Skip to main content

Acute Renal Failure in Critically Ill Cancer Patients

  • Reference work entry
  • First Online:

Abstract

Acute kidney injury remains a common complication in patients with cancer and is associated with increased length of stay, cost, and mortality. Furthermore, acute kidney injury can also lead to impaired functional status, decreased quality of life, and exclusion from further cancer therapy or trials. Patients with cancer are at risk for developing acute kidney injury from etiologies common to all hospitalized patients such as sepsis or exposure to nephrotoxic agents, including radiocontrast and antibiotics. In addition, acute kidney injury in these patients may be due to direct injury from the underlying malignancy (e.g., lymphomatous infiltration), chemotherapy toxicity (e.g., acute tubular necrosis), effects of hematopoietic stem cell transplantation, or from treatment complications (e.g., tumor lysis syndrome). Patient-related risk factors for acute kidney injury include older age, female gender, underlying chronic kidney disease, diabetes mellitus, volume depletion, and renal hypoperfusion. While cancer itself is not a contraindication for starting renal replacement therapy, the benefits of renal replacement therapy must be weighed against the overall prognosis of the patient and quality of life. A multidisciplinary discussion between the patient, nephrologist, oncologist, intensivist, and palliative care physicians is often necessary to make an informed clinical decision.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute Dialysis Quality Initiative Workgroup. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute Dialysis quality initiative (ADQI) group. Crit Care. 2004;8:R204–12.

    Article  Google Scholar 

  2. Mehta RL, Kellum JA, Shah SV, et al. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31.

    Article  Google Scholar 

  3. The KDIGO Working Group. Section 2: AKI definition. Kidney Int Suppl (2011). 2012;2: 19–36.

    Google Scholar 

  4. Meersch M, Schmidt C, Hoffmeier A, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43:1551–61.

    Article  CAS  Google Scholar 

  5. Christiansen CF, Johansen MB, Langeberg WJ, Fryzek JP, Sorensen HT. Incidence of acute kidney injury in cancer patients: a Danish population-based cohort study. Eur J Intern Med. 2011;22:399–406.

    Article  Google Scholar 

  6. Salahudeen AK, Doshi SM, Pawar T, Nowshad G, Lahoti A, Shah P. Incidence rate, clinical correlates, and outcomes of AKI in patients admitted to a comprehensive cancer center. Clin J Am Soc Nephrol. 2013;8:347–54.

    Article  Google Scholar 

  7. Benoit DD, Hoste EA. Acute kidney injury in critically ill patients with cancer. Crit Care Clin. 2010;26:151–79.

    Article  CAS  Google Scholar 

  8. Kemlin D, Biard L, Kerhuel L, et al. Acute kidney injury in critically ill patients with solid tumours. Nephrol Dial Transplant. 2018;33:1997–2005.

    Article  CAS  Google Scholar 

  9. Network VNARFT, Palevsky PM, Zhang JH, et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359:7–20.

    Article  Google Scholar 

  10. Uchino S, Bellomo R, Kellum JA, et al. Patient and kidney survival by dialysis modality in critically ill patients with acute kidney injury. Int J Artif Organs. 2007;30:281–92.

    Article  CAS  Google Scholar 

  11. Darmon M, Vincent F, Canet E, et al. Acute kidney injury in critically ill patients with haematological malignancies: results of a multicentre cohort study from the Groupe de Recherche en reanimation Respiratoire en Onco-Hematologie. Nephrol Dial Transplant. 2015;30:2006–13.

    Article  Google Scholar 

  12. van Vliet M, Verburg IW, van den Boogaard M, et al. Trends in admission prevalence, illness severity and survival of haematological patients treated in Dutch intensive care units. Intensive Care Med. 2014;40:1275–84.

    Article  Google Scholar 

  13. Rabe C, Mey U, Paashaus M, et al. Outcome of patients with acute myeloid leukemia and pulmonary infiltrates requiring invasive mechanical ventilation-a retrospective analysis. J Crit Care. 2004;19:29–35.

    Article  Google Scholar 

  14. Lahoti A, Kantarjian H, Salahudeen AK, et al. Predictors and outcome of acute kidney injury in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome. Cancer. 2010;116: 4063–8.

    Article  Google Scholar 

  15. Tornroth T, Heiro M, Marcussen N, Franssila K. Lymphomas diagnosed by percutaneous kidney biopsy. Am J Kidney Dis. 2003;42:960–71.

    Article  Google Scholar 

  16. Bach AG, Behrmann C, Holzhausen HJ, et al. Prevalence and patterns of renal involvement in imaging of malignant lymphoproliferative diseases. Acta Radiol. 2012;53:343–8.

    Article  Google Scholar 

  17. Hutchison CA, Cockwell P, Stringer S, et al. Early reduction of serum-free light chains associates with renal recovery in myeloma kidney. J Am Soc Nephrol. 2011;22:1129–36.

    Article  CAS  Google Scholar 

  18. Moreau P, Richardson PG, Cavo M, et al. Proteasome inhibitors in multiple myeloma: 10 years later. Blood. 2012;120:947–59.

    Article  CAS  Google Scholar 

  19. Jodele S, Licht C, Goebel J, et al. Abnormalities in the alternative pathway of complement in children with hematopoietic stem cell transplant-associated thrombotic microangiopathy. Blood. 2013;122:2003–7.

    Article  CAS  Google Scholar 

  20. Jodele S, Laskin BL, Dandoy CE, et al. A new paradigm: diagnosis and management of HSCT-associated thrombotic microangiopathy as multi-system endothelial injury. Blood Rev. 2015;29:191–204.

    Article  Google Scholar 

  21. Parikh CR, McSweeney PA, Korular D, et al. Renal dysfunction in allogeneic hematopoietic cell transplantation. Kidney Int. 2002;62:566–73.

    Article  Google Scholar 

  22. Parikh CR, Sandmaier BM, Storb RF, et al. Acute renal failure after nonmyeloablative hematopoietic cell transplantation. J Am Soc Nephrol. 2004;15:1868–76.

    Article  Google Scholar 

  23. Parikh CR, Schrier RW, Storer B, et al. Comparison of ARF after myeloablative and nonmyeloablative hematopoietic cell transplantation. Am J Kidney Dis. 2005;45:502–9.

    Article  Google Scholar 

  24. Parikh CR, Yarlagadda SG, Storer B, Sorror M, Storb R, Sandmaier B. Impact of acute kidney injury on long-term mortality after nonmyeloablative hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2008;14:309–15.

    Article  Google Scholar 

  25. Lam AQ, Humphreys BD. Onco-nephrology: AKI in the cancer patient. Clin J Am Soc Nephrol. 2012;7:1692–700.

    Article  CAS  Google Scholar 

  26. DeLeve LD, McCuskey RS, Wang X, et al. Characterization of a reproducible rat model of hepatic veno-occlusive disease. Hepatology. 1999;29:1779–91.

    Article  CAS  Google Scholar 

  27. Howard SC, Jones DP, Pui CH. The tumor lysis syndrome. N Engl J Med. 2011;364:1844–54.

    Article  CAS  Google Scholar 

  28. Jeha S, Pui CH. Recombinant urate oxidase (rasburicase) in the prophylaxis and treatment of tumor lysis syndrome. Contrib Nephrol. 2005;147: 69–79.

    CAS  PubMed  Google Scholar 

  29. Coiffier B, Altman A, Pui CH, Younes A, Cairo MS. Guidelines for the management of pediatric and adult tumor lysis syndrome: an evidence-based review. J Clin Oncol. 2008;26:2767–78.

    Article  CAS  Google Scholar 

  30. Schmid M, Krishna N, Ravi P, et al. Trends of acute kidney injury after radical or partial nephrectomy for renal cell carcinoma. Urol Oncol. 2016;34:293 e1–e10.

    Article  Google Scholar 

  31. Schmid M, Abd-El-Barr AE, Gandaglia G, et al. Predictors of 30-day acute kidney injury following radical and partial nephrectomy for renal cell carcinoma. Urol Oncol. 2014;32:1259–66.

    Article  Google Scholar 

  32. Wysolmerski JJ, Broadus AE. Hypercalcemia of malignancy: the central role of parathyroid hormone-related protein. Annu Rev Med. 1994;45:189–200.

    Article  CAS  Google Scholar 

  33. Seymour JF, Gagel RF. Calcitriol: the major humoral mediator of hypercalcemia in Hodgkin’s disease and non-Hodgkin’s lymphomas. Blood. 1993;82:1383–94.

    CAS  PubMed  Google Scholar 

  34. LeGrand SB, Leskuski D, Zama I. Narrative review: furosemide for hypercalcemia: an unproven yet common practice. Ann Intern Med. 2008;149:259–63.

    Article  Google Scholar 

  35. Fleisch H. Bisphosphonates. Pharmacology and use in the treatment of tumour-induced hypercalcaemic and metastatic bone disease. Drugs. 1991;42:919–44.

    Article  CAS  Google Scholar 

  36. Binstock ML, Mundy GR. Effect of calcitonin and glutocorticoids in combination on the hypercalcemia of malignancy. Ann Intern Med. 1980;93:269–72.

    Article  CAS  Google Scholar 

  37. Castellano D, Sepulveda JM, Garcia-Escobar I, Rodriguez-Antolin A, Sundlov A, Cortes-Funes H. The role of RANK-ligand inhibition in cancer: the story of denosumab. Oncologist. 2011;16:136–45.

    Article  CAS  Google Scholar 

  38. Jiang M, Wang CY, Huang S, Yang T, Dong Z. Cisplatin-induced apoptosis in p53-deficient renal cells via the intrinsic mitochondrial pathway. Am J Physiol Renal Physiol. 2009;296:F983–93.

    Article  CAS  Google Scholar 

  39. Motwani SS, McMahon GM, Humphreys BD, Partridge AH, Waikar SS, Curhan GC. Development and validation of a risk prediction model for acute kidney injury after the first course of cisplatin. J Clin Oncol. 2018;36:682–8.

    Article  CAS  Google Scholar 

  40. Patzer L, Hernando N, Ziegler U, Beck-Schimmer B, Biber J, Murer H. Ifosfamide metabolites CAA, 4-OH-Ifo and Ifo-mustard reduce apical phosphate transport by changing NaPi-IIa in OK cells. Kidney Int. 2006;70:1725–34.

    Article  CAS  Google Scholar 

  41. Oberlin O, Fawaz O, Rey A, et al. Long-term evaluation of Ifosfamide-related nephrotoxicity in children. J Clin Oncol. 2009;27:5350–5.

    Article  CAS  Google Scholar 

  42. Izzedine H, Escudier B, Lhomme C, et al. Kidney diseases associated with anti-vascular endothelial growth factor (VEGF): an 8-year observational study at a single center. Medicine (Baltimore). 2014;93: 333–9.

    Article  CAS  Google Scholar 

  43. Usui J, Glezerman IG, Salvatore SP, Chandran CB, Flombaum CD, Seshan SV. Clinicopathological spectrum of kidney diseases in cancer patients treated with vascular endothelial growth factor inhibitors: a report of 5 cases and review of literature. Hum Pathol. 2014;45:1918–27.

    Article  CAS  Google Scholar 

  44. Ha SH, Park JH, Jang HR, et al. Increased risk of everolimus-associated acute kidney injury in cancer patients with impaired kidney function. BMC Cancer. 2014;14:906.

    Article  Google Scholar 

  45. Porta C, Cosmai L, Gallieni M, Pedrazzoli P, Malberti F. Renal effects of targeted anticancer therapies. Nat Rev Nephrol. 2015;11:354–70.

    Article  CAS  Google Scholar 

  46. Jhaveri KD, Sakhiya V, Fishbane S. Nephrotoxicity of the BRAF inhibitors vemurafenib and dabrafenib. JAMA Oncol. 2015;1:1133–4.

    Article  Google Scholar 

  47. Shalmi CL, Dutcher JP, Feinfeld DA, et al. Acute renal dysfunction during interleukin-2 treatment: suggestion of an intrinsic renal lesion. J Clin Oncol. 1990;8: 1839–46.

    Article  CAS  Google Scholar 

  48. Cortazar FB, Marrone KA, Troxell ML, et al. Clinicopathological features of acute kidney injury associated with immune checkpoint inhibitors. Kidney Int. 2016;90:638–47.

    Article  CAS  Google Scholar 

  49. Wanchoo R, Karam S, Uppal NN, et al. Adverse renal effects of immune checkpoint inhibitors: a narrative review. Am J Nephrol. 2017;45:160–9.

    Article  CAS  Google Scholar 

  50. Jhaveri KD, Wanchoo R, Sakhiya V, Ross DW, Fishbane S. Adverse renal effects of novel molecular oncologic targeted therapies: a narrative review. Kidney Int Rep. 2017;2:108–23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin W. Finkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Khattak, A., Finkel, K.W. (2020). Acute Renal Failure in Critically Ill Cancer Patients. In: Nates, J., Price, K. (eds) Oncologic Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-319-74588-6_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74588-6_79

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74587-9

  • Online ISBN: 978-3-319-74588-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics