Skip to main content

Respiratory Support Strategies and Nonconventional Ventilation Modes in Oncologic Critical Care Ventilation strategies

  • Reference work entry
  • First Online:
Oncologic Critical Care

Abstract

Nonconventional modes of ventilation have been around for decades. Starting in the 1970s, several modes of high-frequency ventilation (HFV) were introduced and have been used as experimental or rescue ventilation modes since then. More recently, close-loop dual modes of ventilation have been developed. Biphasic ventilation (BiPAP/APRV) and pressure-regulated volume control (PRVC) are among the most accepted and popular. Other less known include proportional assist ventilation (PAV) and neurally adjusted ventilatory assist (NAVA), among many others. To date, there is little to no evidence available for the use of these modes in cancer patients. We review some of the most important modes in current clinical practice and share our experience in the MD Anderson Cancer Center Intensive Care Units with the use of HFV, BiPAP, and APRV as well our respiratory support strategy to manage cancer patients in respiratory failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baum M, Benzer H, Putensen C, Koller W, Putz G. Biphasic positive airway pressure (BiPAP) – a new form of augmented ventilation. Anaesthesist. 1989;38(9):452–8.

    CAS  PubMed  Google Scholar 

  2. Bellani G, Laffey JG, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, Ranieri M, Rubenfeld G, Thompson BT, Wrigge H, Slutsky AS, Presenti A, for the LUNG SAFE Investigators and the ESICM Trials Group. Epidemiology, patters of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.

    Article  CAS  Google Scholar 

  3. Carlucci A, Richard J-C, Wysocki M, Lepage E, Brochard L, SRLF Collaborative Group on Mechanical Ventilation. Noninvasive versus conventional mechanical ventilation: an epidemiologic survey. Am J Respir Crit Care Med. 2001;163:874–80.

    Article  CAS  Google Scholar 

  4. Chang S, Shi J, Fu C, Wu X, Li S. A comparison of synchronized intermittent mandatory ventilation and pressure-regulated volume control ventilation in elderly patients with acute exacerbations of COPD and respiratory failure. Int J Chron Obstruct Pulmon Dis. 2016;17(11):1023–9.

    Article  Google Scholar 

  5. Demoule A, Clavel M, Rolland-Debord C, Perbet S, Terzi N, Kouatchet A, Wallet F, Roze H, Vargas F, Guerin C, Dellamonia J, Jaber S, Brochjard L, Similowski T. Neurally adjusted ventilatory assist as an alternative to pressure support ventilation in adults: a French multicenter randomized trial. Intensive Care Med. 2016;42:1723–32.

    Article  CAS  Google Scholar 

  6. Di Mussi R, Spadaro S, Mirabella L, Volta CA, Serio G, Staffieri F, Dambrosio M, Cinella G, Bruno F, Grasso S. Impact of prolonged assisted ventilation on diaphragmatic efficiency: NAVA versus PSV. Crit Care. 2016;20:1. https://doi.org/10.1186/s13054-015-1178-0.

    Article  PubMed  Google Scholar 

  7. Emr B, Gatto LA, Roy S, Satalin J, Ghosh A, Snyder K, Andrews P, Habashi N, Marx W, Ge L, Wang G, Dean DA, Vodovotz Y, Nieman G. Airway pressure release ventilation prevents ventilator induced lung injury in normal lungs. JAMA Surg. 2013;148(11): 1005–12.

    Article  Google Scholar 

  8. Faqih NA, Qanbba’h SH, Rihani RS, Ghonimat IM, Yamani YM, Sultan IY. The use of high frequency oscillatory ventilation in a pediatric oncology intensive care unit. Pediatr Blood Cancer. 2012;58(3):384–9.

    Article  Google Scholar 

  9. Ferguson ND, Cook D, Guyatt GH, Mehta S, Hand L, Austin P, Zhou Q, Matte A, Walter SD, Lamontagne F, Granton JT, Arabi YM, Arroliga AC, Stewart TE, Slutsky AS, O’Meade MO, Oscillate Trial Investigators and the Canadian Critical Care Trials Group. High-frequency oscillation in early acute respiratory distress syndrome. NEJM. 2013;368(9):795–805.

    Article  CAS  Google Scholar 

  10. Ferreira JC, Diniz-Silva F, Moriya HT, Alencar AM, Amato MBP, Carvalho CRR. Neurally adjusted ventilatory assist (NAVA) or pressure support ventilation (PSV) during spontaneous breathing trials in critically ill patients: a crossover trial. BMC Pulm Med. 2017;17(1):139.

    Article  Google Scholar 

  11. Gattinoni L, Colino F, Maiolo G, Rapetti F, Romitti F, Tonetti T, Vasques F, Quintel M. Positive end-expiratory pressure: how to set it an individual level. Ann Transl Med. 2017;5(14):288.

    Article  Google Scholar 

  12. Hering R, Peters D, Zinserling J, Wrigge H, von Spiegel T, Putensen C. Effects of spontaneous breathing during airway pressure release ventilation on renal perfusion and function in patients with acute lung injury. Intensive Care Med. 2002;28(10):1426–33.

    Article  Google Scholar 

  13. Hörman C, Baum M, Putensen C, Mutz NJ, Benzer H. Biphasi positive airway pressure (BiPAP) – a new mode of ventilatory support. Eur J Anesthesiol. 1994;11(1):37–42.

    Google Scholar 

  14. Kaplan L, Bailey H, Formosa V. Airway pressure release ventilation increases cardiac performance in patients with acute ling injury/adult respiratory distress syndrome. Crit Care. 2001;5(4):221–6.

    Article  CAS  Google Scholar 

  15. Klain M, Smith RB. High frequency percutaneous transtracheal jet ventilation. Crit Care Med. 1977;5: 280–7.

    Article  CAS  Google Scholar 

  16. Krishnan JA, Brower RG. High-frequency ventilation for acute lung injury and ARDS. Chest. 2000;118: 795–807.

    Article  CAS  Google Scholar 

  17. Lukangelo U, Fontanesi L, Antonaglia V, Pellis T, Berlot G, Liguori G, Bird FM, Gullo A. High frequency percussive ventilation (HFPV). Minerva Anestesiol. 2003;69:841–51.

    Google Scholar 

  18. Lunkenheimer PP, Rafflenbeul W, Keller H, Frank I, Dickhut HH, Fuhrmann C. Application of transtracheal pressure oscillations as a modification of “diffusion respiration”. Br J Anaesth. 1972;44:627.

    Article  CAS  Google Scholar 

  19. Nguyen AP, Schmidt UH, Macintyre NR. Should high-frequency in the adult be abandoned? Respir Care. 2016;61(6):791–800.

    Article  Google Scholar 

  20. Putensen C, Wrigge H. Clinical review: biphasic positive airway pressure and airway pressure release ventilation. Crit Care. 2004;8:492–7. https://doi.org/10.1186/cc2919.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159(4 Pt 1):1241–8.

    Article  CAS  Google Scholar 

  22. Putensen C, Zech S, Wrigge H, Zinserling J, Stüber F, von Spiegel T, Mutz N. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med. 2001;164:43–9.

    Article  CAS  Google Scholar 

  23. Rathgeber J, Schorn B, Falk V, Kazmaier S, Spiegel T. The influence of controlled mandatory ventilation (CMV), intermittent mandatory ventilation (IMV), and biphasic intermittent positive airway pressure (BiPAP) on duration of intubation and consumption of analgesics and sedatives. A prospective analysis in 596 patients following cardiac surgery. Eur J Anesthesiol. 1997;14:576–82.

    Article  CAS  Google Scholar 

  24. Remmers JE, Gautier H. Servo respirator constructed from a positive pressure ventilator. J Appl Physiol. 1976;41:252–5.

    Article  CAS  Google Scholar 

  25. Riverso P, Bernard PL, Corsa D, Morra MG, Pagannini G, Parigi F. A comparison of ventilation techniques in ARDS. Volume controlled vs pressure regulated volume control. Minerva Anesthesiol. 1998;64(7–8):339–43.

    CAS  Google Scholar 

  26. Rowan CM, Loomis A, McArthur J, Smith LS, Gertz SJ, Fitzgerald JC, Nitu ME, Moser EA, Hsing DD, Duncan CN, Mahadeo KM, Moffet J, Hall MW, Pinos EL, Tamburro RF, Cheifetz IM, Investigators of the Pediatric Acute Lung Injury and Sepsis Network. High-frequency oscillatory ventilation use and severe pediatric ARDS in the pediatric hematopoietic cell transplant recipient. Respir Care. 2018;63(4): 404–11.

    Article  Google Scholar 

  27. Saddy F, Moraes L, Santos CL, Pena G, Morales MM, Capelozzi VL, Game de Abreu M, Baez CS, Pelosi P, Rieken P. Biphasic positive airway pressure minimizes biological impact on lung tissue in mild acute lung injury independent of etiology. Crit Care. 2013;17:R228.

    Article  Google Scholar 

  28. Schirmer-Mikalsen K, Vik A, Skogvoll E, Moen KG, Solheim O, Klepstad P. Intracranial pressure during pressure control and pressure-regulated volume control ventilation in patients with traumatic brain injury: a randomized crossover trial. Neurocrit Care. 2016;24(3):332–41.

    Article  Google Scholar 

  29. Sehgal IS, Dhooria S, Aggarwal AN, Behera D, Agarwal R. Asynchrony index in pressure support ventilation (PSV) versus neurally adjust ventilator assist (NAVA) during non-invasive ventilation (NIV) for respiratory failure: a systematic review and meta-analysis. Intensive Care Med. 2016;42(11):1813–5.

    Article  Google Scholar 

  30. Sinderby C, Beck J. Proportional assist ventilation and neurally adjusted ventilatory assist – better approaches to patient ventilator synchrony? Clin Chest Med. 2008;29(2):329–42.

    Article  Google Scholar 

  31. Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, Gottfried SB, Lindström L. Neural control of mechanical ventilation in respiratory failure. Nature Med. 1999;5:1433–6.

    Article  CAS  Google Scholar 

  32. Singh PM, Borle A, Trikha A. Newer nonconventional modes of mechanical ventilation. J Emerg Trauma Shock. 2014;7(3):222–7.

    Article  Google Scholar 

  33. Stefan MS, Shieh MS, Pekow PS, Rothberg MB, Steingrub JS, Lagu T, Lindenauer PK. Epidemiology and outcomes of acute respiratory failure in the United States, 2001–2009: a national survey. J Hosp Med. 2013;8(2):76–82.

    Article  Google Scholar 

  34. Sud S, Sud M, Friedrech JO, Wunsch H, Meade MO, Ferguson ND, Adhikari NK. High-frequency oscillatory ventilation versus conventional ventilation for acute respiratory distress syndrome. Cochrane Database Syst Rev 2016;4(4):CD004085.

    Google Scholar 

  35. Vincent JL, Akca S, De Mendonca A, Haji-Michael P, Sprung C, Moreno R, Antonelli M, Sutter PM, SOFA Working Group. The epidemiology of acute respiratory failure in critically ill patients. Chest. 2002;121(5): 1602–9.

    Article  Google Scholar 

  36. Yehya N, Topjian AA, Thomas NJ, Friess SH. Improved oxygenation 24 hours after transition to airway pressure release ventilation of high-frequency oscillatory ventilation accurately discriminates survival in immunocompromised pediatric patients with acute respiratory distress syndrome. Pediatr Crit Care Med. 2014;15(4):e147–56.

    Article  Google Scholar 

  37. Younes M. Proportional assist ventilation, a new approach to ventilatory support. Theory. Am Rev Respir Dis. 1992;145:114–20.

    Article  CAS  Google Scholar 

  38. Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, Rowan K, Cuthbertson BH, OSCAR Study Group. High-frequency oscillation for acute respiratory distress. NEJM. 2013;368(9):806–13.

    Article  CAS  Google Scholar 

  39. Zhou Y, Jin X, Lv Y, Wang P, Yang Y, Liang G, Wang B, Kang Y. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome. Intensive Care Med. 2017;43:1648–59.

    Article  Google Scholar 

  40. Esteban A, Frutos-Vivar F, Muriel A, Ferguson ND, Peñuelas O, Abraira V, Raymondos K, Rios F, Nin N, Apezteguía C, Violi DA, Thille AW, Brochard L, González M, Villagomez AJ, Hurtado J, Davies AR, Du B, Maggiore SM, Pelosi P, Soto L, Tomicic V, D’Empaire G, Matamis D, Abroug F, Moreno RP, Soares MA, Arabi Y, Sandi F, Jibaja M, Amin P, Koh Y, Kuiper MA, Bülow HH, Zeggwagh AA, Anzueto A. Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med 2013;188(2):220–230.

    Article  Google Scholar 

  41. Maxwell RA, Green JM, Waldrop J, Dart BW, Smith PW, Brooks D, Lewis PL, Barker DE. A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma 2010;69(3):501–510.

    Article  Google Scholar 

  42. Pillow JJ. High-frequency oscillatory ventilation: mechanisms of gas exchange and lung mechanics. Crit Care med 2005;33(3):S135–141.

    Article  Google Scholar 

  43. Gu XL, Wu GN, Yao YW, Shi DH, Song Y. Is high-frequency oscillatory ventilation more effective and safer than conventional protective ventilation in adult acute respiratory distress syndrome patients? A meta-analysis of randomized controlled trials. Crit Care 201418:R111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph L. Nates .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cardenas, Y.R., Nates, J.L. (2020). Respiratory Support Strategies and Nonconventional Ventilation Modes in Oncologic Critical Care Ventilation strategies. In: Nates, J., Price, K. (eds) Oncologic Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-319-74588-6_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74588-6_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74587-9

  • Online ISBN: 978-3-319-74588-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics