Skip to main content

Strategies in Improving Properties of Cellulose-Based Hydrogels for Smart Applications

  • Living reference work entry
  • First Online:
Book cover Cellulose-Based Superabsorbent Hydrogels

Abstract

Hydrogels are three-dimensional polymeric networks that are able to absorb and retain large volumes of water. Chemical or physical crosslinks are required to avoid dissolution of the hydrophilic polymer chains into the aqueous phase. Because of their sorption capacity, super absorbing hydrogels have been extensively used as water-retaining devices, mainly in the field of personal hygiene products and in agriculture. Moreover, in recent years, the possibility to modulate their sorption capabilities by changing the external conditions (e.g., pH, ionic strength, temperature) has suggested their innovative application as smart materials, drug delivery devices, actuators, and sensors. The presence of the polyelectrolyte NaCMC in the hydrogel network provides a Donnan equilibrium with the external solution, thus modulating material’s sorption capacity in relation to the external solution ionic strength and pH. An important focus of the research in this field is the material’s biodegradability. This material was obtained by chemical crosslinking of cellulose polyelectrolyte derivatives, carboxymethylcellulose (CMC) and hydroxyethylcellulose (HEC), using small difunctional molecules as crosslinkers (divinyl sulfone, DVS) which covalently bound different polymer molecules in a 3D hydrophilic network. Among the biopolymers, cellulose is of special interest due to its abundance and, hence, easy availability. It is easily derivatized to different cellulosics which can be used to obtain functionalized hydrogel beads for ion exchange and affinity chromatography. Various cellulose derivatives having nitrogen or sulfur-containing groups have been prepared, and their metal ion absorption behavior has been examined. Metal ions are reported to partition between cellulosics and liquid phase. However, the use of cellulose as membrane material is not fully realized due to low stability and poor interactions in water. These drawbacks can be improved by crosslinking, radiation grafting, and surfactant adsorption. In the current chapter, we have focused on the smart applications of cellulose-based hydrogels including drug delivery systems, absorption behavior, and swelling mechanism and their prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kevadiya BD, Pawar RR, Rajkumar S, Jog R, Baravalia YK, Jivrajani H (2013) pH responsive MMT/acrylamide super composite hydrogel: characterization, anticancer drug reservoir and controlled release property composite hydrogel : drug delivery. Biochem Biophys 1(3):43–60

    Google Scholar 

  2. Pongjanyakul T, Priprem A, Puttipipatkhachorn S (2005) Influence of magnesium aluminium silicate on rheological, release and permeation characteristics of diclofenac sodium aqueous gels in-vitro. J Pharm Pharmacol 57(4):429–434

    Article  CAS  PubMed  Google Scholar 

  3. Guilherme MR, Aouada FA, Fajardo AR, Martins AF, Paulino AT, Davi MFT (2015) Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review. Eur Polym J 72:365–385

    Article  CAS  Google Scholar 

  4. Rahul R, Jha U, Sen G, Mishra S (2014) Carboxymethyl inulin: a novel flocculant for wastewater treatment. Int J Biol Macromol 63:1–7

    Article  CAS  PubMed  Google Scholar 

  5. Morrow KM, Fava JL, Rosen RK, Vargas S, Shaw JG, Kojic EM (2014) Designing preclinical perceptibility measures to evaluate topical vaginal gel formulations: relating user sensory perceptions and experiences to formulation properties. AIDS Res Hum Retrovir 30(1):78–91

    Article  PubMed  Google Scholar 

  6. Hinterstoisser B, Salmen L (2000) Application of dynamic 2D FTIR to cellulose. Vib Spectrosc 22(1–2):111–118

    Article  CAS  Google Scholar 

  7. Bochek AM (2003) Effect of hydrogen bonding on cellulose solubility in aqueous and nonaqueous solvents. Russ J Appl Chem 76(11):1711–1719

    Article  CAS  Google Scholar 

  8. Isogai A (2000) Chemical modification of cellulose. In: Hon D, Shiraishi N (eds) Wood and cellulosic chemistry, 2nd edn. Mercel Dekker, New York, pp 599–625

    Google Scholar 

  9. Sjöström E (1993) Wood chemistry: fundamentals and applications, 2nd edn. Academic Press, California, p 204

    Book  Google Scholar 

  10. Fakharian M-H, Tamimi N, Abbaspour H, Mohammadi Nafchi A, Karim AA (2015) Effects of κ-carrageenan on rheological properties of dually modified sago starch: towards finding gelatin alternative for hard capsules. Carbohydr Polym 132:156–163

    Article  CAS  PubMed  Google Scholar 

  11. Norhayati P, Khairul AZ, Ida IM (2013) Modified fermentation for production of bacterial cellulose/polyaniline as conductive material. J Teknol 62(2):21–23

    Google Scholar 

  12. Gasperini L, Mano JF, Reis RL (2014) Natural polymers for the microencapsulation of cells. J R Soc Interface 11(100):20140817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mekonnen T, Mussone P, Khalil H, Bressler D (2013) Progress in bio-based plastics and plasticizing modifications. J Mater Chem A 1(43):13379–13398

    Article  CAS  Google Scholar 

  14. Ensign LM, Cone R, Hanes J (2014) Nanoparticle-based drug delivery to the vagina: a review. J Control Release 190:500–514

    Article  CAS  PubMed  Google Scholar 

  15. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121

    Article  CAS  PubMed  Google Scholar 

  16. Rashidzadeh A, Olad A (2014) Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/MMT superabsorbent nanocomposite. Carbohydr Polym 114:269–278

    Article  CAS  PubMed  Google Scholar 

  17. Das S, Subuddhi U (2015) pH-responsive guar gum hydrogels for controlled delivery of dexamethasone to the intestine. Int J Biol Macromol 79:856–863

    Article  CAS  PubMed  Google Scholar 

  18. Das N (2013) Preparation methods and properties of hydrogel: a review. Int J Pharm Pharm Sci 5(3):112–117

    CAS  Google Scholar 

  19. Aziz MA, Cabral JD, Brooks HJL, Moratti SC, Hanton LR (2012) Antimicrobial properties of a chitosan dextran-based hydrogel for surgical use. Antimicrob Agents Chemother 56(1):280–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sannino A, Madaghiele M, Conversano F, Mele G, Maffezzoli A, Netti PA (2004) Cellulose derivative−hyaluronic acid-based microporous hydrogels cross-linked through Divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability. Biomacromolecules 5(1):92–96

    Article  CAS  PubMed  Google Scholar 

  21. Ganguly K, Chaturvedi K, More UA, Nadagouda MN, Aminabhavi TM (2014) Polysaccharide-based micro/nanohydrogels for delivering macromolecular therapeutics. J Control Release 193:162–173

    Article  CAS  PubMed  Google Scholar 

  22. Nayak AK, Malakar J, Sen KK (2010) Gastroretentive drug delivery technologies: current approaches and future potential. J Pharm Educ Res 1(2):1–12

    CAS  Google Scholar 

  23. Sosnik A, Neves JD, Sarmento B (2014) Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: a review. Prog Polym Sci 39(12):2030–2075

    Article  CAS  Google Scholar 

  24. Ullah F, MBH O, Javed F, Ahmad Z, Md. Akil H (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433

    Article  CAS  Google Scholar 

  25. Delgado J, Remers W (1998) Textbook of organic medicinal and pharmaceutical chemistry. JB Lippincott, Philadelphia/New York/London

    Google Scholar 

  26. Ribeiro MP, Morgado PI, Miguel SP, Coutinho P, Correia IJ (2013) Dextran-based hydrogel containing chitosan microparticles loaded with growth factors to be used in wound healing. Mater Sci Eng C 33(5):2958–2966

    Article  CAS  Google Scholar 

  27. Mužíková J, Nováková P (2007) A study of the properties of compacts from silicified microcrystalline celluloses. Drug Dev Ind Pharm 33(7):775–781

    Article  CAS  PubMed  Google Scholar 

  28. Vueba ML, Batista de Carvalho LAE, Veiga F, Sousa JJ, Pina ME (2006) Influence of cellulose ether mixtures on ibuprofen release: MC25, HPC and HPMC K100M. Pharm Dev Technol 11(2):213–228

    Article  CAS  PubMed  Google Scholar 

  29. Tuğcu-Demiröz F, Acartürk F, Erdoğan D (2013) Development of long-acting bioadhesive vaginal gels of oxybutynin: formulation, in vitro and in vivo evaluations. Int J Pharm 457(1):25–39

    Article  CAS  PubMed  Google Scholar 

  30. Luukkonen P, Schæfer T, Hellén L, MariJuppo A, Yliruusi J (1999) Rheological characterization of microcrystalline cellulose and silicified microcrystalline cellulose wet masses using a mixer torque rheometer. Int J Pharm 188(2):181–192

    Article  CAS  PubMed  Google Scholar 

  31. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267

    Article  CAS  Google Scholar 

  32. Gorgieva S, Kokol V (2011) Synthesis and application of new temperature-responsive hydrogels based on carboxymethyl and hydroxyethyl cellulose derivatives for the functional finishing of cotton knitwear. Carbohydr Polym 85(3):664–673

    Article  CAS  Google Scholar 

  33. Sabbagh F, Muhamad II (2017) Physical and chemical characterisation of acrylamide-based hydrogels, Aam, Aam/NaCMC and Aam/NaCMC/MgO. J Inorg Organomet Polym Mater 27(5):1439–1449

    Article  CAS  Google Scholar 

  34. Motaal AA, Ali M, El-Gazayerly O (2016) An in vivo study of Hypericum perforatum in topical drug delivery systems. Planta Med 81(S 01):S1–S381

    Google Scholar 

  35. Banerjee S, Siddiqui L, Bhattacharya SS, Kaity S, Ghosh A, Chattopadhyay P (2012) Interpenetrating polymer network (IPN) hydrogel microspheres for oral controlled release application. Int J Biol Macromol 50(1):198–206

    Article  CAS  PubMed  Google Scholar 

  36. Sabbagh F, Muhamad II (2017) Acrylamide-based hydrogel drug delivery systems: release of acyclovir from MgO nanocomposite hydrogel. J Taiwan Inst Chem Eng 21(3):1–12

    Google Scholar 

  37. Sannino A, Esposito A, De Rosa A, Cozzolino A, Ambrosio L, Nicolais L (2003) Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J Biomed Mater Res 67A(3):1016–1024

    Article  CAS  Google Scholar 

  38. Lopes DG, Koutsamanis I, Becker K, Scheibelhofer O, Laggner P, Haack D (2017) Microphase separation in solid lipid dosage forms as the cause of drug release instability. Int J Pharm 517(1–2):403–412

    Article  CAS  PubMed  Google Scholar 

  39. Becker K, Salar-Behzadi S, Zimmer A (2015) Solvent-free melting techniques for the preparation of lipid-based solid oral formulations. Pharm Res 32(5):1519–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yassin S, Goodwin DJ, Anderson A, Sibik J, Wilson DI, Gladden LF (2015) The disintegration process in microcrystalline cellulose based tablets, part 1: influence of temperature, porosity and superdisintegrants. J Pharm Sci 104(10):3440–3450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moffat KL, Marra KG (2004) Biodegradable poly(ethylene glycol) hydrogels crosslinked with genipin for tissue engineering applications. J Biomed Mater Res 71B(1):181–187

    Article  CAS  Google Scholar 

  42. Michailova V, Titeva S, Kotsilkova R, Krusteva E, Minkov E (2000) Water uptake and relaxation processes in mixed unlimited swelling hydrogels. Int J Pharm 209(1–2):45–56

    Article  CAS  PubMed  Google Scholar 

  43. Ogushi Y, Sakai S, Kawakami K (2007) Synthesis of enzymatically-gellable carboxymethylcellulose for biomedical applications. J Biosci Bioeng 104(1):30–33

    Article  CAS  PubMed  Google Scholar 

  44. Lim S-J, Lee JH, Piao MG, Lee M-K, Oh DH, Hwang DH (2010) Effect of sodium carboxymethylcellulose and fucidic acid on the gel characterization of polyvinylalcohol-based wound dressing. Arch Pharm Res 33(7):1073–1081

    Article  CAS  PubMed  Google Scholar 

  45. Tapia C, Corbalán V, Costa E, Gai MN, Yazdani-Pedram M (2005) Study of the release mechanism of diltiazem hydrochloride from matrices based on chitosan−alginate and chitosan−carrageenan mixtures. Biomacromolecules 6(5):2389–2395

    Article  CAS  PubMed  Google Scholar 

  46. Demitri C, Scalera F, Madaghiele M, Sannino A, Maffezzoli A (2013) Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int J Polym Sci 2013:1–6. https://doi.org/10.1155/2013/435073

    Article  CAS  Google Scholar 

  47. Rafaat AI, Eid M, El-Arnaouty MB (2012) Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications. Nucl Instrum Methods Phys Res B 283:71–76

    Article  CAS  Google Scholar 

  48. Rathna GVN, Mohan Rao DV, Chatterji PR (1996) Hydrogels of gelatin-sodium carboxymethyl cellulose: synthesis and swelling kinetics. J Macromol Sci Part A 633(9):1199–1207

    Article  Google Scholar 

  49. Liu P, Zhai M, Li J, Peng J, Wu J (2002) Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels. Radiat Phys Chem 63(3–6):525–528

    Article  CAS  Google Scholar 

  50. Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2015) Synthesis and characterization of antibacterial carboxymethylcellulose/CuO bio-nanocomposite hydrogels. Int J Biol Macromol 73:109–114

    Article  CAS  PubMed  Google Scholar 

  51. Das D, Pal S (2015) Modified biopolymer-dextrin based crosslinked hydrogels: application in controlled drug delivery. RSC Adv 5(32):25014–25050

    Article  CAS  Google Scholar 

  52. Selvakumaran S, Muhamad II, Abd Razak SI (2016) Evaluation of kappa carrageenan as potential carrier for floating drug delivery system: effect of pore forming agents. Carbohydr Polym 135:207–214

    Article  CAS  PubMed  Google Scholar 

  53. Reza Saboktakin M, Tabatabaei RM (2015) Supramolecular hydrogels as drug delivery systems. Int J Biol Macromol 75:426–436

    Article  CAS  Google Scholar 

  54. Bocazi E, Akar E, Ozdogan E, Demir A, Altinisik A, Seki Y (2015) Application of carboxymethylcellulose hydrogel based silver nanocomposites on cotton fabrics for antibacterial property. Carbohydr Polym 134:128–135

    Article  CAS  Google Scholar 

  55. Mihaila SM, Popa EG, Reis RL, Marques AP, Gomes ME (2014) Fabrication of endothelial cell-laden carrageenan microfibers for microvascularized bone tissue engineering applications. Biomacromolecules 15(8):2849–2860

    Article  CAS  PubMed  Google Scholar 

  56. Selvakumaran S, Muhamad II (2014) Optimization of formulation of floating hydrogels containing gas forming agent using response surface methodology. Int J Pharm Pharm Sci 6(7):526–530

    CAS  Google Scholar 

  57. Ghica M, Hîrjău M, Lupuleasa D, Dinu-Pîrvu C-E (2016) Flow and thixotropic parameters for rheological characterization of hydrogels. Molecules 21(6):786

    Article  CAS  Google Scholar 

  58. Mekkawy AI, El-Mokhtar MA, Nafady NA, Yousef N, Hamad MA, El-Shanawany SM et al (2017) In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels. Int J Nanomedicine 12:759–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Muhamad II, Sabbagh F, Karim NA (2017) Polyhydroxyalkanoates: a valuable secondary metabolite produced in microorganisms and plants. In: Siddiqui MW, Vasudha B (eds) Plant secondary metabolites, volume three: their roles in stress eco-physiology. Apple Academic Press, New Jersey, pp 185–195

    Google Scholar 

  60. Mojaveryazdi FS, Zainb NABM, Rezania S (2013) Production of biodegradable polymers (PHA) through low cost carbon sources: green chemistry. Int J Chem Env Eng 4(3):184–187

    Google Scholar 

  61. Zheng WJ, Gao J, Wei Z, Zhou J, Chen YM (2015) Facile fabrication of self-healing carboxymethyl cellulose hydrogels. Eur Polym J 72:514–522

    Article  CAS  Google Scholar 

  62. Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2(2):353–373

    Article  CAS  PubMed Central  Google Scholar 

  63. Hezaveh H, Muhamad II (2012) Effect of natural cross-linker on swelling and structural stability of kappa-carrageenan/hydroxyethyl cellulose pH-sensitive hydrogels. Korean J Chem Eng 29(11):1647–1655

    Article  CAS  Google Scholar 

  64. Pal K, Banthia AK, Majumdar DK (2005) Esterification of Carboxymethyl cellulose with acrylic acid for targeted drug delivery system. Trends Biomater Artif Organs 19(1):12–14

    Google Scholar 

  65. Pal K, Banthia AK, Majumdar DK (2006) Development of carboxymethyl cellulose acrylate for various biomedical applications. Biomed Mater 1(2):85–91

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ida Idayu Muhamad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sabbagh, F., Muhamad, I.I., Pa’e, N., Hashim, Z. (2018). Strategies in Improving Properties of Cellulose-Based Hydrogels for Smart Applications. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-76573-0_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76573-0_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76573-0

  • Online ISBN: 978-3-319-76573-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics