Skip to main content

Electrolytic Abnormalities Related to Phosphate in Critically Ill Cancer Patients

  • Reference work entry
  • First Online:
Oncologic Critical Care

Abstract

Phosphate plays a critical role in physiological processes such as mitochondrial respiration, cellular metabolism, and energy production (glycolysis, gluconeogenesis, and ammoniagenesis). It is also a significant constituent of cell membranes in the form of phospholipids. Hyperphosphatemia and hypophosphatemia are common electrolyte disorders in critically ill patients because of several factors. Both are associated with higher mortality in the ICU. However, most patients remain asymptomatic or do not receive an early management due to serum phosphate that is not routinely measured in ICU. Critically ill patients with cancer have a high risk of phosphate abnormalities because of chemotherapeutical drugs, surgery, tumor-related complications (tumor lysis syndrome), or comorbidities such as renal insufficiency, acid-base balance disorders, and intestinal malabsorption. Critical care physicians must be aware of potentially life-threatening complications due to phosphate abnormalities and identify the underlying etiology to make appropriate decisions. This chapter presents the diagnostic and therapeutic approach of hyperphosphatemia and hypophosphatemia in critically ill patients with cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amanzadeh J, Reilly RF. Hypophosphatemia: an evidence-based approach to its clinical consequences and management. Nat Clin Pract Nephrol. 2006;2(3):136–48. http://www.nature.com/doifinder/10.1038/ncpneph0124

    Article  CAS  Google Scholar 

  2. Berman E, et al. Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med. 2006;354(19):2006–13. http://www.ncbi.nlm.nih.gov/pubmed/16687713

    Article  CAS  Google Scholar 

  3. Brandão LR, et al. Hematology and oncology in critical illness. In: Lucking SE, et al., editors. Pediatric critical care study guide: text and review. London: Springer; 2012. p. 801–50. https://doi.org/10.1007/978-0-85729-923-9_38.

    Chapter  Google Scholar 

  4. Broman M, Hansson F, Klarin B. Analysis of hypo- and hypermagnesemia in an intensive care unit cohort. Acta Anaesthesiol Scand. 2018;62(5):648–57. http://www.ncbi.nlm.nih.gov/pubmed/29341068

    Article  CAS  Google Scholar 

  5. Buysschaert M, et al. Pamidronate-induced tubulointerstitial nephritis with Fanconi syndrome in a patient with primary hyperparathyroidism. Nephrol Dial Transplant. 2003;18(4):826–9. http://www.ncbi.nlm.nih.gov/pubmed/12637657

    Article  CAS  Google Scholar 

  6. Camp MA, Allon M. Severe hypophosphatemia in hospitalized patients. Miner Electrolyte Metab. 1990;16(6):365–8. http://www.ncbi.nlm.nih.gov/pubmed/2089250

    CAS  PubMed  Google Scholar 

  7. Darmon M, et al. Tumour lysis syndrome and acute kidney injury in high-risk haematology patients in the rasburicase era. A prospective multicentre study from the Groupe de Recherche en Réanimation Respiratoire et Onco-Hématologique. Br J Haematol. 2013;162(4):489–97. http://www.ncbi.nlm.nih.gov/pubmed/23772757

    Article  CAS  Google Scholar 

  8. De Angelo DJ. Metabolic emergencies in oncology. In: Chang AE, et al., editors. Oncology: an evidence-based approach. New York: Springer; 2006. p. 1321–31. https://doi.org/10.1007/0-387-31056-8_72.

    Chapter  Google Scholar 

  9. Fizazi K, et al. Denosumab treatment of prostate cancer with bone metastases and increased urine N-telopeptide levels after therapy with intravenous bisphosphonates: results of a randomized phase II trial. J Urol. 2013;189(1):S51–8. http://www.ncbi.nlm.nih.gov/pubmed/23234632

    CAS  PubMed  Google Scholar 

  10. François H, et al. Partial fanconi syndrome induced by imatinib therapy: a novel cause of urinary phosphate loss. Am J Kidney Dis. 2008;51(2):298–301.

    Article  Google Scholar 

  11. Gaasbeek A, Meinders AE. Hypophosphatemia: an update on its etiology and treatment. Am J Med. 2005;118(10):1094–101. http://www.ncbi.nlm.nih.gov/pubmed/16194637

    Article  CAS  Google Scholar 

  12. Ganda K, Seibel MJ. Rapid biochemical response to denosumab in fibrous dysplasia of bone: report of two cases. Osteoporos Int. 2014;25(2):777–82.

    Article  CAS  Google Scholar 

  13. Geerse DA, et al. Treatment of hypophosphatemia in the intensive care unit: a review. Crit Care. 2010;14(4):R147. https://doi.org/10.1186/cc9215.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Glezerman IG, Kewalramani T, Jhaveri K. Reversible Fanconi syndrome due to lenalidomide. NDT Plus. 2008;1(4):215–7.

    PubMed  PubMed Central  Google Scholar 

  15. Hariri A, Mount DB, Rastegar A. Disorders of calcium, phosphate, and magnesium metabolism. In: Mount DB, Sayegh MH, Singh AK, editors. Core concepts in the disorders of fluid, electrolytes and acid-base balance. Boston: Springer US; 2013. p. 103–46. https://doi.org/10.1007/978-1-4614-3770-3_4.

    Chapter  Google Scholar 

  16. Hoffmann M, et al. Hypophosphataemia at a large academic hospital in South Africa. J Clin Pathol. 2008;61(10):1104–7. http://jcp.bmj.com/cgi/doi/10.1136/jcp.2007.054940

    Article  CAS  Google Scholar 

  17. Imel EA, Econs MJ. Approach to the hypophosphatemic patient. J Clin Endocrinol Metab. 2012;97(3):696–706. http://www.ncbi.nlm.nih.gov/pubmed/22392950

    Article  CAS  Google Scholar 

  18. Izzedine H, et al. Drug-induced Fanconi’s syndrome. Am J Kidney Dis. 2003;41(2):292–309.

    Article  CAS  Google Scholar 

  19. Ketteler M, et al. Executive summary of the 2017 KDIGO chronic kidney disease-mineral and bone disorder (CKD-MBD) guideline update: what’s changed and why it matters. Kidney Int. 2017;92(1):26–36.

    Article  Google Scholar 

  20. Lacy MQ, Gertz MA. Acquired Fanconi’s syndrome associated with monoclonal gammopathies. Hematol Oncol Clin North Am. 1999;13(6):1273–80. http://www.ncbi.nlm.nih.gov/pubmed/10626150

    Article  CAS  Google Scholar 

  21. Latcha S. Electrolyte disorders in cancer patients. In: Jhaveri KD, Salahudeen AK, editors. Onconephrology: cancer, chemotherapy and the kidney. New York: Springer; 2015. p. 131–62. https://doi.org/10.1007/978-1-4939-2659-6_7.

    Chapter  Google Scholar 

  22. Levin A, et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int. 2007;71(1):31–8. http://www.ncbi.nlm.nih.gov/pubmed/17091124

    Article  CAS  Google Scholar 

  23. Marinella MA. Refeeding syndrome: an important aspect of supportive oncology. J Support Oncol. n.d.;7(1):11–6. http://www.ncbi.nlm.nih.gov/pubmed/19278172

  24. Miller CJ, et al. Impact of serum phosphate in mechanically ventilated patients with severe Sepsis and septic shock. J Intensive Care Med. 2018. https://doi.org/10.1177/0885066618762753.

  25. Nácul FE, Vieira JM. Disorders of electrolytes. In: O’Donnell JM, Nácul FE, editors. Surgical intensive care medicine. Cham: Springer; 2016. p. 539–51. https://doi.org/10.1007/978-3-319-19668-8_40.

    Chapter  Google Scholar 

  26. Reddi AS. Disorders of phosphate: hyperphosphatemia. In: Fluid, electrolyte and acid-base disorders: clinical evaluation and management. New York: Springer; 2014a. p. 253–63. https://doi.org/10.1007/978-1-4614-9083-8_22.

    Chapter  Google Scholar 

  27. Reddi AS. Disorders of phosphate: hypophosphatemia. In: Fluid, electrolyte and acid-base disorders: clinical evaluation and management. New York: Springer; 2014b. p. 239–52. https://doi.org/10.1007/978-1-4614-9083-8_21.

    Chapter  Google Scholar 

  28. Reddi AS. Disorders of phosphate: physiology. In: Fluid, electrolyte and acid-base disorders: clinical evaluation and management. New York: Springer; 2014c. p. 233–8. https://doi.org/10.1007/978-1-4614-9083-8_20.

    Chapter  Google Scholar 

  29. Rosner MH, Dalkin AC. Electrolyte disorders associated with cancer. Adv Chronic Kidney Dis. 2014;21(1):7–17. http://www.ncbi.nlm.nih.gov/pubmed/24359982. Accessed 26 June 2018

    Article  Google Scholar 

  30. Rosner MH, Capasso G, Perazella MA. Acute kidney injury and electrolyte disorders in the critically ill patient with cancer. Curr Opin Crit Care. 2017;23(6):475–83.

    Article  Google Scholar 

  31. Rostom AY, et al. Tumor lysis syndrome following hemi-body irradiation for metastatic breast cancer. Ann Oncol. 2000;11(10):1349–51. http://www.ncbi.nlm.nih.gov/pubmed/11106126

    Article  CAS  Google Scholar 

  32. Tanvetyanon T, Stiff PJ. Management of the adverse effects associated with intravenous bisphosphonates. Ann Oncol. 2006;17(6):897–907.

    Article  CAS  Google Scholar 

  33. Tucker JK, Thornley-Brown D. Disorders of calcium, phosphorus, and magnesium. In: Lerma EV, Rosner M, editors. Clinical decisions in nephrology, hypertension and kidney transplantation. New York: Springer; 2013. p. 103–16. https://doi.org/10.1007/978-1-4614-4454-1_11.

    Chapter  Google Scholar 

  34. Umeda M, et al. Prognostic significance of the serum phosphorus level and its relationship with other prognostic factors in multiple myeloma. Ann Hematol. 2006;85(7):469–73. http://www.ncbi.nlm.nih.gov/pubmed/16528526

    Article  CAS  Google Scholar 

  35. Varon J. Critical care oncology. In: Handbook of critical and intensive care medicine. Cham: Springer; 2016. p. 243–62. https://doi.org/10.1007/978-3-319-31605-5_11.

    Chapter  Google Scholar 

  36. Varon J, Acosta P. Renal and fluid – electrolyte disorders. In: Handbook of critical and intensive care medicine. New York: Springer; 2010. p. 297–333. https://doi.org/10.1007/978-0-387-92851-7_14.

    Chapter  Google Scholar 

  37. Ye Z, et al. Postoperative hyperphosphatemia significantly associates with adverse survival in colorectal cancer patients. J Gastroenterol Hepatol. 2013;28(9):1469–75. http://www.ncbi.nlm.nih.gov/pubmed/23611210

    Article  Google Scholar 

  38. Yeung S-CJ. Endocrine and metabolic emergencies. In: Todd KH, Thomas Jr CR, editors. Oncologic emergency medicine: principles and practice. Cham: Springer; 2016. p. 243–62. https://doi.org/10.1007/978-3-319-26387-8_21.

    Chapter  Google Scholar 

  39. Yoshida T, et al. Incidence of hypophosphatemia in advanced cancer patients: a recent report from a single institution. Int J Clin Oncol. 2017;22(2):244–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Racedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Quintero, A., Racedo, J., Durante Flórez, R.d.J. (2020). Electrolytic Abnormalities Related to Phosphate in Critically Ill Cancer Patients. In: Nates, J., Price, K. (eds) Oncologic Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-319-74588-6_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74588-6_85

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74587-9

  • Online ISBN: 978-3-319-74588-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics