gall midges (Hessian flies) as plant pathogens. Annu Rev Phytopathol 50:339–357

    Article  CAS  PubMed  Google Scholar 

  82. Liu X, Bai J, Huang L, Zhu L, Liu X, Weng N, Reese JC, Harris M, Stuart JJ, Chen M-S (2007) Gene expression of different wheat genotypes during attack by virulent and avirulent Hessian fly (Mayetiola destructor) larvae. J Chem Ecol 33:2171–2194

    Article  CAS  PubMed  Google Scholar 

  83. Tooker JF, De Moraes CM (2007) Feeding by Hessian fly [Mayetiola destructor (Say)] larvae does not induce plant indirect defences. Ecol Entomol 32:153–161

    Article  Google Scholar 

  84. Stone GN, Hernandez-Lopez A, Nicholls JA, Di Pierro E, Pujade-Villar J, Melika G, Cook JM (2009) Extreme host plant conservatism during at least 20 million years of host plant pursuit by oak gallwasps. Evolution 63:854–869

    Article  CAS  PubMed  Google Scholar 

  85. Zhang H, de Bernonville TD, Body M, Glevarec G, Reichelt M, Unsicker S, Bruneau M, Renou J-P, Huguet E, Dubreuil G (2016) Leaf-mining by Phyllonorycter blancardella reprograms the host-leaf transcriptome to modulate phytohormones associated with nutrient mobilization and plant defense. J Insect Physiol 84:114–127

    Article  CAS  PubMed  Google Scholar 

  86. Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161

    Article  Google Scholar 

  87. Quiros C, Stevens M, Rick CM, Kok Yokomi M (1977) Resistance in tomato to the pink form of the potato aphid (Macrosiphum euphorbiae Thomas): the role of anatomy, epidermal hairs, and foliage composition. J Am Soc Hortic Sci 102:166–171

    CAS  Google Scholar 

  88. Andrew NR, Hughes L (2005) Diversity and assemblage structure of phytophagous Hemiptera along a latitudinal gradient: predicting the potential impacts of climate change. Glob Ecol Biogeogr 14:249–262

    Article  Google Scholar 

  89. Novotny V, Wilson MR (1997) Why are there no small species among xylem-sucking insects? Evol Ecol 11:419–437

    Article  Google Scholar 

  90. Will T, Tjallingii WF, Thönnessen A, van Bel AJ (2007) Molecular sabotage of plant defense by aphid saliva. Proc Natl Acad Sci U S A 104:10536–10541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vincent TR, Avramova M, Canham J, Higgins P, Bilkey N, Mugford ST, Pitino M, Toyota M, Gilroy S, Miller AJ (2017) Interplay of plasma membrane and vacuolar ion channels, together with BAK1, elicits rapid cytosolic calcium elevations in Arabidopsis during aphid feeding. Plant Cell 29:1460–1479

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zvereva EL, Kozlov MV, Niemela P (1998) Effects of leaf pubescence in Salix borealis on host-plant choice and feeding behaviour of the leaf beetle, Melasoma lapponica. Entomol Exp Appl 89:297–303

    Article  Google Scholar 

  93. Chiang HS, Norris DM (1983) Morphological and physiological parameters of soybean resistance to agromyzid beanflies. Environ Entomol 12:260–265

    Article  Google Scholar 

  94. Robinson SH, Wolfenbarger DA, Dilday RH (1980) Antixenosis of smooth leaf cotton to the ovipositional response of tobacco budworm. Crop Sci 20:646–649

    Article  Google Scholar 

  95. Salminen JP, Karonen M (2011) Chemical ecology of tannins and other phenolics: we need a change in approach. Funct Ecol 25:325–338

    Article  Google Scholar 

  96. Foley W, Iason G, McArthur C (1999) Role of plant secondary metobolites in the nutritional ecology of mammalian herbivores: how far have we come in 25 years? In: Jung HG, Fahey GC Jr (eds) Nutritional ecology of herbivores: proceedings of the 5th international symposium on the nutrition of herbivores. American Society of Animal Science, Savoy, pp 130–209

    Google Scholar 

  97. Haslam E, Lilley TH, Warminski E, Liao H, Cai Y, Martin R, Gaffney SH, Goulding PN, Luck G (1992) Polyphenol complexation. A study in molecular recognition. In: Ho CT, Lee CY, Huang MT (eds) Phenolic compounds in food and their effects on health I: analysis, occurrence, and chemistry. American Chemical Society, Washington, DC, pp 8–50

    Chapter  Google Scholar 

  98. Bailey JK, Schweitzer JA, Rehill BJ, Lindroth RL, Martinsen GD, Whitham TG (2004) Beavers as molecular geneticists: a genetic basis to the foraging of an ecosystem engineer. Ecology 85:603–608

    Article  Google Scholar 

  99. Harrison JF (2001) Insect acid–base physiology. Annu Rev Entomol 46:221–250

    Article  CAS  PubMed  Google Scholar 

  100. Barbehenn R, Weir Q, Salminen JP (2008) Oxidation of ingested phenolics in the tree-feeding caterpillar Orgyia leucostigma depends on foliar chemical composition. J Chem Ecol 34:748–756

    Article  CAS  PubMed  Google Scholar 

  101. Roslin T, Salminen JP (2008) Specialization pays off: contrasting effects of two types of tannins on oak specialist and generalist moth species. Oikos 117:1560–1568

    Article  Google Scholar 

  102. Kopper BJ, Jakobi VN, Osier TL, Lindroth RL (2002) Effects of paper birch condensed tannin on whitemarked tussock moth (Lepidoptera: Lymantriidae) performance. Environ Entomol 31:10–14

    Article  CAS  Google Scholar 

  103. Segar ST, Volf M, Isua B, Sisol M, Redmond CM, Rosati ME, Gewa B, Molem K, Dahl C, Holloway JD (2017) Variably hungry caterpillars: predictive models and foliar chemistry suggest how to eat a rainforest. Proc R Soc Lond B Biol Sci 284:20171803

    Article  CAS  Google Scholar 

  104. Appel HM (1993) Phenolics in ecological interactions – the importance of oxidation. J Chem Ecol 19:1521–1552

    Article  CAS  PubMed  Google Scholar 

  105. Barbehenn RV, Jaros A, Lee G, Mozola C, Weir Q, Salminen J-P (2009) Hydrolyzable tannins as “quantitative defenses”: limited impact against Lymantria dispar caterpillars on hybrid poplar. J Insect Physiol 55:297–304

    Article  CAS  PubMed  Google Scholar 

  106. Endara M-J, Coley PD, Ghabash G, Nicholls JA, Dexter KG, Donoso DA, Stone GN, Pennington RT, Kursar TA (2017) Coevolutionary arms race versus host defense chase in a tropical herbivore–plant system. Proc Natl Acad Sci U S A 114:E7499–E7505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Agrawal AA, Fishbein M (2008) Phylogenetic escalation and decline of plant defense strategies. Proc Natl Acad Sci U S A 105:10057–10060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87:S132–S149

    Article  PubMed  Google Scholar 

  109. Hattas D, Hjalten J, Julkunen-Tiitto R, Scogings PF, Rooke T (2011) Differential phenolic profiles in six African savanna woody species in relation to antiherbivore defense. Phytochemistry 72:1796–1803

    Article  CAS  PubMed  Google Scholar 

  110. Sampedro L, Moreira X, Zas R (2011) Costs of constitutive and herbivore-induced chemical defences in pine trees emerge only under low nutrient availability. J Ecol 99:818–827

    Article  Google Scholar 

  111. Agrawal AA, Salminen JP, Fishbein M (2009) Phylogenetic trends in phenolic metabolism of milkweeds (Asclepias): evidence for escalation. Evolution 63:663–673

    Article  CAS  PubMed  Google Scholar 

  112. Becerra JX, Noge K, Venable DL (2009) Macroevolutionary chemical escalation in an ancient plant–herbivore arms race. Proc Natl Acad Sci U S A 106:18062–18066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Becerra JX (2007) The impact of herbivore–plant coevolution on plant community structure. Proc Natl Acad Sci U S A 104:7483–7488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kursar TA, Dexter KG, Lokvam J, Pennington RT, Richardson JE, Weber MG, Murakami ET, Drake C, McGregor R, Coley PD (2009) The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proc Natl Acad Sci U S A 106:18073–18078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sedio BE, Rojas Echeverri JC, Boya P, Cristopher A, Wright SJ (2017) Sources of variation in foliar secondary chemistry in a tropical forest tree community. Ecology 98:616–623

    Article  PubMed  Google Scholar 

  116. Gilbert LE (1980) Ecological consequences of a coevolved mutualism between butterflies and plants. In: Gilbert LE, Raven PH (eds) Coevolution of animals and plants. University of Texas Press, Austin, pp 210–240

    Google Scholar 

  117. Becerra JX (2015) On the factors that promote the diversity of herbivorous insects and plants in tropical forests. Proc Natl Acad Sci U S A 112:6098–6103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gentry AH (1982) Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Ann Mo Bot Gard 69:557–593

    Article  Google Scholar 

  119. Foster RB, Hubbell SP (1990) The floristic composition of the Barro Colorado Island forest. In: Gentry AH (ed) Four neotropical rainforests. Yale University Press, New Haven/London, pp 85–98

    Google Scholar 

  120. Salazar D, Jaramillo A, Marquis RJ (2016) The impact of plant chemical diversity on plant–herbivore interactions at the community level. Oecologia 181:1199–1208

    Article  PubMed  Google Scholar 

  121. Richards LA, Dyer LA, Forister ML, Smilanich AM, Dodson CD, Leonard MD, Jeffrey CS (2015) Phytochemical diversity drives plant–insect community diversity. Proc Natl Acad Sci U S A 112:10973–10978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Salazar D, Lokvam J, Mesones I, Vásquez M, Ayarza J, Fine P (2018) Origin and maintenance of chemical diversity in a species-rich tropical tree lineage. Nat Ecol Evol 2(6):983–990

    Article  PubMed  Google Scholar 

  123. Novotný V, Basset Y (2000) Rare species in communities of tropical insect herbivores: pondering the mystery of singletons. Oikos 89:564–572

    Article  Google Scholar 

  124. Marquis RJ, Lill JT, Piccinni A (2002) Effect of plant architecture on colonization and damage by leaftying caterpillars of Quercus alba. Oikos 99:531–537

    Article  Google Scholar 

  125. Lavandero B, Labra A, Ramirez CC, Niemeyer HM, Fuentes-Contreras E (2009) Species richness of herbivorous insects on Nothofagus trees in South America and New Zealand: the importance of chemical attributes of the host. Basic Appl Ecol 10:10–18

    Article  Google Scholar 

  126. Volf M, Pyszko P, Abe T, Libra M, Kotásková N, Šigut M, Kumar R, Kaman O, Butterill P, Šipoš J, Abe H, Fukushima H, Drozd P, Kamata N, Murakami M, Novotny V (2017) Phylogenetic composition of host plant communities drives plant–herbivore food web structure. J Anim Ecol 86:556–565

    Article  PubMed  Google Scholar 

  127. Janz N, Nylin S (1998) Butterflies and plants: a phylogenetic study. Evolution 52:486–502

    Article  PubMed  Google Scholar 

  128. Farrell BD, Mitter C (1990) Phylogenesis of insect/plant interactions: have Phyllobrotica leaf beetles (Chrysomelidae) and the Lamiales diversified in parallel. Evolution 44:1389–1403

    Article  PubMed  Google Scholar 

  129. Futuyma DJ (2000) Some current approaches to the evolution of plant–herbivore interactions. Plant Species Biol 15:1–9

    Article  Google Scholar 

  130. Jorge LR, Prado PI, Almeida-Neto M, Lewinsohn TM (2014) An integrated framework to improve the concept of resource specialisation. Ecol Lett 17:1341–1350

    Article  PubMed  Google Scholar 

  131. Futuyma DJ, Agrawal AA (2009) Macroevolution and the biological diversity of plants and herbivores. Proc Natl Acad Sci U S A 106:18054–18061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Novotny V, Drozd P, Miller SE, Kulfan M, Janda M, Basset Y, Weiblen GD (2006) Why are there so many species of herbivorous insects in tropical rainforests. Science 313:1115–1118

    Article  CAS  PubMed  Google Scholar 

  133. Vermeij GJ (1994) The evolutionary interaction among species – selection, escalation, and coevolution. Annu Rev Ecol Syst 25:219–236

    Article  Google Scholar 

Download references

Acknowledgments

I acknowledge funding by Alexander von Humboldt Foundation and the Federal Ministry for Education and Research. I thank the New Guinea Binatang Research Center for providing photos of New Guinean Lepidoptera, Tereza Holicová for help with preparing the illustrations for this chapter, and Conor Redmond, Carlo L. Seifert, and Tereza Holicová for providing valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Volf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Volf, M. (2018). Differential Response of Herbivores to Plant Defence. In: Merillon, JM., Ramawat, K. (eds) Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-76887-8_38-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76887-8_38-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76887-8

  • Online ISBN: 978-3-319-76887-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics