Skip to main content

Management of Multidrug-Resistant Enterobacteriaceae in Critically Ill Cancer Patients

  • Reference work entry
  • First Online:
Oncologic Critical Care

Abstract

Multidrug-resistant bacterial infections in critical ill cancer patients has become a trending problem in the last years because of the challenge provided in treatment, of the limited tools in our disposal, and of the high mortality associated in these infections. This has also led to an increase in hospital expenses, and by 2050, it is predicted that the problem will reach excruciating instances with incredible high costs and a mortality higher than other diseases like stroke or diabetes mellitus complications.

It is important to provide strategies pharmacological and nonpharmacological for the success in the treatment of these infections and to prevent the dissemination of life-threatening pathogens before they overcome our available antibiotics.

The following chapter discusses the importance of multidrug-resistant Enterobacteriaceae, how resistance develops, epidemiology, definitions of multidrug resistance, and diverse strategies to treat these bacteria according to its acquired resistance from Ampc and ESBL to carbapenem-resistant Enterobacteriaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barber KE, Ortwine JK, Akins RL. Ceftazidime/avibactam: who says you can’t teach an old drug new tricks? J Pharm Pharm Sci. 2016;19:448–64. https://doi.org/10.18433/J3X31R.

    Article  CAS  PubMed  Google Scholar 

  2. Bassetti M, Pecori D, Sibani M, et al. Epidemiology and treatment of MDR Enterobacteriaceae. Curr Treat Options Infect Dis. 2015;7:291–316. https://doi.org/10.1007/s40506-015-0065-1.

    Article  Google Scholar 

  3. Bassetti M, Pecori D, Peghin M. Multidrug-resistant gram-negative bacteria-resistant infections: epidemiology, clinical issues and therapeutic options. Ital J Med. 2016a;10:364–75. https://doi.org/10.4081/itjm.2016.802.

    Article  CAS  Google Scholar 

  4. Bassetti M, Peghin M, Pecori D. The management of multidrug-resistant Enterobacteriaceae. Curr Opin Infect Dis. 2016b;29:583–94. https://doi.org/10.1097/QCO.0000000000000314.

    Article  CAS  PubMed  Google Scholar 

  5. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States. 2013.

    Google Scholar 

  6. Daikos GL, Tsaousi S, Tzouvelekis LS, et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother. 2014;58:2322–8. https://doi.org/10.1128/AAC.02166-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Davies SC. Annual Report of the Chief Medical Officer: infection and the rise of antimicrobial resistance. Lancet. 2013;381(9878):1606–9. https://doi.org/10.1016/S0140-6736(13)60604-2.

  8. De Pascale G, Martucci G, Montini L, et al. Double carbapenem as a rescue strategy for the treatment of severe carbapenemase-producing Klebsiella pneumoniae infections: a two-center, matched case-control study. Crit Care. 2017;21:1–10. https://doi.org/10.1186/s13054-017-1769-z.

    Article  Google Scholar 

  9. Dharan BG, Lev B. Antibiotic resistance threats in the United States. J Acc Audit Financ. 1993;8:475–94. CS239559-B.

    Google Scholar 

  10. Dizbay M, Özger HS, Karaşahin Ö, Karaşahin EF. Treatment efficacy and superinfection rates in complicated urinary tract infections treated with ertapenem or piperacillin tazobactam. Turkish J Med Sci. 2016;46:1760–4. https://doi.org/10.3906/sag-1506-157.

    Article  CAS  Google Scholar 

  11. Endimiani A, Luzzaro F, Perilli M, et al. Bacteremia due to Klebsiella pneumoniae isolates producing the TEM-52 extended-spectrum β-lactamase: treatment outcome of patients receiving imipenem or ciprofloxacin. Clin Infect Dis. 2004;38:243–51. https://doi.org/10.1086/380645.

    Article  CAS  PubMed  Google Scholar 

  12. Falagas ME, Kastoris AC, Kapaskelis AM, Karageorgopoulos DE. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum β-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis. 2010;10:43–50. https://doi.org/10.1016/S1473-3099(09)70325-1.

    Article  CAS  PubMed  Google Scholar 

  13. Frank T, Arlet G, Gautier V, et al. Extended-spectrum β-lactamase–producing Enterobacteriaceae, Central African Republic. Emerg Infect Dis. 2006;12:863–5. https://doi.org/10.3201/eid1205.050951.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Garau J. Other antimicrobials of interest in the era of extended-spectrum β-lactamases: fosfomycin, nitrofurantoin and tigecycline. Clin Microbiol Infect. 2008;14:198–202. https://doi.org/10.1111/j.1469-0691.2007.01852.x.

    Article  CAS  PubMed  Google Scholar 

  15. Giamarellou H, Poulakou G. Pharmacokinetic and pharmacodynamic evaluation of tigecycline. Expert Opin Drug Metab Toxicol. 2011;7:1459–70. https://doi.org/10.1517/17425255.2011.623126.

    Article  CAS  PubMed  Google Scholar 

  16. Giannella M, Trecarichi EM, Giacobbe DR, et al. Effect of combination therapy containing a high-dose carbapenem on mortality in patients with carbapenem-resistant Klebsiella pneumoniae bloodstream infection. Int J Antimicrob Agents. 2018;51:244–8. https://doi.org/10.1016/j.ijantimicag.2017.08.019.

    Article  CAS  PubMed  Google Scholar 

  17. Guh AY, Limbago BM, Kallen AJ. Epidemiology and prevention of carbapenem-resistant Enterobacteriaceae in the United States. Expert Rev Anti-Infect Ther. 2014;12:565–80. https://doi.org/10.1586/14787210.2014.902306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guh AY, Bulens SN, Mu Y, et al. Epidemiology of carbapenem-resistant enterobacteriaceae in 7 US communities, 2012–2013. JAMA. 2015;314:1479–87. https://doi.org/10.1001/jama.2015.12480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harada Y, Morinaga Y, Kaku N, et al. In vitro and in vivo activities of piperacillin-tazobactam and meropenem at different inoculum sizes of ESBL-producing Klebsiella pneumoniae. Clin Microbiol Infect. 2014;20:O831–9. https://doi.org/10.1111/1469-0691.12677.

    Article  CAS  PubMed  Google Scholar 

  20. Harris PNA, Tambyah PA, Lye DC, et al. Effect of piperacillin-tazobactam vs meropenem on 30-day mortality for patients with E.coli or Klebsiella pneumoniae bloodstream infection and ceftriaxone resistance a randomized clinical trial. JAMA. 2018;320(10):984–994. https://doi.org/10.1001/jama.2018.12163\.

  21. Hirsch EB, Tam VH. Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J Antimicrob Chemother. 2010;65:1119–25. https://doi.org/10.1093/jac/dkq108.

    Article  CAS  PubMed  Google Scholar 

  22. Hirsch EB, Guo B, Chang KT, et al. Assessment of antimicrobial combinations for Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. J Infect Dis. 2013;207:786–93. https://doi.org/10.1093/infdis/jis766.

    Article  CAS  PubMed  Google Scholar 

  23. Jernigan MG, Press EG, Nguyen MH, et al. The combination of doripenem and colistin is bactericidal and synergistic against colistin-resistant, carbapenemase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2012;56:3395–8. https://doi.org/10.1128/AAC.06364-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuti JL. Optimizing antimicrobial pharmacodynamics: a guide for your stewardship program. Rev Méd Clín Las Condes. 2016;27:615–24. https://doi.org/10.1016/j.rmclc.2016.08.001.

    Article  Google Scholar 

  25. Kuti JL, Dandekar PK, Nightingale CH, Nicolau DP. Use of Monte Carlo simulation to design an optimized pharmacodynamic dosing strategy for meropenem. J Clin Pharmacol. 2003;43:1116–23. https://doi.org/10.1177/0091270003257225.

    Article  CAS  PubMed  Google Scholar 

  26. Lee YR, Baker NT. Meropenem-vaborbactam: a carbapenem and beta-lactamase inhibitor with activity against carbapenem-resistant Enterobacteriaceae. Eur J Clin Microbiol Infect Dis. 2018;37:1411–9. https://doi.org/10.1007/s10096-018-3260-4.

    Article  CAS  PubMed  Google Scholar 

  27. Lee SO, Kim YS, Kim BN, et al. Impact of previous use of antibiotics on development of resistance to extended-spectrum cephalosporins in patients with Enterobacter bacteremia. Eur J Clin Microbiol Infect Dis. 2002;21:577–81. https://doi.org/10.1007/s10096-002-0772-7.

    Article  CAS  PubMed  Google Scholar 

  28. Luyt C-E, Bréchot N, Trouillet J-L, Chastre J. Antibiotic stewardship in the intensive care unit. Crit Care. 2014;18:480. https://doi.org/10.1186/s13054-014-0480-6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Solomkin J, Evans D, Slepavicius A, Lee P, Marsh A,Tsai L, Sutcliffe JA, Horn P. Assessing the efficacy and safety of eravacycline vs ertapenem in complicated intra-abdominal infections in the Investigating Gram-Negative Infections Treated With Eravacycline (IGNITE 1) trial: a randomized clinical trial. JAMA Surg. 2017;152:224–232. https://doi.org/10.1001/jamasurg.2016.4237.

  30. Magiorakos A, Srinivasan A, Carey RB, et al. Bacteria: an international expert proposal for interim standard definitions for acquired resistance. Microbiology. 2011;18:268–81. https://doi.org/10.1111/j.1469-0691.2011.03570.x.

    Article  Google Scholar 

  31. Navarro-San Francisco C, Mora-Rillo M, Romero-Gómez MP, et al. Bacteraemia due to OXA-48-carbapenemase-producing Enterobacteriaceae: a major clinical challenge. Clin Microbiol Infect. 2013;19:E72–9. https://doi.org/10.1111/1469-0691.12091.

    Article  CAS  PubMed  Google Scholar 

  32. Ni W, Han Y, Liu J, et al. Tigecycline treatment for carbapenem-resistant enterobacteriaceae infections: a systematic review and meta-analysis. Med (United States). 2016;95:1–10. https://doi.org/10.1097/MD.0000000000003126.

    Article  CAS  Google Scholar 

  33. Palacios-Baena ZR, Gutiérrez-Gutiérrez B, De Cueto M, et al. Development and validation of the INCREMENT-ESBL predictive score for mortality in patients with bloodstream infections due to extended-spectrum- β-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother. 2017;72:dkw513. https://doi.org/10.1093/jac/dkw513.

    Article  CAS  Google Scholar 

  34. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109:309–18. https://doi.org/10.1179/2047773215Y.0000000030.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rodríguez-Baño J, Gutiérrez-Gutiérrez B, Machuca I, Pascual A. Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin Microbiol Rev. 2018;31:e00079-17. https://doi.org/10.1128/CMR.00079-17.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sader HS, Flamm RK, Jones RN. Antimicrobial activity of ceftaroline-avibactam tested against clinical isolates collected from U.S. Medical Centers in 2010–2011. Antimicrob Agents Chemother. 2013;57:1982–8. https://doi.org/10.1128/AAC.02436-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Satlin MJ, Kubin CJ, Blumenthal JS, et al. Comparative effectiveness of aminoglycosides, polymyxin B, and tigecycline for clearance of carbapenem-resistant Klebsiella pneumoniae from urine. Antimicrob Agents Chemother. 2011;55:5893–9. https://doi.org/10.1128/AAC.00387-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Siegel JD, Rhinehart E, Jackson M, Linda. Guideline for isolation precautions: preventing transmission of infectious agents in healthcare settings. Am J Infect Control. 2007;35(10 Suppl 2):S65–164.

    Google Scholar 

  39. Sorbera M, Chung E, Ho CW, Marzella N. Ceftolozane/tazobactam: a new option in the treatment of complicated gram-negative infections. P T. 2014;39:825–32.

    PubMed  PubMed Central  Google Scholar 

  40. Tängdén T, Hickman RA, Forsberg P, et al. Evaluation of double- and triple-antibiotic combinations for VIM- and NDM-producing klebsiella pneumoniae by in vitro time-kill experiments. Antimicrob Agents Chemother. 2014;58:1757–62. https://doi.org/10.1128/AAC.00741-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tenover FC, McGowan JE. Reasons for the emergence of antibiotic resistance. Am J Med Sci. 1996;311:9–16. https://doi.org/10.1016/S0002-9629(15)41625-8.

    Article  CAS  PubMed  Google Scholar 

  42. Thomson KS, Moland ES. Cefepime, piperacillin- tazobactam, and the inoculum effect in tests with extended-spectrum β-lactamase-producing Enterobcateriaceae. Antimicrob Agents Chemother. 2001;45:3548–54. https://doi.org/10.1128/AAC.45.12.3548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thorpe KE, Joski P, Johnston KJ. Antibiotic-resistant infection treatment costs have doubled since 2002, now exceeding $2 billion annually. Health Aff. 2018;37:662–9. https://doi.org/10.1377/hlthaff.2017.1153.

    Article  Google Scholar 

  44. Tumbarello M, Sanguinetti M, Montuori E, et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-??-lactamase-producing Enterobacteriaceae: importance of inadequate initial antimicrobial treatment. Antimicrob Agents Chemother. 2007;51:1987–94. https://doi.org/10.1128/AAC.01509-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Van Duin D, Kaye KS, Neuner EA, Bonomo RA. Carbapenem-resistant Enterobacteriaceae: a review of treatment and outcomes. Diagn Microbiol Infect Dis. 2013;75:115–20. https://doi.org/10.1016/j.diagmicrobio.2012.11.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vardakas KZ, Tansarli GS, Rafailidis PI, Falagas ME. Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to enterobacteriaceae producing extended-spectrum β-lactamases: a systematic review and meta-analysis. J Antimicrob Chemother. 2012;67:2793–803. https://doi.org/10.1093/jac/dks301.

    Article  CAS  PubMed  Google Scholar 

  47. Vidal L, Gafter-Gvili A, Borok S, et al. Efficacy and safety of aminoglycoside monotherapy: systematic review and meta-analysis of randomized controlled trials. J Antimicrob Chemother. 2007;60:247–57. https://doi.org/10.1093/jac/dkm193.

    Article  CAS  PubMed  Google Scholar 

  48. Wagenlehner FM, Sobel JD, Newell P, et al. Ceftazidime-avibactam versus doripenem for the treatment of complicated urinary tract infections, including acute pyelonephritis: RECAPTURE, a phase 3 randomized trial program. Clin Infect Dis. 2016;63:754–62. https://doi.org/10.1093/cid/ciw378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu Y, Gu B, Huang M, et al. Epidemiology of carbapenem resistant Enterobacteriaceae (CRE) during 2000–2012 in Asia. J Thorac Dis. 2015;7:376–85. https://doi.org/10.3978/j.issn.2072-1439.2014.12.33.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yahav D, Lador A, Paul M, Leibovici L. Efficacy and safety of tigecycline: a systematic review and meta-analysis. J Antimicrob Chemother. 2011;66:1963–71. https://doi.org/10.1093/jac/dkr242.

    Article  CAS  PubMed  Google Scholar 

  51. Yoon YK, Kim JH, Sohn JW, et al. Role of piperacillin/tazobactam as a carbapenem-sparing antibiotic for treatment of acute pyelonephritis due to extended-spectrum β-lactamase-producing Escherichia coli. Int J Antimicrob Agents. 2017;49:410–5. https://doi.org/10.1016/j.ijantimicag.2016.12.017.

    Article  CAS  PubMed  Google Scholar 

  52. Zhanel GG, Lawson CD, Zelenitsky S, et al. Comparison of the next- generation aminoglycoside plazomicin to gentamicin, tobramycin and amikacin. Expert Rev Anti Infect Ther. 2014;10:459–73. https://doi.org/10.1586/eri.12.25.

    Article  CAS  Google Scholar 

  53. Zhanel GG, Lawrence CK, Adam H, et al. Imipenem–relebactam and meropenem–vaborbactam: two novel carbapenem-β-lactamase inhibitor combinations. Drugs. 2018;78(1):65–98. https://doi.org/10.1007/s40265-017-0851-9.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan David Plata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Plata, J.D., Castañeda, X. (2020). Management of Multidrug-Resistant Enterobacteriaceae in Critically Ill Cancer Patients. In: Nates, J., Price, K. (eds) Oncologic Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-319-74588-6_120

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74588-6_120

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74587-9

  • Online ISBN: 978-3-319-74588-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics