Skip to main content

Brassinosteroids: Molecules with Myriad Roles

  • Living reference work entry
  • First Online:
Co-Evolution of Secondary Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 263 Accesses

Abstract

Brassinosteroids constitute the sixth class of plant hormones that are implicated in diverse metabolic functions related to plant growth and development. These steroidal phytohormones are widely distributed throughout the plant kingdom and display large structural diversity. Studies on brassinosteroids, aided by the recent developments in technology, have deciphered their role in not only plant growth and developmental processes but also in plant adaptation under changing environmental conditions. Extensive experimental studies have unravelled brassinosteroid biosynthetic pathway and their signalling modules under various environmental conditions. Current trends indicate that brassinosteroids play a pivotal role in plant’s tolerance against biotic and abiotic stresses, resulting in efficient stress management under challenging environmental conditions. Due to their distinctive and versatile functions, brassinosteroids are widely used to increase crop quality and productivity. Brassinosteroids are also reported to possess immunomodulatory, anticancerous, and antiviral properties that also find wide potential applications. The present chapter focuses on the current status of our understanding about the role of brassinosteroids, their molecular mechanism of action, and their potential applications in agriculture and allied fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kamiya Y (2009) Plant hormones: versatile regulators of plant growth and development. Annu Rev Plant Biol 61. https://doi.org/10.1146/annurev.arplant.60.031110.100001

  2. Heldt HW, Piechulla B (2011) Plant biochemistry. Academic, London

    Google Scholar 

  3. Taiz L, Zeiger E (2012) Plant physiology. Sinauer Associates, Sunderland

    Google Scholar 

  4. Vriet C, Russinova E, Reuzeau C (2012) Boosting crop yields with plant steroids. Plant Cell 24:842–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  CAS  PubMed  Google Scholar 

  6. Gudesblat GE, Russinova E (2011) Plants grow on brassinosteroids. Curr Opin Plant Biol 14:530–537

    Article  CAS  PubMed  Google Scholar 

  7. Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD, Steffens GL, Anderson JLF, Cook JC (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217

    Article  CAS  Google Scholar 

  8. Kanwar MK, Bajguz A, Zhou J, Bhardwaj R (2017) Analysis of brassinosteroids in plants. J Plant Growth Regul 36:1002–1030

    Article  CAS  Google Scholar 

  9. Bajguz A, Tretyn A (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:1027–1046

    Article  CAS  PubMed  Google Scholar 

  10. Xin P, Yan J, Li B, Fang S, Fan J, Tian H, Shi Y, Tian W, Yan C, Chu J (2016) A comprehensive and effective mass spectrometry-based screening strategy for discovery and identification of new brassinosteroids from rice tissue. Front Plant Sci 7:1786. https://doi.org/10.3389/fpls.2016.01786

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bartwal A, Mall R, Lohani P, Guru SK, Arora S (2012) Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. J Plant Growth Regul 32:216–232

    Article  CAS  Google Scholar 

  12. Cheng X, Gou X, Yin H, Mysore KS, Li J, Wen J (2017) Functional characterisation of brassinosteroid receptor MtBRI1 in Medicago truncatula. Sci Rep 7:9327. https://doi.org/10.1038/s41598-017-09297-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Belkhadir Y, Jaillais Y, Epple P, Balsemão-Pires E, Dangl JL, Chory L (2012) Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. PNAS 109:297–302

    Article  CAS  PubMed  Google Scholar 

  14. Jiang J, Zhang C, Wang X (2015) A recently evolved isoform of the transcription factor BES1 promotes brassinosteroid signaling and development in Arabidopsis thaliana. Plant Cell 27:361–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gui J, Zheng S, Liu C, Shen J, Li J, Li L (2016) OsREM4.1 interacts with OsSERK1 to coordinate the interlinking between abscisic acid and brassinosteroid signalling in rice. Dev Cell 38:201–213

    Article  CAS  PubMed  Google Scholar 

  16. Yang X, Bai Y, Shang J, Xin R, Tang W (2016) The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by BRASSINAZOLE RESISTANT 1. Plant Cell Environ 39:1994–2003

    Article  CAS  PubMed  Google Scholar 

  17. Ha Y, Shang Y, Nam KH (2016) Brassinosteroids modulate ABA-induced stomatal closure in Arabidopsis. J Exp Bot 67:6297–6308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim TW, Michniewicz M, Bergmann DC, Wang ZY (2012) Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482:419–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun Y, Fan XY, Cao DM, He K, Tang W, Zhu JY, He JX, Bai MY, Zhu S et al (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19:765–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clouse SD (2011) Brassinosteroids. The Arabidopsis Book/Am Soc Plant Biologists 9:e0151. https://doi.org/10.1199/tab.0151.

    Article  Google Scholar 

  21. Zhiponova MK, Vanhoutte I, Boudolf V et al (2013) Brassinosteroid production and signalling differentially control cell division and expansion in the leaf. New Phytol 197:490–502

    Article  CAS  PubMed  Google Scholar 

  22. Fu FQ, Mao WH, Shi K, Zhou YH, Asami T, Yu JQ (2008) A role of brassinosteroids in early fruit development in cucumber. J Exp Bot 59:2299–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun S, Chen D, Li X, Qiao S, Shi C, Li C, Shen H, Wang X (2015) Brassinosteroid signaling regulates leaf erectness in Oryza sativa via the control of a specific U-type cyclin and cell proliferation. Dev Cell 34:220–228

    Article  CAS  PubMed  Google Scholar 

  24. Rodríguez M, González MC, Cristo E, Oliva O, Pujol M, Borras-Hidalgo O (2013) Identification of genes with altered expression levels in contrasting rice cultivars exposed to salt stress treatments. Biotechnol Apl 30:178–181

    Google Scholar 

  25. Schmidt R, Schippers JH, Mieulet D et al (2013) MULTIPASS, a rice R2R3-type MYB transcription factor, regulates adaptive growth by integrating multiple hormonal pathways. Plant J 76:258–273

    CAS  PubMed  Google Scholar 

  26. Hacham Y, Holland N, Butterfield C, Tomas SU, Bennett MJ, Chory C, Goldstein SS (2011) Brassinosteroid perception in the epidermis controls root meristem size. Development 138:839–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chaiwanon J, Wang ZY (2015) Spatiotemporal brassinosteroid signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots. Curr Biol 25:1031–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blasi JV, González-García MP, Frigola D, Fàbregas N, Alexiou KG, Bigas NL et al (2014) Regulation of plant stem cell quiescence by a brassinosteroid signalling module. Dev Cell 30:36–47

    Article  CAS  Google Scholar 

  29. Clouse SD (1996) Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. Plant J 10:1–8

    Article  CAS  PubMed  Google Scholar 

  30. Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signalling networks. Front Plant Sci 5:151. https://doi.org/10.3389/fpls.2014.00151

    Article  PubMed  PubMed Central  Google Scholar 

  31. Guerriero G, Hausman JF, Cai G (2014) No stress! Relax! Mechanisms governing growth and shape in plant cells. Int J Mol Sci 15:5094–5114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guo HQ, Li L, Ye HX, Yu X, Algreen A, Yin Y (2009) Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 106:7648–7653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xie L, Yang C, Wang X (2011) Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. J Exp Bot 62:4495–4506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamagami A, Saito C, Nakazawa M, Fujioka S, Uemura T, Matsui M, Sakuta M, Shinozaki K, Osada H, Nakano A, Asami T, Nakano T (2017) Evolutionarily conserved BIL4 suppresses the degradation of brassinosteroid receptor BRI1 and regulates cell elongation. Sci Rep 7:5739. https://doi.org/10.1038/s41598-017-06016-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gururani MA, Venkatesh JA, Tran L (2015) Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol Plant 8:1304–1320

    Article  CAS  PubMed  Google Scholar 

  36. Ahammed GJ, Li X, Xia XJ, Shi K, Zhou YH, Yu JQ (2015) Enhanced photosynthetic capacity and antioxidant potential mediate brassinosteriod-induced phenanthrene stress tolerance in tomato. Environ Pollut 201:58–66

    Article  CAS  PubMed  Google Scholar 

  37. Deng XG, Zhu T, Zhang DW, Lin HH (2015) The alternative respiratory pathway is involved in brassinosteroid-induced environmental stress tolerance in Nicotiana benthamiana. J Exp Bot 66:6219–6232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Farooq M, Wahid A, Lee DJ, Cheema SA, Aziz T (2010) Comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. J Agron Crop Sci 196:336–345

    Article  CAS  Google Scholar 

  39. Hayat S, Alyemeni M, Hasan S (2012) Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi J Biol Sci 19:325–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K et al (2009) Reactive oxygen species are involved in brassinosteroid – induced stress tolerance in cucumber. Plant Physiol 150:801–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiang YP, Huang LF, Cheng F, Zhou YH, Xia XJ, Mao WH et al (2013) Brassinosteroids accelerate recovery of photosynthetic apparatus from cold stress by balancing the electron partitioning, carboxylation and redox homeostasis in cucumber. Physiol Plant 148:133–145

    Article  CAS  PubMed  Google Scholar 

  42. Tiwari S, Lata C, Chauhan PS, Prasad V, Prasad M (2017) A functional genomic perspective on drought signalling and its crosstalk with phytohormone-mediated signalling pathways in plants. Curr Genomics 18:469–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saini S, Sharma I, Kaur N, Pati PK (2013) Auxin: a master regulator in plant root development. Plant Cell Rep 32:741–757

    Article  CAS  PubMed  Google Scholar 

  44. Yusuf M, Khan TA, Fariduddin Q (2017) Brassinosteroids: physiological roles and its signalling in plants. In: Sarwat M, Ahmad A, Abdin MZ, Ibrahim MM (eds) Stress signaling in plants: genomics and proteomics perspective, vol 2. Springer International Publishing, Berlin, pp 241–260

    Chapter  Google Scholar 

  45. Wei L, Deng XG, Zhu T, Zheng T, Li PX, Wu JQ et al (2015) Ethylene is involved in brassinosteroids induced alternative respiratory pathway in cucumber (Cucumis sativus L.) seedlings response to abiotic stress. Front Plant Sci 6:982. https://doi.org/10.3389/fpls.2015.00982

    Article  PubMed  PubMed Central  Google Scholar 

  46. Choudhary SP, Oral HV, Bhardwaj R, Yu JQ, Tran LS (2012) Interaction of brassinosteroids and polyamines enhances copper stress tolerance in Raphanus sativus. J Exp Bot 63:5659–5675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vert G, Walcher CL, Chory J, Nemhauser JL (2008) Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proc Natl Acad Sci U S A 105:9829–9834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Divi UK, Rahman T, Krishna P (2016) Gene expression and functional analyses in brassinosteroid-mediated stress tolerance. Plant Biotechnol J 14:419–432

    Article  CAS  PubMed  Google Scholar 

  49. Schmitz AJ, Folsom JJ, Jikamaru Y, Ronald P, Walia H (2013) SUB1A-mediated submergence tolerance response in rice involves differential regulation of the brassinosteroid pathway. New Phytol 198:1060–1070

    Article  CAS  PubMed  Google Scholar 

  50. Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  CAS  PubMed  Google Scholar 

  51. Deng Z, Zhang X, Tang W, Oses-Prieto JA, Suzuki N, Gendron JM et al (2007) A proteomic study of brassinosteroid response in Arabidopsis. Mol Cell Proteomics 6:2058–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang Y, Li J (2005) The plant architecture of rice (Oryza sativa). Plant Mol Biol 59:75–84

    Article  CAS  PubMed  Google Scholar 

  53. Li H, Jiang L, Youn JH, Sun W, Cheng Z, Jin T et al (2013) A comprehensive genetic study reveals a crucial role of CYP90D2/D2 in regulating plant architecture in rice (Oryza sativa). New Phytol 200(4):1076–1088

    Article  CAS  PubMed  Google Scholar 

  54. Zhang C, Bai MY, Chang K (2014) Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep 33:683–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Manavalan LP, Chen X, Clarke J, Salmeron J, Nguyen HT (2012) RNAi-mediated disruption of squalene synthase improves drought tolerance and yield in rice. J Exp Bot 63:163–175

    Article  CAS  PubMed  Google Scholar 

  56. Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364

    Article  CAS  PubMed  Google Scholar 

  57. Xiao BZ, Chen X, Xiang CB, Tang N, Zhang QF, Xiong LZ (2009) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2:73–83

    Article  CAS  PubMed  Google Scholar 

  58. Eremina M, Unterholzner SJ, Rathnayake AI, Castellanos M, Khan M, Kugler KG et al (2017) Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proc Natl Acad Sci U S A 113:5982–5991

    Article  CAS  Google Scholar 

  59. Sharma A, Kumar V, Kumar R, Shahzad B, Thukral AK, Bhardwaj R (2018) Brassinosteroid-mediated pesticide detoxification in plants: a mini-review. Cogent Food Agric 4:1436212. https://doi.org/10.1080/23311932.2018.1436212

    Article  Google Scholar 

  60. Que F, Wang GL, Xu ZS, Wang F, Xiong AS (2017) Transcriptional regulation of brassinosteroid accumulation during carrot development and the potential role of brassinosteroids in petiole elongation. Front Plant Sci 8:1356. https://doi.org/10.3389/fpls.2017.01356

    Article  PubMed  PubMed Central  Google Scholar 

  61. Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 26:573–582

    Article  CAS  PubMed  Google Scholar 

  62. Wu CY, Trieu A, Radhakrishnan P et al (2008) Brassinosteroids regulate grain filling in rice. Plant Cell 20:2130–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sakaguchi J, Watanabe Y (2017) Light perception in aerial tissues enhances DWF4 accumulation in root tips and induces root growth. Sci Rep 7:1808. https://doi.org/10.1038/s41598-017-01872-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu XM, Kim KE, Kim KC, Nguyen XC, Han HJ, Jung MS et al (2010) Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochemistry 71:614–618

    Article  CAS  PubMed  Google Scholar 

  65. Kaur N, Dhawan M, Sharma I, Pati PK (2016) Interdependency of reactive oxygen species generating and scavenging system in salt sensitive and salt tolerant cultivars of rice. BMC Plant Biol 16:131. https://doi.org/10.1186/s12870-016-0824-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Baxter A, Mittler R, Suzuki N (2013) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    Article  CAS  PubMed  Google Scholar 

  67. Jiang YP, Cheng F, Zhou YH, Xia XJ, Mao WH, Shi K et al (2012) Brassinosteroid-induced CO2 assimilation is associated with increased stability of redox-sensitive photosynthetic enzymes in the chloroplasts in cucumber plants. Biochem Biophys Res Commun 426:390–394

    Article  CAS  PubMed  Google Scholar 

  68. Zhu Y, Zuo M, Liang Y, Jiang M, Zhang J, Scheller HV et al (2013) MAP 65-1a positively regulates H2O2 amplification and enhances brassinosteroid-induced antioxidant defence in maize. J Exp Bot 64:3787–3802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xia XJ, Zhou YH, Ding J, Shi K, Asami T, Chen Z et al (2011) Induction of systemic stress tolerance by brassinosteroid in Cucumis sativus. New Phytol 191:706–720

    Article  CAS  PubMed  Google Scholar 

  70. Nie WF, Wang MM, Xia XJ, Zhou YH, Shi K, Chen Z et al (2013) Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid induced H2O2 generation and stress tolerance. Plant Cell Environ 36:789–803

    Article  CAS  PubMed  Google Scholar 

  71. Sharma I, Bhardwaj R, Pati PK (2015) Exogenous application of 28-Homobrassinolide modulates the dynamics of salt and pesticides induced stress responses in an elite rice variety Pusa Basmati-1. J Plant Growth Regul 34:509–518

    Article  CAS  Google Scholar 

  72. Zhang A, Zhang J, Zhang J, Ye N, Zhang H, Tan M, Jiang M (2011) Nitric oxide mediates brassinosteroid-induced aba biosynthesis involved in oxidative stress tolerance in maize leaves. Plant Cell Physiol 52:181–192

    Article  CAS  PubMed  Google Scholar 

  73. Zhu T, Deng XG, Tan WR, Zhou X, Luo SS, Han XY, Zhang DW, Lin HH (2015) Nitric oxide is involved in brassinosteroid-induced alternative respiratory pathway in Nicotiana benthamiana seedlings’ response to salt stress. Physiol Plant 156:150–163

    Article  CAS  PubMed  Google Scholar 

  74. Jiang YP, Cheng F, Zhou YH, Xia XJ, Maoa WH, Shi K, Chen ZX, Yu JQ (2012) Brassinosteroid-induced CO2 assimilation is associated with increased stability of redox-sensitive photosynthetic enzymes in the chloroplasts in cucumber plants. Biochem Biophys Res Commun 426:390–394

    Article  CAS  PubMed  Google Scholar 

  75. Li L, Staden JV, Jäger AK (1998) Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress plant. Growth Regul 25:81–87

    Article  CAS  Google Scholar 

  76. Núñez M, Mazzafera P, Mazorra LM, Siqueira WJ, Zullo MAT (2003) Influence of a brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biol Plant 47:67–70

    Article  Google Scholar 

  77. Vardhini BV, Rao SSR (2003) Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regul 41:25–31

    Article  CAS  Google Scholar 

  78. Behnamnia LM, Kalantari KM, Rezanejad F (2009) Exogenous application of brassinosteroid alleviates drought-induced oxidative stress in Lycopersicon esculentum. Gen Appl Plant Physiol 35:22–34

    CAS  Google Scholar 

  79. Zhu J, Lu P, Jiang Y, Wang M, Zhang L (2014) Effects of brassinosteroid on antioxidant system in salvia miltiorrhiza under drought stress. J Res Agric Anim Sci 2:01–06

    Google Scholar 

  80. Morillon R, Catterou M, Sangwan RS, Sangwan BS, Lassalles JP (2001) Brassinolide may control aquaporin activities in Arabidopsis thaliana. Planta 212:199–204

    Article  CAS  PubMed  Google Scholar 

  81. Ekinci M, Yildirim E, Dursun A, Turan M (2012) Mitigation of salt stress in lettuce (Lactuca sativa L. var. Crispa) by seed and foliar 24-epibrassinolide treatments. Hortic Sci 47:631–636

    CAS  Google Scholar 

  82. Ahmad H, Hayat S, Ali M, Ghani MI, Zhihui C (2017) Regulation of growth and physiological traits of cucumber (Cucumis sativus L.) through various levels of 28-homobrassinolide under salt stress conditions. Can J Plant Sci 9:132–140

    Google Scholar 

  83. Marakli S, Gozukirmizi N (2018) Analyses of abiotic stress and brassinosteroid-related some genes in barley roots grown under salinity stress and HBR treatments: expression profiles and phylogeny. Plant Biosyst 152:324–332

    Article  Google Scholar 

  84. Lalotra S, Hemantaranjan A, Kumar S, Kant R (2017) Effect of brassinosteroid (brassinolide) on seedling traits, morphology and metabolism in mung bean under salinity stress. Annu Res Rev Biol 12:1–8

    Article  Google Scholar 

  85. Martins S, Jorda AM, Cayrel A, Huguet S, Ljung CPLRK, Vert G (2017) Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nat Commun 8:309. https://doi.org/10.1038/s41467-017-00355-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jin SH, Li XQ, Wang GG, Zhu XT (2015) Brassinosteroids alleviate high-temperature injury in Ficus concinna seedlings via maintaining higher antioxidant defence and glyoxalase systems. AoB Plants 7:plv009. https://doi.org/10.1093/aobpla/plv009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yadava P, Kaushal J, Gautam A, Parmar H, Singh I (2016) Physiological and biochemical effects of 24-epibrassinolide on heat-stress adaptation in maize (Zea mays L). Nat Sci 8:171–179

    CAS  Google Scholar 

  88. Thussagunpanit J, Kanapol J, Lily K, Wi Stith C, Porn P, Sureeporn S, Apichart S (2014) Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation, and rice seed set under heat stress. J Plant Growth Regul 34:320–331

    Article  CAS  Google Scholar 

  89. Dhaubhadel S, Browning KS, Gallie DR, Krishna P (2002) Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J 29:681–691

    Article  CAS  PubMed  Google Scholar 

  90. Kim SY, Kim BH, Lim CJ, Lim CO, Nam KH (2010) Constitutive activation of stress-inducible genes in a brassinosteroid-insensitive 1 (bri1) mutant results in higher tolerance to cold. Physiol Plant 138:191–204

    Article  CAS  PubMed  Google Scholar 

  91. Ahmad F, Singh A, Kamal A (2018) Crosstalk of brassinosteroids with other phytohormones under various abiotic stresses. J Appl Biol Biotechnol 6:56–62

    Google Scholar 

  92. Anuradha S, Rao SSR (2007) Effect of 24-epibrassinolide on the growth and antioxidant enzyme activities in radish seedlings under lead toxicity. Indian J Plant Physiol 12:396–400

    CAS  Google Scholar 

  93. Hayat S, Hasan SA, Hayat Q, Ahmad A (2010) Brassinosteroids protect Lycopersicon esculentum from cadmium toxicity applied as shot gun approach. Protoplasma 239:3–14. https://doi.org/10.1007/s00709-009-0075-2

    Article  CAS  PubMed  Google Scholar 

  94. Ramakrishna B, Rao SS (2015) Foliar application of brassinosteroids alleviates adverse effects of zinc toxicity in radish (Raphanus sativus L.) plants. Protoplasma 252:665–677

    Article  CAS  PubMed  Google Scholar 

  95. Khripach VA, Zhabinskii VN, De Groot AE (1999) Brassinosteroids. A new class of plant hormones. Academic, San Diego

    Google Scholar 

  96. Bajguz A (2000) Blockade of heavy metals accumulation in Chlorella vulgaris cells by 24-epibrassinolide. Plant Physiol Biochem 38:797–801

    Article  CAS  Google Scholar 

  97. Abdullahi BA, Gu XG, Gan QL, Yang YH (2003) Brassinolide amelioration of aluminium toxicity in mung bean seedling growth. J Plant Nutr 26:1725–1734

    Article  CAS  Google Scholar 

  98. Janeczko A, Koscielniak J, Pilipowicz M, Lukaszewska GS, Skoczowski A (2005) Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica 43:293–298

    Article  CAS  Google Scholar 

  99. Sharma P, Kumar A, Bhardwaj R (2016) Plant steroidal hormone epibrassinolide regulate heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ Exp Bot 122:1–9

    Article  CAS  Google Scholar 

  100. Campos ML, Peres LEP (2012) Brassinosteroids as mediators of plant biotic stress responses. In: Brassinosteroids: practical applications in agriculture and human health. Bentham Science Publishers (eBook), vol 9. pp 35–43

    Google Scholar 

  101. Deng XG, Zhu T, Peng XJ, Xi DH, Guo H, Yin Y, Zhang DW, Lin HH (2016) Role of brassinosteroid signalling in modulating tobacco mosaic virus resistance in Nicotiana benthamiana. Sci Rep 6:20579. https://doi.org/10.1038/srep20579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nahar K, Kyndt T, Hause B, Hofte M, Gheysen G (2013) Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway. Mol Plant-Microbe Interact 26:106–115

    Article  CAS  PubMed  Google Scholar 

  103. Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33:887–898

    Article  CAS  PubMed  Google Scholar 

  104. Ali SS, Kumar GB, Khan M, Doohan FM (2013) Brassinosteroid enhances resistance to fusarium diseases of barley. Phytopathology 103:1260–1267

    Article  CAS  PubMed  Google Scholar 

  105. Albrecht C, Boutrot F, Segonzac C, Schwessinger B, Gimenez-Ibanez S, Chinchilla D, Rathjen JP, de Vries SC, Zipfel C (2012) Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. Proc Natl Acad Sci U S A 109:303–308

    Article  CAS  PubMed  Google Scholar 

  106. Vleesschauwer D, Van Buyten E, Satoh K, Balidion J, Mauleon R, Choi IR, Vera-Cruz C, Kikuchi S, Höfte M (2012) Brassinosteroids antagonize gibberellins and salicylate-mediated root immunity in rice. Plant Physiol 158:1833–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kaňa R, Špundová M, Ilık P, Lazár D, Klem K, Tomek P, Prášil O (2004) Effect of herbicide clomazone on photosynthetic processes in primary barley (Hordeum vulgare L.) leaves. Pest Biochem Physiol 78:161–170

    Article  CAS  Google Scholar 

  108. Bhardwaj R, Arora N, Uppal P, Sharma I, Kanwar MK (2011) Prospects of brassinosteroids in medicinal applications. In: Hayat S, Ahmad A (eds) Brassinosteroids: a class of plant hormone. Springer, Dordrecht

    Google Scholar 

  109. Verma A, Malik CP, Gupta VK (2012) In Vitro effects of brassinosteroids on the growth and antioxidant enzyme activities in groundnut. ISRN Agronomy:356485. https://doi.org/10.5402/2012/356485

    Article  CAS  Google Scholar 

  110. Khripach V, Zhabinskii V, Groot AD (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86:441–447

    Article  CAS  Google Scholar 

  111. Divi UK, Krishna P (2009) Brassinosteroid: A biotechnological target for enhancing crop yield and stress tolerance. N Biotechnol 26:131–136

    Article  CAS  PubMed  Google Scholar 

  112. Sharma I, Kaur N, Pati PK (2017) Brassinosteroids: A promising option in deciphering remedial strategies for abiotic stress tolerance in rice. Front Plant Sci 8:2151. https://doi.org/10.3389/fpls.2017.02151

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bartwal, A., Arora, S. (2019). Brassinosteroids: Molecules with Myriad Roles. In: Merillon, JM., Ramawat, K. (eds) Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-76887-8_18-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76887-8_18-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76887-8

  • Online ISBN: 978-3-319-76887-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics